椭圆的第二定义(含解析)教学内容
椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。
椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。
椭圆的第二定义(含解析)

课题:椭圆的第二定义【1】【学习目标】1、掌握椭圆的第二定义;2、能应用椭圆的第二定义解决相关问题;一、椭圆中的基本元素(1).基本量: a 、b 、c 、e几何意义:a-半长轴、b-半短轴、c-半焦距,e-离心率;相互关系: ac e b a c =-=,222 (2).基本点:顶点、焦点、中心(3).基本线: 对称轴二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a>>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭|c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-.设222a cb -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆.由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a=<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c=.根据椭圆的对称性,相应于焦点(0)F c '-,的准线方程是2a x c=-,所以椭圆有两条准线. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义.【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。
中心到准线的距离:d=c a 2焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2ca 2三.第二定义的应用1、求下列椭圆的焦点坐标和准线(1)13610022=+y x (2)8222=+y x2、椭圆13610022=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( ) A.14 B.12 C.10 D.83、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______;4、离心率e=22,且两准线间的距离为4的椭圆的标准方程为________________________;5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________;6、求中心在原点,一条准线方程是x=3,离心率为35 的椭圆标准方程.7、椭圆方程为16410022=+y x ,其上有一点P ,它到右焦点的距离为14,求P 点到左准线的距离.8、已知椭圆22143x y +=内有一点(11)P F -,,是椭圆的右焦点,在椭圆上有一点M ,使2MP MF +的值最小,求M 的坐标.(如图)分析:若设()M x y ,,求出2MP MF +,再计算最小值是很繁的.由于MF 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关,故有如下解法.解:设M 在右准线l 上的射影为1M .由椭圆方程可知12312a b c e ====,,,.根据椭圆的第二定义,有112MFMM =,即112ME MM =.12MP MF MP MM +=+∴. 显然,当1P M M ,,三点共线时,1MP MM +有最小值.过P 作准线的垂线1y =-.由方程组2234121x y y ⎧+=⎨=-⎩,,解得1M ⎫-⎪⎪⎝⎭.即M的坐标为1⎫-⎪⎪⎝⎭.。
椭圆的第二定义PPT优选课件

7
1、若椭圆 则
x2 y2 32
1
上一点到左准线的距离是到右准线的距离的2倍, A
8 这点的坐标是
()
A 1, 2 B(1, 2 )
3
3
对比:P94 C 3
C(1,
2) 3
D(1, 2 )
3
在椭圆上 x2 y2 两倍。 25 9
2020/10/18
1
求一点P,使它到左焦点的距离是它到右焦点距离的
(c) m<1/2 且 m 0
(B) m>1/2 且 m 1 (D) m>0 且 m 1
3、椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是( C )
A 3 B 32020/10/18源自2C 33
D 3
4
4
4、 (1)若椭圆 x2 y2 1 上一点P到右焦点F的距离为3/2,则P 到左准线的 4
线的距离 的比是常数 ec0e1
时,这个点的轨
迹 就是椭圆,定点是椭圆的a焦点,定直线叫做椭圆的准线,
常数e是椭圆的离心率。
对于椭圆
x2 a2
y2 b2
1
,相应于焦点F(c,0)
准线方程是
x a2 c
, 根据椭圆的对称性,相应于
焦点F‘(-c.0) 准线方程是 x a2
,
c
所以椭圆有两条准线。
15 3
距离是 ______3________
(2)已知椭圆
x2 y2 1 25 9
上一点P到左准线的距离是5/2,则 P 到右焦点的
距离是 __8____________
x2 y2 1
5 、离心率 e=3/5, 一条准线的方程是x=50/3 的椭圆的标准方程是____1_0_0__6_4__
3.1.1椭圆的第二定义 课件【共35张PPT】

数学建构
2、
|PF1| a ex0 |PF2| a ex0
|PF1| a e y0 |PF2| a e y0
数学建构
3、
|AB| 2a e(x1 x2 ) |AB| 2a e(x1 x2 ) |AB| 2a e( y1 y2 ) |AB| 2a e( y1 y2 )
F
o
•
F
x
活动探究 类型三 例3、
椭圆第二定义的应用
思考:条件不变,求|PA|+|PF|的 最小值。
y
P• P• •
•P
•
F
o
•
F
x
课堂检测
1、已知椭圆的短轴长是2,长轴长是短轴长的2倍,则椭圆 的中心到准线的距离为________
课堂检测 2、
此处利用两点 间距离公式
课堂小结
e c (a c 0) a
d2 Q x
x 25 2
数学练习
1、已知椭圆x2+2y2=4 上一点P到左焦点的距离为3,则点P到右准线的距离 为________
数学练习
法一:
方法基础,但计算量太大,考验耐心。
数学练习
法二:画图分析,结合焦半径公式求解
活动探究 类型三 例3、
椭圆第二定义的应用
y
P• P• •
•P
Q Q
•
x2 b2
1(a
b
0)
(0, c)
x a2 /c
y a2 /c
e c (0 e 1) a
|PF1| a ex0 |PF2| a ex0
|PF1| a e y0 |PF2| a e y0
椭圆的第二定义PPT教学课件

处死路易十六
3、走向共和的艰难历程
成为军事独裁者
拿破仑 Napoleon 1769-1821
你知 道么 ?
这个 建筑是 为纪念 什么事 件而修 建的?
拿破仑的对外战争
战果辉煌 多次打败 反法同盟
转向领土扩张: 战争性质变化
有人说,他是英雄!也有人说,
他是魔鬼!有人说他是革命的代表,是 革命原理的传播者,是旧的封建社会的 摧毁人,但同时也是一个专横跋扈的暴 君,是一个 “暴发户”。他,就是 拿破仑!
与英国的《权利法案》和法国的1875年宪法相比, 德意志帝国宪法具有浓厚的专制主义色彩,它规定了 德意志帝国实行君主立宪制,但是,皇帝和首相真正 掌握了国家的最高权力,议会只有参与制定法律和预 算的权力。
而英国的《权利法案》确立了议会主权,建立了 君主立宪制,国王的权力受到议会的明确限制,成为 “统而不治”的国家元首。
l1
y
l2
Md
H
左准线
o
F1左焦点
x a2
c
a F2
右焦点
x
右准线 2
x
c
例1.点P与定点A(2,0)的距离
和它到定直线x=5的距离的比是1:2, 求点P的轨迹;
注意:1、定点必须在直线外。 2、比值必须小于1。 3、符合椭圆第二定义的动点轨迹肯定 是椭圆,但它不一定具有标准方程形式。
4、椭圆离心率的两种表示方法:
e
c a
椭圆上任意一点P至焦点F的距离 P至与F对应的准线的距离
a 准线方程为:
2
x c
椭圆焦点在x轴
y a2
c
椭圆焦点在y轴
例2.设AB是过椭圆右焦点的弦,那么以 AB为直径的圆必与椭圆的右准线( )
(整理)椭圆的第二定义参数方程直线与椭圆的位置关系-高中数学

椭圆的第二定义、参数方程、直线与椭圆的位置关系一. 教学内容:椭圆的第二定义、参数方程、直线与椭圆的位置关系[知识点]1. 第二定义:平面内与一个定点的距离和它到一条定直线的距离之比是常数e ca e M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为椭圆的准线,常数e 是椭圆的离心率。
注意:①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c =-=-2120()②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。
2. 焦半径及焦半径公式:椭圆上一个点到焦点的距离叫做椭圆上这个点的焦半径。
对于椭圆,设,为椭圆上一点,由第二定义:x a y b a b P x y 222102+=>>()()左焦半径∴·左左r x a c ca r ex c a a ca ex 0202+==+=+右焦半径右右r a cx car a ex 200-=⇒=-3. 椭圆参数方程问题:如图以原点为圆心,分别以a 、b (a>b>0)为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥Ox ,垂足为N ,过点B 作BN ⊥AN ,垂足为M ,求当半径OA 绕O 旋转时点M 的轨迹的参数方程。
解:设点的坐标是,,是以为始边,为终边的正角,取为M x y ()ϕϕOx OA 参数。
那么∴x ON OA y NM OB x a y b ======⎧⎨⎩||cos ||sin cos sin ()ϕϕϕϕ1这就是椭圆参数方程:为参数时,称为“离心角”ϕϕ 说明:<1> 对上述方程(1)消参即xay b x a y b ==⎧⎨⎪⎪⎩⎪⎪⇒+=c o s s i n ϕϕ22221普通方程<2>由以上消参过程可知将椭圆的普通方程进行三角变形即得参数方程。
椭圆的第二定义知识纲要

椭圆的第二定义知识纲要1、椭圆的第二定义:到一定点的距离与它到一定直线的距之比是常数(0)ce a c a=>>的点的轨迹。
定点——焦点;定直线——准线;e ——离心率、说明:①22221(0)x y a b a b +=>>相应焦点F (c , 0)的准线方程是2a x c=(右焦点,右准线)22221(0)x y a b a b +=>>相应焦点F (-c ,0)的准线方程是2a x c =-(左焦点,左准线) 22221(0)y x ab a b +=>>相应焦点F (0,c )的准线方程是2a y c =(上焦点,上准线) 22221(0)y x ab a b +=>>相应焦点F (0, -c )的准线方程是2a y c=-(下焦点,下准线) ②椭圆的离心率是椭圆上任一点到焦点的距离与它到相应准线的距离之比,这就是离心率的几何意义,它反映了椭圆的圆扁程度。
212F MF S=22x例1:已知椭圆的对称轴为坐标轴,中心为坐标原点,2e =,两准线间的距离为4,求该椭圆方程。
例2:(1)已知椭圆22221(0)x y a b a b+=>>上一点P 的横坐标为x 0,F 1,F 2是其左,右焦点,则1PF = ,2PF = 。
(2)已知椭圆2212516x y +=,点M (4,y 0)在椭圆上,求点M 到两焦点的距离。
例3:已知椭圆的焦点12(0,1),(0,1)F F -,直线4y =是它的一条准线,P 是椭圆上一点,211PF PF -=,求12F PF S 。
例4:已知椭圆22143x y +=内有一点P (1,-1),F 是椭圆的右焦点,椭圆上有一点M ,使2M P M F +最小,求M 的坐标。
3、方法:①涉及椭圆上一点到两焦点的距离时,想到第一定义。
②涉及椭圆上一点到一个焦点的距离或已知焦半径长,求椭圆上该点坐标时,想到焦半径公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:椭圆的第二定义
【学习目标】
1、掌握椭圆的第二定义;
2、能应用椭圆的第二定义解决相关问题;
一、椭圆中的基本元素
(1).基本量: a 、b 、c 、e
几何意义: a-半长轴、b-半短轴、c-半焦距,e-离心率;
相互关系: a
c e b a c =
-=,222 (2).基本点:顶点、焦点、中心
(3).基本线: 对称轴
二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a
>>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭|
c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-.
设222
a c
b -=,就可化成22
221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆.
由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a
=<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2
a x c
=.根据椭圆的对称性,相应于焦点(0)F c '-,的准线方程是2
a x c
=-,所以椭圆有两条准线. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义.
【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。
中心到准线的距离:d=c a 2 焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2c
a 2
三.第二定义的应用
1、求下列椭圆的焦点坐标和准线
(1)136
1002
2=+y x (2)822
2=+y x 2、椭圆 136
1002
2=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( )
A.14
B.12
C.10
D.8
3、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______;
4、离心率e=22,且两准线间的距离为4的椭圆的标准方程为________________________;
5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________;
6、求中心在原点,一条准线方程是x=3,离心率为
3
5 的椭圆标准方程.
7、椭圆方程为164
1002
2=+y x ,其上有一点P ,它到右焦点的距离为14,求P 点到左准线的距离.
8、已知椭圆22
143
x y +=内有一点(11)P F -,,是椭圆的右焦点,在椭圆上有一点M ,使2MP MF +的值最小,求M 的坐标.(如图)
分析:若设()M x y ,,求出2MP MF +,再计算最小值是很繁的.由于MF 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关,故有如下解法.
解:设M 在右准线l 上的射影为1M .
由椭圆方程可知12312a b c e ====
,,,. 根据椭圆的第二定义,有112MF
MM =,即112
ME MM =.12MP MF MP MM +=+∴. 显然,当1P M M ,,三点共线时,1MP MM +有最小值.过P 作准线的垂线1y =-.
由方程组2234121x y y ⎧+=⎨=-⎩,,解得1M ⎫-⎪⎪⎝⎭.即M 的坐标为1⎫-⎪⎪⎝⎭.。