习题课:椭圆第二定义的应用(精)

合集下载

椭圆的第二定义及简单几何性质

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

椭圆第二定义及其推论

椭圆第二定义及其推论

椭圆第二定义及其推论
椭圆第二定义及其推论
椭圆是几何图形中最常见的一种图形。

它可以作为构造很多飞机,汽车,和各种桥梁等等的外形模型。

椭圆有两个定义:第一定义是“一个以矩形两边中心点连接而成的图形;第二定义是“一个以圆柱截面的曲线”。

根据椭圆的第二定义,我们可以得出一个比较显著的推论:椭圆的性质与其在圆柱上的切割方式有关联。

如果椭圆在不同的圆柱上以不同的切割方式进行切割,它的性质会有所不同。

例如,如果椭圆在一根比较短的圆柱上以比较同心切割的方式切割,它会变成一个椭圆形状的椭圆窗;而如果椭圆在一根比较长的圆柱上以比较异心切割的方式进行切割,它会变成一个椭圆形的球体。

因此可见椭圆的第二定义和椭圆性质之间是密切相关的,我们可以根据椭圆的第二定义和性质来推论它在圆柱上的切割方式。

因此,当我们需要构建一些特定的椭圆外形时,了解它们的椭圆类型以及它们在圆柱上的切割方式非常重要。

椭圆第二定义的应用

椭圆第二定义的应用

(当且仅当 a = b = c 时取等号).
椭 圆 第 二 定 义 的 应 用
福建省泉州市泉州南少林武术学校 廖子宜(362011) 由 椭圆第二定 义可得: 椭圆上的点 到焦点的距 离 等 于该 点 到相 应 准线 的 距离 与椭 圆 离心 率 的乘 积.这个性质有着广泛的应用,现举例说明. 1 求椭圆的方程 例 1 已知椭圆的右焦点为 (2,0) ,右准线为 x = 4 , 离心率为
x2 + ( y + 1)2 ( x 2 y + 3)
2
,求其方程.
解析 :设点 P (x, y ) 在椭圆上, 则 (x 2)2 + y2 =
1 | x 4| , 化简即得.显然 c ≠ 2. 2
=
1 m
x 2 + ( y + 1)2 1 = | x 2 y + 3| m
2 求参数范围 例 2 在平面直角坐标系中,已知方程 m ( x2 + y 2
16
= 1 内一点 A(3, 2) , F (3,0) . 在
的直线交椭圆与 A、B 两点.记 A(x1 , y1 ) 、B( x2 , y2 ) , 则弦 AB 长为: 2 a + e( x1 + x2 ) . 进而可得,焦点弦中与长轴垂直时(通径)最短, 与长轴重合时最长. 4.3 以焦点弦为直 径的圆与相应准线的位置关系 以
A
1 cos C ≥ (当 且仅当 a = b 时取 等 c 1 + cos C
2
现在证明上述不等式. 证明 :原不等式可化为 a2 (b + c )2
2
a
2
+
b2 c2 + 2 2 (c + a ) b (a + b )2

高考数学-椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用一、随圆的第二定义(比值定义): 若),e e d MF为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。

注:①其中F 为定点,F (C ,0),d 为M 到定直线L :ca x 2=的距离 ②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。

二、第二定义的应用[例1]已知11216,)3,2(22=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。

分析:此题主要在于MF 2的转化,由第二定义:21==e d MF ,可得出d MF =2,即为M 到L (右准线)的距离。

再求最小值可较快的求出。

解:作图,过M 作l MN ⊥于N ,L 为右准线:8=x , 由第二定义,知:21==e d MF,MN d MF ==∴2,2MN MA MF MA +=+Θ 要使MF MA 2+为最小值, 即:MF MA +为“最小”, 由图知:当A 、M 、N 共线,即:l AM ⊥时,MF MA 2+为最小;且最小值为A 到L 的距离=10, 此时,可设)3,(0x M ,代入椭圆方程中,解得:320=x 故当)3,32(M 时, MF MA 2+为的最小值为10[评注]:(1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。

(2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。

[例2]:设),(00y x P 为椭圆)0(,12222>>=+b a by a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2 求证:0201,ex a r ex a r -=+=证明:作图, 由第二定义:e c ax PF =+201即:a ex ca x e c a x e PF r +=+=+⋅==0202011)( 又a PF PF 221=+0012)(22ex a ex a a r a r -=+-=-=∴注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式 ②a x a ex a r PF ≤≤-+==0011由 得出c a a e a r c a ea a r -=-⋅+≥+=+≤)(11且 即c a PF c a +≤≤-1 当)a ,(,P c a PF 01--=为时 当)(a,,P c a PF 01为时+=[练习](1)过1922=+y x 的左焦点F 作倾斜角为300的直线交椭圆于A 、B 两点,则弦AB 的长为 2 分析:是焦点弦AB Θ )x (x e a )ex (a )ex (a BF AF AB B A B A +⋅+=+++=+=∴2只需求?=+B A x x (用联立方程后,韦达定理的方法可解)(2)148642122=+y x 、F F 为的左、右焦点,P 为椭圆上的一点,若,321PF PF =则P 到左准线的距离为 24分析:由焦半径公式,设)y x p 00,(得,x )ex a ex a 8(3000=-=+即又左准线为:16-=x 则P 到左准线距离为8-(-16)=24[例3] 设椭圆的左焦点为F ,AB 过F 的弦,试分析以AB 为直径的圆与左准线L 的位置关系 解,设M 为弦AB 的中点,(即为“圆心”)作,A L AA 11于⊥ ,B L BB 11于⊥,M L MM 11于⊥由椭圆的第二定义知:)(11BB AA e BF AF AB +=+=10<<e Θ 11BB AA AB +<∴又在直角梯形11A ABB 中,1MM 是中位线1112MM BB AA =+∴ 即:12MM AB < 12MM AB<∴ (2AB为圆M 的半径1MM r ,为圆心M 到左准线的距离d d r <⇒故以AB 为直径的圆与左准线相离椭圆第二定义的应用练习1、椭圆两准线间的距离等于焦距的4倍,则此椭圆的离心率e 等于( )A .21 B.31 C.41 D.42 2、椭圆的两个焦点是)3,0(1-F 和)3,0(2F ,一条准线方程是316-=y ,则此椭圆方程是( ) A .191622=+y x B.171622=+y x C. 116922=+y x D.116722=+y x 3、由椭圆116922=+y x 的四个顶点组成的菱形的高等于: 。

高中数学选修一3.1.2 椭圆(第二课时)(精练)(解析版)

高中数学选修一3.1.2 椭圆(第二课时)(精练)(解析版)

3.1.2 椭圆【题组一 直线与椭圆的位置关系】1.(2020·全国高二课时练习)若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( )A .2个B .至多一个C .1个D .0个【答案】A【解析】直线2244mx ny x y +=+=和圆22202m n >∴<+<点P(m,n)在以原点为圆心,半径为2的圆内,故圆22m n +=2内切于椭圆,,故点P(m,n)在椭圆内,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为2个2.(2018·全国高二课时练习)如果过点M(-2,0)的直线l 与椭圆2x 2+y 2=1有公共点,那么直线l 的斜率k 的取值范围是( )A .-∞⎛ ⎝⎦B .∞⎫+⎪⎪⎣⎭C .11-,22⎡⎤⎢⎥⎣⎦D .⎡⎢⎣⎦【答案】D【解析】设过点M (-2,0)的直线l 的方程为y=k (x+2),联立()22212y k x x y ⎧+⎪⎨+=⎪⎩= ,得(2k 2+1)x 2+8k 2x+8k 2-2=0, ∵过点M (-2,0)的直线l 与椭圆2212x y +=有公共点,∴△=64k 4-4(2k 2+1)(8k 2-2)≥0,整理,得k 2≤12解得-k 22≤≤∴直线l 的斜率k的取值范围是⎡⎢⎣⎦ 故选:D 3.(2020·全国高二课时练习)已知椭圆2244x y +=与直线y x m =+有公共点,则实数m 的取值范围是____________.【答案】2525≤≤-m 【解析】由2241{x y y x m+==+,得225210x mx m ++-=.因为直线与椭圆有公共点,所以()2242010m m ∆=--≥,即254m ≤,解得2525≤≤-m . 4.当m 取何值时,直线:L y x m =+与椭圆22916144x y +=相切、相交、相离. 【答案】详见解析【解析】将y x m =+代入22916144x y +=中,化简得222532161440x mx m ++-=,其判别式257614400m ∆=-+.当>0∆,即55m -<<时,直线和椭圆相交,当0∆=,即5m =±时,直线和椭圆相切.当∆<0,即5m >或5m <-时,直线和椭圆相离. 【题组二 弦长】1.(2019·广西百色田东中学高二期中(文))椭圆22416+=x y 被直线112y x =+截得的弦长为________.【解析】由22416112x y y x ⎧+=⎪⎨=+⎪⎩消去y 并化简得2260,x x +-= 设直线与椭圆的交点为M(x 1,y 1),N(x 2,y 2),则1212x 2,6,x x x +=-=-所以弦长12MN x =-=.2.(2020·辽宁葫芦岛高二期中(文))已知椭圆2241x y +=及直线:l y x m =+.(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦长及此时直线l 的方程.【答案】(1),22⎡-⎢⎣⎦;(2;此时:l y x = 【解析】(1)将直线方程与椭圆方程联立得:()2241x x m ++=即:225210x mx m ++-=直线和椭圆有公共点 ()2242010m m ∴∆=--≥,解得:m ⎡∈⎢⎣⎦(2)由(1)可知,直线与圆相交时,>0∆,即22m ⎛∈- ⎝⎭设直线与椭圆交于()11,A x y ,()22,B x y则1225m x x +=-,21215m x x -=AB ∴==当0m =时,()2max545m-=,则max5AB= ∴直线被椭圆截得的最长弦长为5;此时:l y x =3(2020·武威市第六中学高二月考(理))点P 是椭圆2222:1(0)x y C a b a b+=>>一点,F 为椭圆C 的一个焦点,||PF1-1.(1)求椭圆C 的方程;(2)直线y x m =+被椭圆C ,求m 的值 【答案】(1)2212x y +=;(2)1m =±【解析】(1)由点P 是椭圆2222:?1(0)x y C a b a b+=>>一点,F 为椭圆C 的一个焦点,||PF 的11.可得11a c a c ⎧-=-⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩1b =,所以椭圆方程为:2212x y +=.(2)设直线y x m =+与曲线C 的交点分别为()()1122M x ,y ,N x ,y联立2212y x m x y =+⎧⎪⎨+=⎪⎩得2234220x mx m ++-=, ()222Δ1612222480m m m =--=->,即m << 又21212422,33m m x x x x --+==,MN ==22242244333m m --⎛⎫⎛⎫-⨯= ⎪ ⎪⎝⎭⎝⎭, 整理得2880m -=,∴1m =±,符合题意.综上,1m =±.4.(2020·四川双流中学)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上短轴长为2,过左顶点A 的直线l 与椭圆交于另一点B . (1)求椭圆C 的方程; (2)若43AB =,求直线l 的倾斜角. 【答案】(1)2212x y +=;(2)45或135.【解析】(1)由题意的222222b c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,则1b a =⎧⎪⎨=⎪⎩2212x y +=.(2)由题意直线的斜率存在,因为左顶点为1sin 62x π⎛⎫=-+ ⎪⎝⎭, 设直线l 的方程为()2y k x =+,代入椭圆方程,得到()222221420kx x k +++-=,因为一个根为1x =2x =,则1243AB x =-==, 化简2870k k --=,即21k =,1k =±,则倾斜角45或135.5.(2019·四川高二期末(文))已知椭圆()222:220C x y b b +=>.(1)求椭圆C 的离心率e ;(2)若1b =,斜率为1的直线与椭圆交于A 、B 两点,且3AB =,求AOB ∆的面积.【答案】(1)e =;(2.【解析】(1)椭圆()2222:102x y C b b b+=>,∴椭圆长半轴长为a =,短半轴长为b ,2c e a ∴====;(2)设斜率为1的直线l 的方程为y x m =+,且()11,A x y 、()22,B x y ,1b =,∴椭圆C 的方程为22:22x y +=,由2222y x m x y =+⎧⎨+=⎩,.消去y 得2234220x mx m ++-=,又有1221243223m x x m x x -⎧+=⎪⎪⎨-⎪⋅=⎪⎩.12AB x ∴=-===3=,解得:214m =满足>0∆,∴直线l 的方程为102x y -±=. 故O到直线的距离14d ==,11223412AOE S AB d ∆∴=⋅=⨯=. 【题组三 点差法】1.(2018·海林市朝鲜族中学高二课时练习)椭圆221369x y +=的一条弦被点(4,2)平分,则此弦所在的直线方程是( ) A .20x y -= B .24x y += C .2314x y += D .28x y +=【答案】D【解析】设过点A 的直线与椭圆相交于两点,E (x 1,y 1),F (x 2,y 2),则有22111369x y +=①,22221369x y +=②,①﹣②式可得:()()()()121212120369x x x x y y y y -+-++=又点A 为弦EF 的中点,且A (4,2),∴x 1+x 2=8,y 1+y 2=4,∴836(x 1﹣x 2)﹣49(y 1﹣y 2)=0 即得k EF =121212y y x x -=--∴过点A 且被该点平分的弦所在直线的方程是y ﹣2=﹣12(x ﹣4),即x+2y ﹣8=0.故选:D . 2.(2020·湖北宜都二中高二期末(理))椭圆221169x y +=中以点M(1,2)为中点的弦所在直线斜率为( ) A .932-B .9 32C .9 64D .9 16【答案】A【解析】设弦的两端点为()11,A x y ,()22,B x y ,代入椭圆得2211222211691169x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得()()()()121212120169x x x x y y y y +-+-+=,即()()()()12121212 169x x x x y y y y +-+-=-,即()()()()12121212916x x y y y y x x +--=+-,即121292164y y x x -⨯-=⨯-,即12129 32y y x x -=--,∴弦所在的直线的斜率为932-,故选A.3.(2019·内蒙古一机一中高二期中(文))斜率为13-的直线l 被椭圆:C 22221(0)x y a b a b+=>>截得的弦恰被点(1,1)M 平分,则C 的离心率是______.. 【解析】设直线l 与椭圆的交点为1122(,),(,)A x y B x y因为弦恰被点(1,1)M 平分,所以12122,2x x y y +=+=由2222112222221,1x y x y a b a b+=+=,两式相减可得:1212121222()()()()0x x x x y y y y a b +-+-+= 化简可得:212212y y b x x a -=--,因为直线l 的斜率为13-,所以21221213y y b x x a -=-=-- 即2213b a =所以离心率e ==4.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,线段P 1P 2中点为P ,设直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2(O 为原点),则k 1·k 2的值为________. 【答案】-12【解析】设直线l 的方程为:1(2)y k x =+,由122(2)21y k x x y =+⎧⎨+=⎩,整理得 :2222111(12)8810k x k x k +++-=,所以211221812k x x k -+=+,2112218112k x x k -=+,所以1121112112214(2)(2)(4)12k y y k x k x k x x k +=+++=++=+,所以211221142(,)1212k k P k k -++,12122112121214212k k k k k k -+==--+,所以1212k k =-5.(2019·甘肃兰州一中高二期末(理))椭圆221(0,0)ax by a b +=>>与直线1y x =-交于A ,B 两点,过原点与线段ABb a 的值为( )【答案】A【解析】把y =1﹣x 代入椭圆ax 2+by 2=1得ax 2+b (1﹣x )2=1, 整理得(a +b )x 2﹣2bx +b ﹣1=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 22b a b =+,y 1+y 2=22ba b-+, ∴线段AB 的中点坐标为(b a b +,aa b+), ∴过原点与线段AB 中点的直线的斜率k 2aa ab b b a b+===+.∴b a =.故选:A . 6.(2019·山东高考模拟(理))已知椭圆(22212x y a a +=>的左、右焦点分别为12,F F ,过左焦点1F 作斜率为-2的直线与椭圆交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则a 的值是______. 【答案】2【解析】椭圆(22212x y a a +=>,所以焦点在x 轴上11 / 11 因为过左焦点1F 作的直线斜率为-2, P 是AB 的中点,设00(,)P x y ,1122(,),(,)A x y B x y将A 、B 坐标代入椭圆方程,可得22112222221212x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减,化简得 ()()1212212122x x y y a y y x x +--=+-,即0202x k a y -= 进一步化简得0202y k a x -=⨯,代入22124a -=-⨯解得a=2。

椭圆第二定义习题[整理版]

椭圆第二定义习题[整理版]

设P(X0,Y0)是椭圆上的任意一点则1PF21=a-eX0,-a x0 a所以最大值1PF21=a-e(-a)=a+c 最小值1PF21=a-ea=a-c 现在我没有时间,请给我证明推倒出来对解析法的讲解与应用,多给几个例子,(从不同的角度),最好是综合题分析:椭圆的第二定义有22220202222020222||,(||()||||,(||()||:,||||PF F e d da PF e x cc e aPF a ex PF F e d da PF e x cc e aPF a ex F a PF a PF =∴=⨯-=∴=-=∴=⨯-+=∴=+=-= 00(1)当为右焦点时代表P 点到右准线的距离)(2)当为左焦点时代表P 点到左准线的距离)说明这叫焦半径公式计法是加左减右可知当为右焦点时x 时取最大值为a+c x 时取最小值为a 222||||F a PF a PF ==-00-c当为左焦点时x 时取最大值为a+c x 时取最小值为a-c例子:1.双曲线C的一个顶点到相应的准线的距离与这个顶点到另一个焦点的距离之比为m ,则m 的取值范围是(,,,)A ()1,0B (0,3-2]2 C ⎪⎭⎫ ⎝⎛21,0 D ⎪⎭⎫ ⎝⎛-223,21[解析]本题是难题,主要考查了双曲线的基本量,以及重要不等式的应用.221e e e c a c a a m +-=+-==22331211-≤+-+-e e 答案为B[错点警示]对一些常见的通过构造分离常数来使用重要不等式的问题要加强掌握[技能空间]重要不等式要重点掌握.2.(本题满分12分)若F 1、F 2为双曲线122=-by a x 的左右焦点,O 为坐标原点,P 在双曲线的左支上,点M在右准线上,且满足;)0,1 λλOM OF OP PM O F ==.(1)求该双曲线的离心率;(2)若该双曲线过N (2,3),求双曲线的方程;(3)若过N (2,3)的双曲线的虚轴端点分别为B 1、B 2(B 1在y 轴正半轴上),点A 、B 在双曲线上,且B B A B B B A B 1122,⊥=求λ时,直线AB 的方程.[解析]本题为难题,主要考查了圆锥曲线的方程,性质,以及向量共线,垂直问题,综合性很强.(1)由PM O F =1知四边形PF OM 1为平行四边形,∵OM OF OP +=λ()0 λ∴OP 平分∠OM F 1,∴平行四边形PFOM 为菱形,…………(3分)c=∴==,C C 2,022==--e e e ……………………………(4分)(2)∵2=e ∴a c 2=∴双曲线的方程为),,(,其过点32132222N a y a x =-∴所求双曲线的方程为19322=-y x …………………………………………………(7分)(3)依题意得),3,0(),3,0(21-B B ∴A B B A B ∴=,22λ、B 2、B 共线,不妨设直线AB 为:y=kx-3,A(x ),,(),,2211y x B y 则有⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=193322y x kx y ,得0186)3(22=-+-kx x k ,…(8分)因为19322=-y x 的渐进线为x y 3±=,当3±=k 时,AB 与双曲线只有一个交点,不合题意…………………………………………………………………………(10分)当,3±≠k ∴221221318,36k x x k k x x --=∙--=+,9,31821221=∙--=+y y ky y又)3(),3(2,211,11-=-=y x B B y x A B ,∴5±=k ∴所求的直线AB 的方程为35,35--=-=x y x y ………………………………………………(12分)[技能空间]单位向量的理解,韦达定理的使用,此外向量与圆锥曲线的综合.[应试策略]圆锥曲线与向量的有机结合是近几年高考的一个热点,在很大程度上也降低了以前圆锥曲线问题的计算量过大,过烦等避端,而对向量的共线与垂直同直线与圆锥曲线的位置关系的转化是非常关键的地方,此外韦达定理的使用是不可缺少的.。

8.2椭圆的第二定义

8.2椭圆的第二定义
| PF 1 | max a c
说明:|PF1|, |PF2|称为椭圆的焦半径,此公式称为焦半径公式
例3 椭圆 x 2 4 y 2 4 上点 P 到右焦点的距离为
左准线的距离 .
1,求点 P 到
l '
x y2 1 4
a b
2 2
y
d'
P d F2
l
解: 原方程化为
2
a 2 , 1, b c
3
F1O
2
.
.
x
2
设 P 到左、右准线距离分别
为 d ' 、 d,
由椭圆的第二定义得: 则
d | PF 2 | e
| PF 2 | e d
x a c
x a c
1 2 3 3 2
两准线间的距离

a ( a ) 2 4 8 c c 3 3
2
2
d' 6 2 3 . 3
椭圆的第二定义
小桥中学
邓力山
根据的
x a
2 2

y b
2 2
1(a b 0) 性质说出
2 2
y a
2 2

x b
2 2
1(a b o) 的性质 y a
2 2
方程 图 形
范围 对称性 顶点 离心率
x a

y b
2 2
1(a b 0)

x b
2 2
1(a b o)
定点是椭圆的焦点,定 常数 e 是椭圆的离心率 . 直线叫做椭圆的准线,
(0 e 1),则这个点的轨迹是椭圆 .
椭圆的离心率就是椭圆上的一点 到焦点的距离 与到相应准线 的距离的比, 这就是离心率的几何意义。

椭圆第二定义是什么

椭圆第二定义是什么

椭圆第二定义是什么
---------------------------------------------------------------------- 椭圆的第二定义:平面上到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数)。

1、椭圆的第二定义:
平面上到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数),其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=土a 2/c<焦点在X轴上>或者y=士a ~2/c<焦点在Y轴上>)。

2、参数方程:
x=acos 0 , y=bsin 0 。

求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解:
x=a×cos β , y=b×sin β a为长轴长的一半b为短轴长的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高二数学上册§8.2 椭圆第二定义的应用(习题课
班级姓名自我学习评价 :优良还需努力
【学习目标】1. 进一步加深对椭圆第二定义及其性质的认识,会熟练运用椭圆的几何性质和第二定义解决有关问题;
2. 通过对椭圆的第二定义的应用,体会和感悟“方程思想”和“数形结合”,“分类讨论”的数学思想方法。

【学习重点】灵活运用椭圆的第二定义及性质解决有关问题。

【学习过程】
一、学习准备(知识准备)
请独立完成下列填空:
1.椭圆的第一定义为:;其中的两点为椭圆的
;常数等于椭圆的;
2.椭圆第二定义:若平面内的动点M(x,y)到定点F(c,0)的距离和它到定直线
的距离的比是常数,则点M 的轨迹为;定直线叫做,准线与长轴所在直线____,椭圆的准线有条.
常数,()是的离心率。

e1时,椭圆趋于;e0时,椭圆趋向于。

3.由椭圆第二定义我们得到了焦半径公式。

设为椭圆上任意一点,对于标准方程
的焦半径;;对于标准方程的焦半径;
.
椭圆第二定义及其性质在解题中有何价值和作用?你知道吗?通过本节课的学习你就会知道了!
●基础练习:试一试,你能根据已知很快独立完成下列问题吗?有困难的题可与小组同学讨论。

1、椭圆的准线方程是()A.; B.; C.; D.
2 椭圆的一个焦点到相应准线的距离为,离心率为,则短轴长为()A B
C. D.
3 设点P为椭圆上一点,P到左准线的距离为10,则P到右准线的距离为()
A . 6 ;
B .8 ; C.10 ; D.15
4 已知点A(2,y)是椭圆上的点,F是其右焦点,则∣AF∣=;
5.椭圆与椭圆〉0)的形状怎样?它们的离心率有何关系?你
能否快速求出与椭圆有相同的离心率且经过点(,)的椭圆的方程?其方程为
你是用什么方法求解的?。

二、典型例析
【探究一】利用椭圆第二定义解题
例1:已知椭圆内有一点,为椭圆的右焦点,在椭圆上找一点,使
得取得最小值,求最小值和点的坐标。

(提示:。

)可给于一定的提示!
●想一想:解决此类问题的关键是。

在解决问题中,你认为椭圆的第一定义和第二定义各自的功能是什么?
●扩展引申:你能不能求出的最大和最小值?(课后探究,分小组研究解决方案)
●变式训练:椭圆上有一点P,它到左准线的距离等于2.5,则点P到右焦点的距离为
例2;在椭圆上求一点P,使它到左焦点的距离是它到右焦点的距离的2倍。

●变式训练:如图所示,已知椭圆,试问能否在x轴下方的椭圆弧上找到一点M,使M到下准线的距离是M到两焦点的距离的比例中项,若能找到,求出此点坐标;若不能找到,需说明理由。

【探究二】利用椭圆第二定义及性质求椭圆的标准方程
例3:已知A,B是椭圆上的两点,是右焦点,若,AB的中点P到左准线间的距离为,求椭圆的标准方程。

●闯关训练:如图所示,已知P是椭圆
上一点,为两焦点,且,若P到两准线的距离分别为6和12,求此椭圆方程。

三【学后反思】1、这节课你主要解决了哪些问题? 2、运用了哪些数学思想和方法?
四、后课作业(略)、
几点意见:
本节课建议应紧密围绕椭圆的第二定义及性质的运用进行编选例题和练习题。

例题三个足够了,加上前的基础练习和各个例题的变式练习,课堂容量还是比较大的。

为了节省时间,在上课前几分钟小组互评检查时就可以把学生讲解的内容分配给各组,并叫各组把解答的习题写在黑板上,上课时学生在讲解后要注意加强对学生讲解的内容引导学生互评,教师要进行好点评讲解,帮助学生揭示出知识内在的联系和解题的规律,提高学生的解题能力,帮助学生及解和掌握数形结合与分类讨论的数学思想方法,提高学生的思维品质。

例题和练习题的设计要紧紧围绕目标,循序渐进的展开,例子要具有典型性和代表性,并且几个例子之间要相互协调构成一个利用椭圆第二定义及性质解题的整体结构。

通过本节课的学习,使学生形成利用椭圆第二定义解题的整体解题认知结构,掌握利用椭圆第二定义解题的方法和规律,提高综合运用第二定义解题的能力。

相关文档
最新文档