现代通信原理实验指导手册
实验指导书现代通信原理SystemView实验

《现代通信原理》实验任务书指导书适用专业:电子信息类指导教师:实验时间: 2011年春期四川建筑职业技术学院计算机工程系系2011年4月6日四川建筑职业技术学院现代通信原理实验任务书一.课程的地位、作用和目的《现代通信原理实验》是现代通信原理课程教学的重要环节,通过实验可以使理论教学和实践能力的培养相结合,以理论指导实践,以实践验证基本理论,使学生进一步巩固基本理论知识,具有一定的实际操作能力;同时通过学生上机对各单元实验内容的具体动手操作,能提出问题、分析问题、最后能解决问题,促使学生提高分析问题和解决问题的能力;建立通信的系统概念,更好地理解理论授课的内容,为后续专业基础课及专业课打下良好基础。
二.实验内容1.实验一熟悉System View软件2.实验二 2ASK系统仿真3.实验三 AM调制系统仿真4.实验四脉冲编码调制仿真5.实验五眼图仿真6.实验六奈奎斯特第一准则的验证7.实验七16QAM调制解调系统分析8.实验八锁相环路仿真分析9.完成实验报告及实验总结三.实验组织及要求1.实验组织:由相关实验室负责实验计划的制订和实验场地、设备、器材、工具的准备与管理。
2.实验分组:每人一组,每组推选组长一名,并由组长负责本小组的实验组织与实施;3.器材管理:由学习委员负责实验设备、工具、器材的借用和归还。
4.实验纪律:实验期间必须严格遵守学校纪律,不得迟到、早退和无故缺席,有事必须事先请假。
5.清洁卫生:由班长负责安排组织各组轮流打扫实验室卫生。
四.实验方法1.教师指导,学生自主学习为主。
五.实验考核办法1.考核组织1)实验室负责组织,由相关实验指导教师根据学生实验情况和学院有关规定给于评定;2)评定成绩报经相关实验室、教研室主任审定后由实验指导教师负责提交。
2.考核内容及评分办法1)平时成绩为20%。
2)成果验收成绩为60%。
3)实验报告成绩为20%。
4)成绩评定标准:分为优、良、中、及格、不及格共五个等级;5)出现以下情况之一的学生,成绩为不及格:●缺席时间超过2次;●未交实验报告;●造成严重事故;●严重违规违纪;●损坏、丢失器材、工具,情节严重;●未完成规定实验内容;●抄袭或被抄袭作业、成果。
通信原理实验指导书(完整)

实验一:抽样定理实验一、实验目的1、熟悉TKCS—AS型通信系统原理实验装置;2、熟悉用示波器观察信号波形、测量频率与幅度;3、验证抽样定理;二、实验预习要求1、复习《通信系统原理》中有关抽样定理的内容;2、阅读本实验的内容,熟悉实验的步骤;三、实验原理和电路说明1、概述在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。
因此,采取多路化制式是极为重要的通信手段。
最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。
频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。
而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
数字通信系统是以此定理作为理论基础的。
在工作设备中,抽样过程是模拟信号数字化的第一步。
抽样性能的优劣关系到整个系统的性能指标。
作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。
从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
图1-1 单路PCM系统示意图为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。
除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。
2、抽样定理抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。
通信原理实验指导书

通信原理实验指导书一、实验目的本实验旨在帮助学生深入理解通信原理的基本概念和原理,通过搭建实验电路和进行实验操作,掌握通信原理的实际应用。
二、实验器材1. 发射器:一台信号发生器2. 接收器:一台示波器3. 连接电缆:适用于信号传输的电缆三、实验步骤1. 准备工作a. 检查实验器材是否齐全,并确保其正常工作。
b. 将信号发生器和示波器连接电源,并确保电源正常。
2. 实验电路的搭建a. 将信号发生器与示波器通过连接电缆连接起来。
b. 确保电缆的连接牢固可靠,避免信号传输过程中出现干扰。
3. 实验操作a. 设置信号发生器的输出频率和幅度,以产生所需的信号波形。
b. 调节示波器的时间和幅度尺度,以正确显示接收到的信号波形。
c. 运行实验电路,观察信号的传输和接收情况。
d. 根据实验结果,记录并分析接收到的信号波形的特点和变化。
四、实验结果记录与分析根据实验操作所得到的结果,记录并分析接收到的信号波形的特点和变化。
可以通过示波器的屏幕截图来展示实验结果,并结合文字对实验结果进行描述和分析。
五、实验总结通过本次实验,我们深入了解了通信原理的基本概念和原理,并通过实验操作掌握了通信原理的实际应用。
通过实验结果的记录和分析,我们对信号的传输和接收过程有了更深入的理解。
本次实验对于我们进一步学习和研究通信原理的知识非常重要,也为今后从事相关工作打下了扎实的基础。
六、实验注意事项1. 在进行实验之前,务必做好准备工作,并确保实验器材的正常工作。
2. 在实验操作过程中,要小心操作,避免对实验器材造成损坏。
3. 注意信号发生器和示波器的连接方式和操作方法,并正确设置参数。
4. 在记录实验结果时,要准确描述实验过程和实验结果,并结合图示进行分析。
5. 在实验结束后,要及时关闭器材电源,并进行相关器材的清理和整理。
七、参考文献[此处请根据实际情况填写所参考的文献或资料]以上为通信原理实验指导书的内容,请照此进行实验操作。
通信原理试验指导书(TX-6)

通信原理实验(TX-6)王福昌潘晓明编华中科技大学电子与信息工程系二OO四年十月前言为配合《通信原理》课程的理论教学,我们先后研制了TX-1、TX-2、TX-3、TX-3B、TX-5、TX-6通信原理教学实验系统。
现代通信包括传输、复用、交换、网络等四大技术。
《通信原理》课程主要介绍传输及复用技术。
本实验系统涵盖了数字频带传输的主要内容及时分复用技术,其设计思路是如下图所示的两路PCM/2DPSK数字电话系统。
b图中STA、STB分别为发端的两路模拟话音信号,BS为时钟信号,SLA、SLB为抽样信号,F为帧同步码,AK为绝对码,BK为相对码。
在收端CP为位同步信号,FS为帧同步信号,F1、F2为两个路同步信号,SRA、SRB为两个PCM译码器输出的模拟话音信号。
图中发滤波器用来限制进入信道的信号带宽,提高信道的频带利用率。
收滤波器用来滤除带外噪声并与发滤波器、信道相配合满足无码间串扰条件。
由于系统的频率特性、码速率与码间串扰之间的关系比较适合于软件仿真实验,再考虑到收端有关信号波形的可观测性,我们在本实验系统中省略了发滤波器、信道及收滤波器,而直接将2PSK调制器输出信号连接到载波提取单元和相干解调单元。
信道编译码实验易于用独立单元或软件仿真实现,所以本系统设计中考虑由实验者通过设计实验模块用CPLD设计自行完成。
对普通语音信号进行编码而产生的PCM信号是随机信号,不适于用示波器观察信号传输过程中的变化。
所以我们用24比特为一帧的周期信号取代实际的数字语音信号作为发端的AK信号,该周期信号由两路数据(每路8比特)和7比特帧同步码以及一未定义比特复接而成。
在收端对两路数据进行分接,形成两路并行码和两路串行码,发端的24比特信号可根据实验需要任意设置。
由两路实际的话音信号(或两路正弦信号)形成的PCM时分复用信号则不再经过调制、解调而直接送给PCM译码器,实验者可以观察到PCM话音(或正弦信号)波形、量化噪声、过载噪声,从而理解PCM编译码原理。
现代通信原理实验【2011】

现代通信原理实验指导书(2011)(修订版)陕西科技大学电气与信息工程学院第二部分现代通信原理实验实验一AMI和HDB3码型变换实验五、实验步骤1.AMI码编码规则验证(1)首先将输入信号选择跳线开关KD01设置在M位置(右端)、单/双极性码输出选择开关设置KD02设置在2_3位置(右端)、AMI/HDB3编码开关KD03设置在AMI位置(右端),使该模块工作在AMI码方式。
将CMI编码模块内的M序列类型选择跳线开关KX02设置在2_3位置(右端),产生7位周期m序列。
用示波器同时观测输入数据TPD01和AMI输出双极性编码数据TPD05波形及单极性编码数据TPD08波形,观测时用TPD01同步。
分析观测输入数据与输出数据关系是否满足AMI编码关系,画下一个M序列周期的测试波形。
(2)将CMI编码模块内的M序列类型选择跳线开关KX02设置在1_2位置(左端),产生15位周期m序列。
重复上述测试步骤,记录测试结果。
(3)将输入数据选择跳线开关KD01拔除,将示波器探头从TPD01测试点移去,使输入数据端口悬空产生全1码。
重复上述测试步骤,记录测试结果。
(4)将输入数据选择跳线开关KD01拔除,用一短路线一端接地,另一端十分小心地插入测试孔TPD01,使输入数据为全0码(或采用将示波器探头接入TPD01测试点上,使数据端口不悬空,则输入数据亦为全0码)。
重复上述测试步骤,记录测试结果。
2.AMI码译码和时延测量(1)将输入数据选择跳线开关KD01设置在M位置(右端);将CMI编码模块内的M序列类型选择跳线开关KX02设置在1_2位置(左端),产生15位周期m序列;将锁相环模块内输入信号选择跳线开关KP02设置在HDB3位置(左端)。
用示波器同时观测输入数据TPD01和AMI译码输出数据TPD07波形,观测时用TPD01同步。
观测AMI译码输出数据是否满正确,画下测试波形。
问:AMI编码和译码的数据时延是多少?(2)将CMI编码模块内的M序列类型选择跳线开关KX02设置在2_3位置(右端),产生7位周期m序列。
现代通信技术实验指导说明书实验

现代通信技术实验指导书实验实验一数字通信Matlab程序仿真一、实验目的1、掌握Matlab程序设计的基本方法;2、掌握Matlab通信仿真的基本原理;3、掌握信源产生、信道编码、调制、信道传输、解调、信道译码、差错比较等通信过程的仿真方法;4、掌握仿真结果的图形化表示方法;5、仿真比较几种2FSK、2PSK、QPSK、DQPSK、16PSK、16QAM等调制方法的性能;6、仿真比较Hamming码不同码型的纠错性能。
二、实验原理仿真是衡量系统性能的工具,它通过仿真横型的仿真结果来推断原系统的性能,从而为新系统的建立或原系统的改造提供可靠的参考。
通过仿真,可以降低新系统失败的可能性,消除系统中潜在的瓶颈,防止对系统中某些功能部件造成过量的负载,优化系统的整体性能。
实际的通信系统是一个功能结构相当复杂的系统,对这个系统做出的任何改变(如改变某个参数的设置,改变系统的结构等)都可能影响到整个系统的性能和稳定。
因此,在对原有的通信系统做出改进或建立一个新系统之前.通常需要寸这个系统进行建模和仿真,通过仿真结果衡量方案的可行性,从中选择最合理的系统配置和参数设置,然后再应用于实际系统中。
这个过程就是通信仿真。
通信仿真是衡量通信系统性能的工具。
通信仿真可以分成离散事件仿真和连续仿真。
在离散事件仿真中,仿真系统只对离散事件做出响应,而在连续仿真中,仿真系统对输入信号产生连续的输出信号;离散事件仿真是对实际通信系统的—种简化,它的仿真建模比较简单,整个仿真过程需要花费的时间出比连续仿真少。
虽然离散事件仿真舍弃了一些仿真细节,在有些场合显得不够具体,但仍然是通信仿真的主要形式。
与一般的仿真过程类似.在对通信系统实施仿真之前,首先需要研究通信系统的特性,通过归纳和抽象建立通信系统的仿真模型。
下图所示是关于通信系统仿真流捏的一个示意图。
从图中可以看到,通信系统仿真是一个循环往复的过程,它从当前系统出发,通过分析建立起一个能够在一定程度上描述原通信系统的仿真模型,然后通过仿真实验得到相关的数据,通过对仿真数掂的分析可以得且相应的结论,然后把这个结论应用到对当前通信系统的改造中,如果改造后通信系统的性能并不像仿真结果那样令人满意,还需要重新实施通信系统仍真,这时候改造后的通信系统就成了当前系统,并且开始新一轮的通信系统仿真过程。
通信原理实验指导书(26页).(DOC)

实验一HDB3码型变换实验一、实验目的1、了解二进制单极性码变换为HDB3码的编码规则,掌握它的工作原理和实现方法;2、掌握HDB3码的位同步码的提取方法。
二、实验内容1、观察HDB3编译码的各种波形;2、观察全0码和全1码时的HDB3码的编码波形;3、观察从HDB3编码信号中提取位同步信号的过程。
三、实验原理AMI码编码原理:信息代码1变为带有符号的1码即+1或-1,1的符号交替反转;信息代码0仍为0码。
因此,AMI码对应的波形是占空比为0.5的双极性归零码,即脉冲宽度τ与码元宽度(码元周期、码元间隔)Ts的关系是τ=0.5Ts。
AMI码的主要特点是无直流成分,接收端收到的码元极性与发送端完全相反也能正确判断。
译码时只需把AMI码经过全波整流就可以变为单极性码。
HDB3码的编码原理:HDB3码主要解决AMI码在连0过多时同步提取困难的问题。
编码时,将4个连0信息码用取代节000V或B00V代替,当两个相邻V码中间有奇数个信息1码时取代节码000V;有偶数个信息1码(包括0个)时取代节为B00V,其它的信息0码仍为0码。
这样,信息码的1码变为带有符号的1码即+1或-1,HDB3码中1、B的符号符合交替反转原则,而V的符号破坏这种符号交替反转原则,但相邻V码的符号又是交替反转的。
因此,HDB3码是占空比为0.5的双极性归零码。
码如图2-1所示。
设信息码为0000 0110 0001 0000,则NRZ码、AMI码、HDB3信息代码 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0NRZ波形AMI码 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0AMI波形HDB3码 B 0 0 V 0 -1 1 -B 0 0 - V 1 0 0 0 VHDB3波形图1-1 NRZ、AMI、HDB3关系图分析表明,AMI码及HDB3码的功率谱如图1-2所示,它不含有离散谱fs成分(fs=1/T,等于位同步信号的频率)。
现代通信技术实验说明书

实验1 DDS信号源实验一、实验目的1.了解DDS信号源的组成及工作原理;2.掌握DDS信号源使用方法;3.掌握DDS信号源各种输出信号的测试。
二、实验仪器1.DDS信号源(位于大底板左侧,实物图片如下)2.频率计1台3. 20M双踪示波器1台4.低频信号发生器 1台三、实验原理直接数字频率合成(DDS—Digital Direct Frequency Synthesis),是一种全数字化的频率合成器,由相位累加器、波形ROM、D/A转换器和低通滤波器构成。
时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM 的地址线位数,幅度量化噪声取决于ROM的数据位字长和D/A转换器位数。
DDS信号源模块硬件上由cortex-m3内核的ARM芯片(STM32)和外围电路构成。
在该模块中,我们用到STM32芯片的一路AD采集(对应插孔调制输入)和两路DAC输出(分别对应插孔P03、P04)。
PWM信号由STM32时钟配置PWM模式输出,调幅、调频信号通过向STM32写入相应的采样点数组,由时钟触发两路DAC同步循环分别输出其已调信号与载波信号。
对于外加信号的AM调制,由STM32的AD对外加音频信号进行采样,在时钟触发下当前采样值与载波信号数组的相应值进行相应算法处理,并将该值保存输出到DAC,然后循环进行这个过程,就实现了对外部音频信号的AM调制。
RZ8681 D实验箱的DDS信号源能够输出脉宽调制波(PWM)、正弦波、三角波、方波、扫频信号、调幅波(AM)、双边带(DSB)、调频波(FM)及对外部输入信号进行AM调制输出。
四、各测量点的作用调制输入:外部调制信号输入铆孔(注意铆孔下面标注的箭头方向。
若箭头背离铆孔,说明此铆孔点为信号输出孔;若箭头指向铆孔,说明此铆孔点为信号输入孔)。
P03:DDS各种信号输出铆孔。
P04:20KHZ载波输出铆孔。
P09:抽样脉冲输出铆孔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代通信原理实验指导书第1部分实验箱使用基础1.1各实验模块介绍一、实验模块RZ9681型现代通信技术平台采用基于操作系统的智能主控系统和实验模块结构,形象展示实验原理、操作步骤,有助实验原理理解、设备维护和功能升级扩展。
配置模块支持通信原理课程的原理实验、系统实验、二次开发实验等,模块既能完成对应的实验内容,多模块级联配置后,能构成完整的基带通信系统或频带通信系统。
在本节中对标配的实验模块进行介绍:系统标配了以下几种实验模块:●智能主控系统;●基带数据产生与码型变换模块-A2;●信源编码与复用模块-A3;●信道编码与频带调制模块-A4;●纠错译码与频带解调模块-A5;●信源译码与解复用模块-A6;各个模块之间由CAN总线通信,因此在实验时可以通过主控屏幕对各个实验模块的工作状态和参数进行设置,代替了传统的跳线器,切换开关等方式。
每个模块均采用了ARM+FPGA的软件无线电架构模式,由ARM做为主控芯片,负责和主控模块的通信和参数设置;而FPGA模块则运算各种类型的算法,完成通信过程中不同的子功能模块。
由于每个模块一般运行一个类型的实验,如信道编码会同时运行汉明,循环,交织,卷积等实验,可以通过状态设置切换各个模块的功能输出。
1.2实验平台操作及注意事项一、实验平台基本操作方法在使用实验平台进行实验时,要按照标准的规范进行实验操作,一般的实验流程包含以下几个步骤:(1)将实验台面整理干净整洁,设备摆放到对应的位置开始进行实验;(2)打开实验箱箱盖,或取下箱盖放置到合适的位置;(不同的实验箱盖要注意不能混淆);(3)简单检查实验箱是否有明显的损坏;如有损坏,需告知老师,以便判断是否可以进行正常实验;(4)为实验箱加电,并开启电源;开启电源过程中,需要注意观察实验箱电源指示灯,如果指示灯状态异常,需要关闭电源,检查原因;(5)实验箱开启过程需要大约30s时间,开启后可以开始进行实验;(6)实验内容等选择需用鼠标操作;(7)在实验过程中,可以打开置物槽,选择对应的配件辅助完成实验;(8)实验完成后,关闭电源,整理实验配件并放置到置物槽中;(9)盖上箱盖,将实验箱还原到位。
二、实验平台系统功能介绍实验平台系统分为八大功能板块,分别为实验入门、实验项目、信号源、误码仪、二次开发、实验测评、固件更新、系统设置。
三、实验平台系统实验方法在实验箱右侧预留了鼠标接口,在实验时,主要通过鼠标进行操作完成实验,实验前可以先熟悉一下实验箱的的操作使用习惯。
编写常识在编写过程中,默认采用了一些习惯用语,下面将部分习惯用法给出说明,以便理解。
(1)在实验中,每个板子均有测量点和对应的铆孔,测量点和对应铆孔在电路板短接,信号相同(除频带解调模块A5有几个不对应外);测量铆孔采用xPxx的命名规则,其中P前面的数字代表板号,P后面的数字代表该铆孔在板子上的序号。
例如1P2和2P3分别对应了板1上的测量孔和板2上的测量孔。
(2)实验中连线时需要注意,连线铆孔分输入孔和输出孔。
在实验室先要确定每个铆孔的功能,原则上不能将两个输出孔连接在一起。
(3)实验中,对应的实验步骤选用示波器默认为双通道示波器,但实际中用四通道示波器会有更好的实验效果。
四、实验注意事项(1)为实验箱加电前,要简单检查一下实验箱是否有明显的损坏现象;加电时,观察实验箱右上角的电源指示灯是否正常显示,如果指示灯闪烁,请立即关闭实验箱,并检查故障原因。
(2)实验箱盖子翻开后,可以取下。
但是取下和安装时,都需要注意后端的卡轴是否完全卡好。
在没有完全卡好卡轴的情况下关闭实验箱,会对卡轴造成损坏。
另外,每台实验箱的盖子和箱体编号是对应的(箱体和盖子后端均有编号),不对应无法安装,因此实验时应妥善保管实验箱盖子,以防弄混。
第2部分通信原理预备性实验2.1DDS信号源使用一、实验目的1.了解DDS信号源的工作原理;2.掌握RZ9681实验平台DDS信号源使用方法;3.理解DDS信号源各种输出信号的特性;4.配合示波器完成系统测试。
二、实验仪器1.RZ9681实验平台2.实验模块:•主控模块3.100M双通道示波器三、DDS信号操作设置主控模块可以提供两路DDS信号源,分别是低频信号源DDS1和高频信号源DDS2,其中DDS2信号源除了作为调幅和调频的载波输出外,其他功能暂时保留。
实验中主要用到的是DDS1信号源,DDS1信号源可以生成各种类型的信号,提供可调的频率、幅度。
信号源可以单独设置使用,也可在实验时结合实验内容进行操作设置。
在本节主要了解两路DDS信号源的使用方法。
打开实验箱电源,等待系统启动,启动完成后,选择“DDS信号源”功能,进入信号源设置页面,如下图所示。
在信号源设置页面上,标注了各个区域的基本功能,下面对每个功能做简单的介绍。
●信号源切换:点击切换,选择当前设置的为DDS1或DDS2的输出类型,默认和实验使用的都是DDS1信号源;●信号波形选择:单击选择当前DDS1信号的输出类型;DDS1信号源可以输出以下类型:✧正弦波✧方波(占空比可调)✧三角波✧半波✧全波✧复杂信号(1KHZ+3KHZ正弦波叠加)✧扫频信号(频率范围从0到设置的频率)✧调幅(DDS1输出调幅波、DDS2输出载波)✧调频(DDS1输出调幅波、DDS2输出载波)✧双边带(DDS1输出调幅波、DDS2输出载波)✧音乐信号(频率变化的方波信号)●信号源信息显示:显示当前信号的参数显示:波形,频率,幅度指示(仅代表幅度是调大还是调小,不代表实际电压值,实际电压值需用示波器进行测量);●信号调节设置:两个白色旋钮中上方的为设置信号频率旋钮,结合频率档位可以调节信号频率;调节时,将鼠标移动到频率选择旋钮上,通过鼠标滚轮上下滚动调节频率。
信号频率也可以通过主控模块“输入输出区”上的频率旋钮进行调节;下方的为幅度设置旋钮,设置信号的电压。
调节时,将鼠标移动到幅度选择旋钮上,通过鼠标滚轮上下滚动调节幅度。
信号幅度也可以通过主控模块“输入输出区”上的幅度旋钮进行调节;●频率档显示:鼠标单击“频率设置”旋钮,可以切换频率的调节档位,档位在10K/1K/100HZ切换。
●频率、幅度显示:记录当先信号源下的频率和幅度指示值四、实验内容及步骤1.加电打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
2.信号输出类型调节通过DDS信号源设置页面,调节DDS1的输出类型,使其分别输出1.正弦波,2.三角波,3.方波,4.扫频信号,5.调幅信号,6.双边带信号,7.调频信号等。
3.信号频率调节旋转复合式按键旋钮“频率”,在“抽样”、“正弦波”、“三角波”、“方波”等输出状态时,可步进式调节输出信号的频率,顺时针旋转频率每步增加100HZ,逆时针减小100HZ;4.输出信号幅度调节调节幅度旋钮,可改变DDS1,DDS2输出的各种信号电压值。
5.用示波器观察DDS信号源产生的信号,并记录波形。
完成下面的实验任务:●DDS1输出2k正弦波,调节使Vp-p(峰峰值)=2V;●DDS1输出4k三角波, 调节Vp-p(峰峰值)=3V:备注:1.对于调幅、双边带、调频信号,载波频率固定为20KHz,内部产生调制信号频率固定为2KHz,由外部“调制输入”的调制信号频率由外部输入信号决定。
第3部分通信技术实验3.1基带传输实验3.1.1码型变换一、实验目的1.熟悉RZ、BNRZ、BRZ、CMI、曼彻斯特、密勒、PST码型变换原理及工作过程;2.观察数字基带信号的码型变换测量点波形。
二、实验仪器1.RZ9681实验平台2. 实验模块:• 主控模块 、基带信号产生与码型变换模块-A23. 信号连接线4. 100M 双通道示波器三、实验框图及功能说明3.1 实验框图说明框图说明:本实验中需要用到以下1个功能模块:(1)A2(基带信号产生与码型变换):模块完成基带信号产生与码型变换编译码功能。
其中基带信号产生:从2P1输出基带信号,2P3输出基带时钟(时钟速率可以设置),2P4输出对2P1信号的码型变换结果。
2P7输入码型变换的输入,将译码后的数据从2P9输出。
3.2 框图中各个测量点说明(1). 基带信号产生与码型变换-A2● 2P1:基带数据输出;(可以设置PN 序列或16bit 数据)● 2P3:基带时钟输出;(时钟速率可选,建议32k 或64k )● 2P4:编码信号输出;2P7:译码信号输入;2P9:译码输出;四、实验内容及步骤4.1 实验准备(1). 实验模块在位检查在关闭系统电源的情况下,确认下列模块在位:● 基带产生与码型变换模块-A2;A3A2A4A6A5A1(2).加电打开系统电源开关,模块右上角红色电源指示灯亮,几秒后模块左上角绿色运行指示灯开始闪烁,说明模块工作正常。
若两个指示灯工作不正常,需关电查找原因。
(3).选择实验内容在液晶上根据功能菜单选择:实验项目->原理实验->基带传输实验->码型变换,进入码型变换实验功能页面。
(4).信号线连接使用信号连接线按照实验框图中的连线方式进行连接,并理解每个连线的含义。
4.2 单极性不归零码(NRZ码)(1).编码观测通过鼠标在编码码型中选择“NRZ码”,点击“基带设置”按钮,将基带数据设置为:16bit,64K,然后修改16bit编码开关的值。
用示波器通道1观测编码前基带数2TP1,用通道2观测编码数据2TP4;尝试修改不同的编码开关组合,观测不同数据编码数据的变化。
将基带数据设置为:“15-PN”,“64K”,观测编码前数据2TP1和编码数据2TP4,并记录波形。
根据观测的编码前数据和编码后数据时序关系,分析编码时延。
译码观测使用双踪示波器,同时观测编码前数据2TP1和译码后数据2TP9,观测编码前数据是否相同。
尝试多次修改编码数据,观测译码数据是否正确。
根据观测的编码前数据和译码后数据的时序关系,分析译码时延。
4.3 双极性不归零码(BNRZ码)(1).编码观测通过鼠标在编码码型中选择“BNRZ码”,点击“基带设置”按钮,将基带数据设置为:16bit,64K,然后修改16bit编码开关的值。
用示波器通道1观测编码前基带数2TP1,用通道2观测编码数据2TP4;尝试修改不同的编码开关组合,观测不同数据编码数据的变化。
将基带数据设置为:“15-PN”,“64K”,观测编码前数据2TP1和编码数据2TP4,并记录波形。
根据观测的编码前数据和编码后数据时序关系,分析编码时延。
译码观测使用双踪示波器,同时观测编码前数据2TP1和译码后数据2TP9,观测编码前数据是否相同。
尝试多次修改编码数据,观测译码数据是否正确。
根据观测的编码前数据和译码后数据的时序关系,分析译码时延。