圆周运动天体运动资料

合集下载

圆周天体公式

圆周天体公式

一、圆周运动 1、线速度v= (定义式)= 2、角速度w= (定义式)= 3、周期T= = 4、向心加速度a n = = = 5、需要的向心力大小F= = = = = 二、天体运动 1、基本公式GMm/r 2= = = = 2、v= ;w= ;a= T= 3、星球表面:GMm/r=三、天体质量和密度估算(1)已知r 和v 求M 公式:M=已知r 、v 、R,求ρ=(2)已知r 和T 求M 公式:M=已知r 、T 、R,求ρ=(3)已知g 和R 求M 公式:M=已知g 、R,求ρ=一、圆周运动1、线速度v= (定义式)=2、角速度w= (定义式)=3、周期T= =4、向心加速度a n = = =5、需要的向心力大小F= = == =二、天体运动1、基本公式 GMm/r 2= = = =2、v= ;w= ;a=T=3、星球表面:GMm/r=三、天体质量和密度估算(1)已知r 和v 求M 公式: M=已知r 、v 、R,求ρ= (2)已知r 和T 求M 公式: M=已知r 、T 、R,求ρ=(3)已知g 和R 求M 公式:M=已知g 、R,求ρ=一、圆周运动 1、线速度v= (定义式)= 2、角速度w= (定义式)= 3、周期T= = 4、向心加速度a n = = = 5、需要的向心力大小F= = = = = 二、天体运动 1、基本公式GMm/r 2= = = = 2、v= ;w= ;a= T= 3、星球表面:GMm/r= 三、天体质量和密度估算(1)已知r 和v 求M 公式:M=已知r 、v 、R,求ρ=(2)已知r 和T 求M 公式:M=已知r 、T 、R,求ρ=(3)已知g 和R 求M 公式:M=已知g 、R,求ρ=一、圆周运动1、线速度v= (定义式)=2、角速度w= (定义式)=3、周期T= =4、向心加速度a n = = =5、需要的向心力大小F= = == =二、天体运动 1、基本公式 GMm/r 2= = = =2、v= ;w= ;a= T=3、星球表面:GMm/r= 三、天体质量和密度估算 (1)已知r 和v 求M 公式:M= 已知r 、v 、R,求ρ= (2)已知r 和T 求M 公式:M= 已知r 、T 、R,求ρ= (3)已知g 和R 求M 公式: M= 已知g 、R,求ρ=。

圆周运动公式

圆周运动公式

圆周运动和天体运动公式{公式⑴}v r ω=,222f n Tπωππ=== (n 为转速) {公式⑵}()()22222222v a r r r f r n r r T πωωππ⎛⎫====== ⎪⎝⎭{公式⑶}()()22222222v F m r m m r m r m f r m n r r T πωωππ⎛⎫====== ⎪⎝⎭【可以通过牛顿第二定律F ma =推得】{公式⑷}12⎧⎨⎩()固定在一起共轴转动的物体上各点角速度相同()不打滑的皮带传动的两轮边缘上各点和皮带上各点的线速度大小相等{公式⑸}竖直平面内圆周运动两种模型及规律轻绳模型轻杆模型常见类型均是没有支撑的小球均是有支撑的小球过最高 点的临 界条件由mg =m v 2r 得 v 临=gr由小球能运动即可,得v 临=0讨论 分析(1)过最高点时,v≥gr ,F N +mg =m v 2r ,绳、轨道对球产生弹力F N (2)不能过最高点时,v <gr ,在到达最高点前小球已经脱离了圆轨道(1)当v =0时,F N =mg ,F N 为支持力,沿半径背离圆心(2)当0<v <gr 时,-F N +mg =m v 2r ,F N 背离圆心且随v 的增大而减小 (3)当v =gr 时, F N =0(4)当v >gr 时,F N +mg =m v 2r ,F N 指向圆心并随v 的增大而增大{公式⑹}32a k T=【由开普勒第三定律可知。

a 代表行星运动的椭圆轨道的半长轴,T 代表公转周期,k 是一个只与被绕星球质量有关的常量】{公式⑺}122m m F Gr =【万有引力定律,G是引力常量,数值为11226.6710N m kg -⨯⋅】 {公式⑻}2MmF G r=【若不考虑地球自转的影响,地面上质量为m 的物体所受的重力mg 等于地球对物体的引力。

M 是地球的质量,R 是地球的半径,也就是物体到地心的距离。

】2mMmg G R= 2gR M G = {公式⑼}2324r M GTπ=【由万有引力等于向心力可推导得到,设M 是太阳的质量,m 是某个行星的质量,r 是行星与太阳之间的距离,ω是行星公转的角速度。

302圆周运动之天体

302圆周运动之天体

天体的圆周运动天体的运动方式(自然或人造):运动轨迹均为近圆轨道(实为椭圆)---视为正圆轨道天体的受力特点:空间中天体间只存在一种作用力-------万有引力天体运动的解决方法:万有引力(提供)-----等于-----向心力(需求)一、常见天体的圆周运动的类型:中心环绕型(星系类):次级天体围绕中心天体为圆心做圆周运动各次级天体出现在同心圆轨道上(半径不同)向心力有中心天体对次级天体的万有引力提供相互环绕型(双星类):两个天体围绕连线上某点为圆心做圆周运动两个天体各自轨道半径之和等于天体间距离向心力由两天体间的万有引力提供组合环绕型(多星类):多个天体围绕其构成几何形状的外切圆为圆心做圆周运动各天体轨迹半径相同、向心力靠其他天体对它万有引力的合力提供二、解题方法:万有引力提供向心力1. F万=GMm/L2=Fn Fn= mv2/r = m4π2r/T2 = m w2r说明:万有引力中的距离为相互作用的天体间距Fn中的距离为圆周轨迹的半径切勿混淆2.星球表面的万有引力不计自转:GMm/R2=mg R 为星球半径此类问题也可出现“自由落体、平抛”关于g的运动考虑自转:(星球瓦解、极限密度类----专属解法)GMm/R2=mg+mw2R 极限条件为:自转过大后,临界值为g=0关键词:运动对象(圆周运动的天体)、天体间的距离-万有引力、轨迹半径-向心力长度量明确含义运动量明确对象【典型例题】推算质量密度例1 1969年7月21日,美国宇航员阿姆斯特朗在月球上烙下了人类第一只脚印,迈出了人类征服宇宙的一大步,在月球上,如果阿姆斯特朗和同伴奥尔德林用弹簧秤测出质量为m的仪器重力为F;而另一位宇航员科林斯驾驶指令舱,在月球表面附近飞行一周,记下时间为T,试回答:只利用这些数据,能否估算出月球的质量?为什么?(万有引力常量G已知)变式1、宇航员在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到原来的2倍,则抛出点与落地点的距离为,已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。

第四章 圆周运动和天体运动

第四章   圆周运动和天体运动

第四章 圆周运动和天体运动1.匀速圆周运动:相等的时间内通过的圆弧长度都相等的运动。

2.描述圆周运动的物理量:周期T:转一圈所用的时间,单位:秒(s);转速(或频率):每秒钟转过的圈数,单位:转/秒(r/s)或赫兹(Hz)周期和频率的关系:线速度: 大小:通过的弧长跟所用时间的比值方向:圆弧上该点的切线方向。

角速度:大小:半径转过的角度跟所用时间的比值线速度与角速度的关系:4.匀速圆周运动:线速度的大小不变,方向时刻变化,是变加速曲线运动。

5.皮带传动问题解决方法:结论:1.固定在同一根转轴上的物体转动的角速度相同。

2. 传动装置的轮边缘的线速度大小相等。

6.万有引力定律:1.宇宙间的一切物体都具有相互吸引力。

两个物体间的引力大小,跟它们质量的乘积成正比,跟它们的距离的二次方成反比。

①公式是引力常量G=6.67×10-11N·m2/kg2 (或写成G=6.67×10-11N·m2·kg-2)②牛顿发现的万有引力现象并推出万有引力定律。

引力常量首先由英国的卡文迪许利用扭秤实验准确测出,扭秤的关键就是在T形架的竖直部分装一个平面镜,将引力作用于扭秤产生的微小扭转效果,通过光点的移动加以放大。

③万有引力定律的公式严格讲只适用于两个质点间的相互作用,当两个物体间的距离远大于自身直径时,也可以使用,r即两个物体中心距离。

7.天体运动两种类型:第一种:某天体绕中心天体做匀速圆周运动,用公式F向=F万,如:人造地球卫星(半径与加速度,线速度,向心加速度之间的关系)第二种:物体在某星体表面附近的问题,用公式F万=mg’;如求地球某高度h处的g。

10圆周运动与天体运动

10圆周运动与天体运动

10圆周与天体运动一、常考的圆周模型――竖直平面的圆周运动:1:轻绳模型(无支撑模型):绳子的力只可能是拉力,不可能是推力,因此过最高点时要求速度大于或者等于gR。

2:轻杆模型(有支撑模型):杆的力可以是拉力也可能是推力,因此过最高点时速度大于或者等于0即可。

例1.长度为L=0.5m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s,g取10m/s2,则此时细杆OA受到()A.6.0N的拉力B.6.0N的压力C.24N的拉力D.24N的压力3:圆周运动的解题思路(1).对某一状态进行分析时,列出牛顿第二定律方程(向心力的来源)(2).对某一过程进行分析时,列出动能定理方程(W总=E k2-E k1)或者机械能守恒方程(E少=E增)例2.如图所示,一光滑的半径为R的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道的压力恰好为零,则小球落地点C距A处多远,小球初速度是多大.二、天体运动1:弄清星球对物体引力与物体重力的关系(1).星球对物体引力可以分解为自转向心力和重力(重力是引力的一个分力)(2).在赤道上:F引=F重+F自(3).在两极:F引=F重例3.已知一个星球的质量为M,其半径为R,赤道表面的重力加速度为g,求其自转周期为多大时,它将瓦解?(4).若不考虑自转则F引=F重可得黄金代替式GM=gR2=g(R+h)2例4.某物体在地面上受到的重力为160N,将它放置在火箭中,在火箭以5m/s2的加速度加速升空的过程中,当物体与火箭中的支持物相互挤压力为90N,卫星距地面有多高?(地球半径R=6400km,地面的重力加速度g=10m/s2)2:天体公转时的作用-------公转轨迹当成是圆周运动,物体受到的万有引力提供向心力(1).求解公转规律(2).求中心天体质量与密度例5.如图所示,一双星A、B,绕它们连线上的一点做匀速圆周运动,其运行周期为T,A、B间的距离为L,它们的线速度之比v1:v2=2:1,试求两颗星的质量m1和m2。

高中物理天体运动知识点总结

高中物理天体运动知识点总结

高中物理天体运动知识点总结一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。

天体运行圆周运动

天体运行圆周运动

一、开普勒三定律: 1、开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆个的一焦点上。

2、开普勒第二定律:对于每一个行星而言,太阳和行星在相等的时间内扫过相等的面积。

3、开普勒第三定律:所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

二、万有引力定律:(1687年) 1、定律内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。

公式推导:把行星运动近似看成圆周运动,利用向心力公式和开普勒第三定律推导。

2、理解:(1)任何两物体间存在万有引力。

(2)r 的含义:a :指质点间的距离; b :均匀几何体指几何中心间的距离。

(3)重力是地球对物体万有引力的一个分力地球对物体的万有引力近似等于物体的重力,即 从而得出(黄金代换 ) 3、G 的测量: 卡文迪许扭秤实验 (3)G 的意义:a :数值上等于两质量为1kg 的物体相距1m 时的引力大小。

b :证明万有引力定律的正确。

(4)大小:G=6.67×10-11Nm2/kg2特点特点1、普遍性万有引力是普遍存在于宇宙中任何有质量物质之间的吸引力,是自然界物质之间的基本相互作用之一。

2、相互性两个物体相互作用的引力是一对作用力与反作用力3、宏观性通常情况下,万有引力非常小,只有在巨大的天体间,或天体与物体间,它的存在才有实际上的意义。

4、特殊性两个物体间的万有引力和物体所在的空间及其他物体存在无关5、适用性只适用于两个质点间的引力,当物体之间的距离远大于物体本身时,也适用,但应为两质心间的距离2MmG mgr2GM gR万有引力定律的意义17世纪自然科学最伟大的成果之一,第一次揭示 了自然界中的一种基本相互作用的规律,在人类认识自然的历史上树立了一座里程碑。

在文化发展史上的重大意义:使人们建立了有能力理解天地间的各种事物的信心,解放了人们的思想,在科学文化的发展史上起了积极的推动作用。

高中物理专题十二讲【第04讲_圆周运动_天体运动】

高中物理专题十二讲【第04讲_圆周运动_天体运动】

【解析】 (1)设小物体运动到p点时的速度大小为v,
对小物体由a运动到p过程应用动能定理得
1 2 1 2 mgL 2 Rmg mv mva 2 2
① ② ③
小物体向P点做平抛运动,设时间为t,则
2R 1 2 gt 2
s=vt 联立①②③式,代入数据解得 s=0.8m

【解析】 (2) 设在数字“0”的最高点时管道对小
1.用万有引力定律分析天体运动的基本方法:
把天体运动近似视为圆周运动,它所需要
的向心力由万有引力提供,即
Mm v2 4π 2 G 2 m mrω2 mr 2 ma向 r r T
2. 万有引力定律的应用:测天体的质量和密度
①利用天体表面的重力加速度g和天体的半径R.
Mm gR 2 G 2 mg, 故 M R G Mm G 2 mg, 在地面附近 R
线速度
角速度 周期、频率 向心加速度
描述质点
沿圆周运 动的快慢 描述线速 度方向改 变的快慢
v=s/t=2πr/T
ω= φ /t=2π/T T=1/f=2 πr/v a=F/m=v2/r =ω2r
沿圆弧在该点 的切线方向
—— 无方向 时刻指向圆心
相互关系
【知识梳理 查漏补缺】
一、圆周运动 1.描述圆周运动的物理量
类型二:圆周运动与向心力
分析圆周运动的关键是分析向心力来源: 1.在匀速圆周运动中,向心力是物体所受到的合 力,方向一定指向轨迹圆心,可用直接合成法或正 交分解法确定其大小; 2.在变速圆周运动中,向心力的大小等于物体所 受到的沿着圆周半径方向指向圆心的合力 .
例2 如图所示,轻杆长1 m,其两端各连接质量为1 kg 的小球,杆可绕距B端0.2 m处的轴D在竖直平面内自由 转动,轻杆由水平从静止转至竖直方向,A球在最低点 时的速度为4 m/s.(g取10 m/s2)求: (1)A小球此时对杆的作用力大小及方向; (2)B小球此时对杆的作用力大小及方向.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档