中考数学复习《整体思想解析》
课件中考复习-数学思想方法(4)整体思想-【慕联】初中数学中考复习

慕联提示
亲爱的同学,课后请做一下相关的 题目进行巩固。这节课就到这里了,我 们下节课再见!
【解析】易知四边形AEPF是平行四 边形,设AP与EF相交于点O,则S△POF= S△AOE,所以阴影部分的面积等于菱形 面积的一半.
【答案】3
课堂小结
整体思想就是把某些式子或者图形看成 一个整体,把握已知与所求之间的关联, 进行有目的、有意识的整体处理来解决 问题的方法。体现了一种着眼全局,通 盘考虑的整体观念.
数学思想方法小结
数学思想方法解决问题就是化未知为已知、化繁为 简、化难为易,通过一定的策略和手段,使复杂的问题 简单化,陌生的问题熟悉化,抽象的问题具体化.具体 地说,比如把隐含的数量关系转化为明显的数量关系; 把从这一个角度提供的信息转化为从另一个角度提供的 信息,转化的内涵非常丰富,已知与未知、数量与图形、 概念与概念之间、图形与图形之间都可以通过转化,来 获得解决问题的转机.
中考复习 数学思想方法(4)
整体思想
[慕联教育专题课程] 课程编号:ZS1804010202ZKFX040104LWJ
授课:李卫老师
整体思想
整体思想,就是从问题的整体性质出发,突出 对问题的整体结构的分析和改造,方法在代数式的 化简与求值、解方程(组)、几何解证等方面都有 广泛的应用,整体代入、叠加叠乘处理、整体运算、 整体设元、整体处理、几何中的补形等都是整体思 想方法在解数学问题中的具得阴影部分面积 为半圆的面积,进而可得答案.
【答案】8π
【规律总结】在解题过程中,应仔细分析题意,挖掘题 目的题设与结论中所隐含的信息,然后通过整体构造,常 能出奇制胜.
练习 如图,菱形ABCD的对角线长分别为3和4, P是对角线AC上任一点(点P不与A,C重合),且 PE∥BC交AB于点E,PF∥CD交AD于点F,则图中阴 影部分的面积为___3___ .
第37讲 整体思想 课件-2021年中考数学复习

类型二 方程(组)或不等式(组)
【解后感悟】通过整体加减既避免了求复杂的未 知数的值,又简化了方程组(不等式组),解答变得 直接简便.
类型三 函数应用中的整体思想 例3 已知y+m和x-n成正比例,其中m,n是常数. (1)求证:y是x的一次函数. (2)当y=-15时,x=-1;当x=7时,y=1.求这个函数的 解析式.
第37讲 整体思想
整体思想就是在研究和解决有关数学问题时,通 过研究问题的整体形式、整体结构、整体特征, 从而对问题进行整体处理的解题思想. 整体思想的利用能使问题变繁为简,变难为易. 整 体思想的主要表现形式有:整体代入、整体加减、 整体代换、整体联想、整体补形、整体改造等 等.
类型一 数与式运算中的整体思想
线相交于点F,
∴∠ABF+∠CDF=140°, ∴∠BFD=∠BFH+∠DFH=140°.
【解后感悟】遇到两角平分线时,常利用基本图 形和整体思想求角度.
【整体思想在生活中的应用】 (2020·舟山模拟)产品的价格是由市场价格波动产 生的,而每种产品价格在当天是固定的.某采购商欲 购入A产品80件,B产品100件.甲供应商捆绑销售2件A 产品和3件B产品,报价在400元-500元之间.乙供应商 也捆绑销售3件A产品和2件B产品,报价在500元-600 元之间.采购商打算从甲、乙供应商购进A产品80 件,B产品100件,所要准备的资金为 ( B ) A.12600元-15200元之间 B.15200元-18800元之间 C.18800元-21600元之间 D.21600元-33000元之间
【解后感悟】此题在解方程组时,单独解出k,m,n是不可能、也不必 要.故将kn+m看成一个整体求解,从而求得函数解析式.
用整体思想解中招试题

用整体思想解中招试题整体思想是中学数学中的一种重要的 思想方法. 运用整体方法解数学试题,可以 避开繁琐的计算,思路简捷明朗.一、求代数式的值1. 将条件式直接代入,再化简例 1. 设 a -b =-2, 求-ab 的值 解: 原式 = - = ( a -b)2 = ( -2)2 =2;2. 将条件式做简单变形,代入化简例2 ⑴ 已知:x 2-x -1 = 0, 则- x 3 + 2x 2 +2002 的值为____ ;⑵ 当x=1时, 代数式 px3+qx +1 的值为 2001,则当 x = -1时 , px 3 + qx +1 的值为( )(A) -199 (B) -2000 (C) -2001 (D) 1999解:⑴ 由 x 2-x -1= 0, 得 x 2-x =1 ,∴- x 3 + 2x 2 +2002 = - x 3 + x 2 + x 2 + 2002= -x(x 2 -x ) + x 2 + 2002= -x + x 2 + 2002= 1 + 2002 = 2003⑵ 因 x=1时, 代数式 px 3+qx +1 的 值为 2001,∴ p + q +1 = 2001, ∴ p +q = 2000,∴ p (-1)3+ q (-1)+1 =-( p +q )+1 =-2000 +1 =1999, 故选(A )例3 ⑴ 已知x 1-y 1= 3, 则 的值等于___⑵ 先化简,再求值: (-)÷, 其中,a 满足a 2 + 2a -1 = 0,解:⑴ 将条件化为= 3 , ∴ x -y = -3xy, ∴ 原式 == = = =解法2:分子、分母同除以 xy, 然 后将x1-y 1= 3整体代入得原式= = = = ⑵ 由 a 2 + 2a -1 = 0, 得 a 2 + 2a = 1,∴ 原式 = [-] ·= [- ] · = · = = 1 3.先将待求代数式化简,确定条件变形的方向例4. 已知: 123123++=++x x ,求)--(--225423-÷x x x x 的值. 解:原式=29223242542322--)-(-)=----(--x x x x x x x x x ÷÷ =)-)(+(-)-(-x x x x x 332223⋅)+(=321x - 至此可知, 应将条件式化为含有31+x 的代数式. ∵123123++=++x x ,即12332++=++x x , 或 12331)3(++=++x x - ∴123 311++=+-x , ∴23 31+=+-x ∴原式=)+(321x -=223+. 评析:本题要依据题目特点,取已知条件倒数得12332++=++x x ,再得1233133++=+-++x x x ,即2311+=+-x .再整体代入所求式的化简式中.本题有技巧,蛮算可不行!二、解方程 组例5. 方程组的解为 _____ 解: 将 ① 化为 x +y =1 代入 ② 得 2x 2 +1-3 = 0∴ x = ±1 ,从而得方程组的解为三、求线段的长.例6. 如图1,在△ABC中, 已知∠B 和∠C 的平分线相交于点F. 过点F作DE∥BC,交AB于点D, 交AC于点E. 若BD + CE = 9, 则线段DE的长为()(A) 9 (B) 8 (C) 7 (D) 6分析:要求线段DE 的长,一般思路是分别求出线段DF、EF的长,而DF、EF未知,所以直接求有困难.从整体考虑:由于BF平分∠ABC,CF平分∠ACB,DE∥BC,所以∠1=∠2 ,∠2 =∠3 ,∴∠ 1 =∠3 ,∴ DF = DB ,同理EF = EC∴ DE = DF+EF = BD + CE = 9,选(A).例7. 如图2,在水平宽度为9米,坡度为30°的楼梯表面铺地毯,地毯的长度至少需要____米解:分析:因台阶的级数及每一级台阶的高和长都未知, 无法计算每级台阶的高,也无法计算每级台阶的长.可从整体考虑:将每级台阶的高都平移到BC上,就可得各级台阶的高度之和为BC,同样,可得各级台阶的长度之和为AC,由AC 已知,高度BC可求.故,所需地毯的总长度等于AC + BC = ( 9+33) (米)四、求几何图形的面积例8. 如图3, ⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1, 顺次连结五圆心得到五边形ABCDE, 则图中五个扇形( 阴影部分) 的面积的和是( )(A)π(B)1.5π(C)2π(D)2.5π解:分析:由于各个扇形的圆心角的度数未知,从而不能分别求出各个扇形的面积.为此,要求阴影部分的面积,就要技巧能够五个阴影部分整体考虑.注意到五边形的内角和为540°,即五个扇形的圆心角的和为540°,又因各个扇形的半径都相等,所以图中阴影部分的面积为×πr2 = 1.5π,选(B)参考习题1. 已知代数式3x2-2x+ 6 的值为8,那么代数式x2-x + 1的值为()(A) 1 (B) 2 (C) 3 (D) 42. 已知x2-3x-2 = 0, 那么代数式的值为____3.已知a-2b=2 (a≠1),求-a2 +4ab-4b2的值4. 先化简,再求值:-·, 其中,a满足a2 + 2a-1= 0,附:答案1. B ;2. 2 ;3. 原式= = (a-2b)2 = -;4. 原式= = 1。
中考数学复习 第四部分 专题一 整体思想课件

在函数中的应用 例 4:已知 y+m 和 x-n 成正比例,其中 m,n 是常数. (1)求证:y 是 x 的一次函数; (2)当 y=-15 时,x=-1;当 x=7 时,y=1.求这个函数的 解析式. (1)证明:由已知,y+m 和 x-n 成正比例,故可设 y+m= k(x-n)(k≠0), 整理可,得 y=kx-(kn+m). 因为 k≠0,k,-(kn+m)为常数,所以 y 是 x 的一次函数.
分析:对分式进行化简结果为a2-1 2a,如果先把 a 的值求出 再代入计算,显得繁琐,但如果把 a2-2a 看成一个整体,则由 已知可得其值为 1.
方程(组)或不等式(组)中的整体思想
例 2:(2010 年广西桂林)已知 x+1x=3,则代数式 x2+x12的 值为________.
解析:如果根据题意直接求出 x 再代入到 x2+x12中求值将非 常麻烦,特别是 x 为一个无理数.考虑到条件和结论的形式非 常相似,可以考虑用完全平方公式进行变形化简,得:
第四部分 中考专题突破
专题一 整体思想
整体思想,就是在研究和解决有关数学问题时,通过研究 问题的整体形式、整体结构、整体特征,从而对问题进行整体 处理的解题方法.从整体上去认识问题、思考问题,常常能化 繁为简、变难为易. 整体思想的主要表现形式有:整体代入、整 体加减、整体代换、整体联想、整体补形、整体改造等等.
几何与图形中的整体思想
例 5:如图 Z1-1,⊙A,⊙B,⊙C 两两
不相交,半径都是 0.5 cm,则图中阴影部分的
面积是( )
图 Z1-1
π A.12
cm2
π B.8
cm2
π C.4
cm2
π D.6
cm2
解析:由于不能求出各个扇形的面积,因此,要将三个阴
中考数学专题复习 数学思想方法问题

数学思想方法问题【专题点拨】整体思想:整体思想,就是研究和解决问题时,从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理,从而达到迅速解题的目的.分类讨论思想:当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论.转化思想:转化思想亦可在狭义上称为划归思想.就是将待解决的或者难以解决的问题A 经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B来解决问题A的方法.数学建模思想:为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学.使用数学语言描述的事物就称为数学模型.数学建模,其实就是把数学问题转化为用方程、不等式、函数等来解决的数学方法.数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,利用“数形结合”可使所要研究的问题化难为易,化繁为简.类比思想:类比思想是数学创造型思维中很重要的一种思想方法,它可以帮助学习者建立新旧知识联系的桥梁,实现知识的正迁移,将已学过的知识或已掌握的解题方法迁移到陌生的问题中,进而使问题得到解决.【解题策略】整体思想:分析问题整体结果→发现问题特征→找到相互关联→运用整体思想→化难为易解决问题分类讨论思想:分析问题有变化→探索不同分析思路→找到需分解的部分→运用分类讨论的思想→多种情况分析解决问题转化思想:分析问题有难度→转化手段和方法→从难到易转化→运用转化化归的思想→通过另一途径解决问题建模思想:分析抽象问题→借助模型思想→找到相同本质→运用数学建模的思想→采用方程或函数等解决问题数形结合思想:分析问题较抽象→转化为直观易分析→找到相对应图形→运用数形结合的思想→化难为易解决问题类比思想:分析问题有深度→借助新旧知识的关联→合理进行知识迁移→运用类比的思想→轻松解决疑难问题【典例解析】类型一:整体思想应用问题例题1:(2016·青海西宁·2分)已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为 2 .【考点】整式的混合运算—化简求值.【分析】先利用乘法公式展开,再合并得到原式=x2+x﹣3,然后利用整体代入的方法计算.【解答】解:原式=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,因为x2+x﹣5=0,所以x2+x=5,所以原式=5﹣3=2.故答案为2.变式训练1:(2015·菏泽)已知m是方程x2-x-1=0的一个根,求2+()—2m m1()的值.m m34++类型二:分类讨论思想问题例题2:(2016·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.变式训练2:(2016·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.类型三:转化思想问题例题3:(2016·浙江省绍兴市·4分))解分式方程: +=4.【考点】解分式方程.【分析】观察可得方程最简公分母为(x﹣1),将方程去分母转化为整式方程即可求解.【解答】解:方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.变式训练3:(2016·吉林·5分)解方程: =.类型四:数学建模问题例题4:(2016·四川宜宾)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.【考点】由实际问题抽象出二元一次方程组.【分析】分别利用“A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元”得出等式求出答案.【解答】解:设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组:.故答案为:.变式训练4:(2016·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为.类型五:数形结合问题例题5:(2016·黑龙江齐齐哈尔·12分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是70 米,甲机器人前2分钟的速度为95 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为60 米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.【考点】一次函数的应用.【分析】(1)结合图象得到A、B两点之间的距离,甲机器人前2分钟的速度;(2)根据题意求出点F的坐标,利用待定系数法求出EF所在直线的函数解析式;(3)根据一次函数的图象和性质解答;(4)根据速度和时间的关系计算即可;(5)分前2分钟、2分钟﹣3分钟、4分钟﹣7分钟三个时间段解答.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发xs相距28米,由题意得,60x+70﹣95x=28,解得,x=1.2,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=2.8,4分钟﹣7分钟,两机器人相距28米时,(95﹣60)x=28,解得,x=0.8,0.8+4=4.8,答:两机器人出发1.2s或2.8s或4.8s相距28米.变式训练5:(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.类型六:数学类比问题例题6:(2016·浙江省湖州市)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t= .【考点】几何变换综合题.【分析】(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.(2)设DH=x,由由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.故答案为.变式训练6:(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【能力检测】1.(2016·四川泸州)分式方程﹣=0的根是.2.(2016·黑龙江齐齐哈尔·3分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.3.(2016·湖北荆门·3分)如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是什么?.4.(2016·内蒙古包头)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.5.(2016·陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?6.(2016河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【参考答案】变式训练1:(2015·菏泽)已知m是方程x2-x-1=0的一个根,求2()—2+m m1()的值.++m m34【解析】把m代入方程求得m2-m=1,再把有关m的代数式化简,最后整体代入求出代数式的值.【解答】∵m是方程x2-x-1=0 的一个根,∴m2-m-1=0.即m2-m=1.m(m+1)2-m2(m+3)+4=m3+2m2+m-m3-3m2+4=-m2+m+4=-(m2-m)+4=-1+4=3.【点评】本题考查代数式的求值,解答这类问题要善于观察代数式的整体特征,先将条件进行转化,再把代数式化简,然后将化简结果转成与条件有关的式子进行计算.变式训练2:(2016·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.【考点】矩形的性质;等腰三角形的性质;勾股定理.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5;故答案为:5或4或5.变式训练3:(2016·吉林·5分)解方程: =.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣2=x+3,解得:x=5,经检验x=5是分式方程的解.变式训练4:(2016·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为100(1+x)2=169 .【分析】根据年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.设该公司这两个月住房销售量的增长率为x,可以列出相应的方程.【解答】解:由题意可得,100(1+x)2=169,故答案为:100(1+x)2=169.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出形应的方程.变式训练5:(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【分析】(1)利用得到系数法求解析式,列出方程组解答即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=6.4x+32.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元).【点评】此题主要考查了一次函数的应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.变式训练6:(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,,∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F,O,H′,C在一条直线上,∵EG=,∴OF=EG=,∵CF=2,∴OC=,∵OH′=OE=FG=,∴OH′<OC,∴点H′在矩形ABCD的内部,∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件,这个部件的面积=EG•FH′=××(+)=5+,∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m2.【能力检测】1.(2016·四川泸州)分式方程﹣=0的根是x=﹣1 .【考点】分式方程的解.【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x(x ﹣3)进行检验即可.【解答】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.2.(2016·黑龙江齐齐哈尔·3分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20 .【考点】正方形的性质;等腰三角形的性质.【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.3.(2016·湖北荆门·3分)如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是什么?.【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).4.(2016·内蒙古包头)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.【考点】一元二次方程的应用;根据实际问题列二次函数关系式.【分析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为xcm,根据:三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积,可列函数关系式;(2)根据:三条彩条所占面积是图案面积的,可列出关于x的一元二次方程,整理后求解可得.【解答】解:(1)根据题意可知,横彩条的宽度为xcm,∴y=20×x+2×12•x﹣2×x•x=﹣3x2+54x,即y与x之间的函数关系式为y=﹣3x2+54x;(2)根据题意,得:﹣3x2+54x=×20×12,整理,得:x2﹣18x+32=0,解得:x1=2,x2=16(舍),∴x=3,答:横彩条的宽度为3cm,竖彩条的宽度为2cm.5.(2016·陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.6.(2016河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b (用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【考点】三角形综合题.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣﹣3=2﹣,∴P(2﹣,).【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.。
中考数学复习指导:利用整体思想巧解题

点评 (1) x+y, xy 称为基本对称式,关干 x、y 的对称式求值往往利用 x+y, xy 整体代入求 值; (2)解这类题的一般步骤是: 先分别求出: x+y, xy 的值,然后将所求代数式进行适当的变 形,使之成为只含有 x+y, xy 的式子,最后将 x+y, xy 的值整体代入即可. 三、用整体思想解方程或方程组 例 4 解方程组:
2 5( + y ) − 8( x − 3) = 20, ① 3 20( x − 3) + 5( 2 + y ) = 27.② 3
分析 若先做去括号、去分母等变形,解答过程显得比较繁琐,观察方程组的特点,将
2 2 ( +y ) 与(x﹣3)分别看成整体,整体相减,可消去 ( +y ) . 3 3 1 13 解 ②-①,得,28(x-3)=7,x-3= ,x= . 4 4
把 a2+3a+1 看成一个整体,展开后就可以得到一个关于 a2+3a+1 的二次三项式,问题就可以 迎刃而解一了. 解 原式 =(a2+3a+2)( a2+3a+1)+1 =( a2+3a+1)2+2(a2+3a+1)+1 =( a2+3a+1+1)2 =( a2+3a+2)2 =(a+1)2(a+2)2. 点评 对于有括号的多项式,分解因式时,不要急于将括号展开,要仔细观察式子的特 点,有时不去掉括号,直接分解因式反而更方便,如上题,把 a2+3a+1 看成一个整体,整个 多项式的结构就显得清晰和简单.总之, “整体思想”是初中数学中一种非常重要的思想与方 法.在解题过程中灵活利用整体思想,可以开拓解题思路、强化化归能力,提高数学综合素 质.
中考专题复习整体思想
中考专题复习《整体思想》整体思想:就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方.从整体上去认识问题、思考问题,常常能化繁为简、变难为易.整体思想的主要表现形式有:整体代入、整体设元、整体加减、整体代换、整体联想、整体补形、整体改造、整体配凑等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一、数与式的运算中的整体思想二、方程(组)或不等式(组)中的整体思想三、在函数中的应用例 3、已知 y +m 和 x -n 成正比例,其中 m ,n 是常数.(1)求证:y 是 x 的一次函数;(2)当 y =-15 时,x =-1;当 x =7 时,y =1.求这个函数的解析式.=x ax bx a ab a b ++≠-+-2222110(0),(2)4例、已知关于的一元二次方程有两个相等的实数根求的值x ay x y x by x x y y x y a x y x y b x y -=⎧⎨+=⎩=⎧⎨=⎩+--=⎧⎨++-=⎩352,115,,63()()5_________()11例、已知关于的二元一次方程组的解为那么关于的二元一次方程组的解为四、几何与图形中的整体思想例 4、如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD ,EF 均和x 轴垂直,以点O 为顶点的两条抛物线分别经过点C ,E 和点D ,F ,则图中阴影部分的面积是________.五、课堂练习4、分解因式(x -1)2-2(x -1)+1的结果是___________a a a a a a a a a a +---÷--+---=2222141(),2442210、先化简,再求值其中x x x x +=+221123,_______、已知则代数式的值为x y k x y x y k k +=+⎧<+<⎨+=+⎩24130322_________、已知,且,则的取值范围是5、已知y +2x =1,求代数式(y +1)2-(y 2-4x )的值.7、若买铅笔4支,日记本3本,圆珠笔2支,共需10元;若买铅笔9支,日记本7本,圆珠笔5支,共需25元,则购买铅笔、日记本、圆珠笔各一样共需______元8、阅读下列材料,解答问题.为了解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则原方程可化为y 2-5y +4=0 ①. 解得y 1=1,y 2=4. 当y =1时, x 2-1=1,x 2=2,x;当y =4时,x 2-1=4,x 2=5,x. 故x 1,x 2,x 3,x 4解答问题:(1)填空:在由原方程得到方程①的过程中,利用______法达到了降次的目的,体现了________的数学思想;(2)用上述方法解方程:x 4-x 2-6=0.11214263,2---=--、已知求代数式的值x xy y x y x xy y。
中考数学点对点-整体思想运用(解析版)
整体思想运用专题知识点概述1.整体思想的含义整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
2.整体思想方法具体应用范围(1)在代数式求值中的应用(2)在因式分解中的应用(3)在解方程及其方程组中的应用(4)在解决几何问题中的应用(5)在解决函数问题中的应用例题解析与对点练习【例题1】(2020•成都)已知a=7﹣3b,则代数式a2+6ab+9b2的值为.【答案】49.【解析】先根据完全平方公式变形,再代入,即可求出答案.∵a=7﹣3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49【对点练习】(2019内蒙古呼和浩特)若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x22﹣4x12+17的值为()A.﹣2 B.6 C.﹣4 D.4【答案】D.【解析】∵x1,x2是一元二次方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,x12+x1=3,∴x22﹣4x12+17=x12+x22﹣5x12+17=(x1+x2)2﹣2x1x2﹣5x12+17=(﹣1)2﹣2×(﹣3)﹣5x12+17=24﹣5x22=24﹣5(﹣1﹣x1)2=24﹣5(x12+x1+1)=24﹣5(3+1)=4【例题2】(2020•衢州)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为.【答案】x2﹣1.【解析】根据规定的运算,直接代值后再根据平方差公式计算即可.根据题意得:(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.【对点练习】分解因式:a2﹣2a(b+c)+(b+c)2【答案】(a﹣b﹣c)2.【解析】分解因式:a2﹣2a(b+c)+(b+c)2=[a﹣(b+c)]2=(a﹣b﹣c)2.【例题3】(2020•天水)已知a +2b =103,3a +4b =163,则a +b 的值为 .【答案】1【分析】用方程3a +4b =163减去a +2b =103,即可得出2a +2b =2,进而得出a +b =1. 【解析】a +2b =103①,3a +4b =163②,②﹣①得2a +2b =2,解得a +b =1.【对点练习】(2019辽宁本溪)先化简,再求值(﹣)÷,其中a 满足a 2+3a ﹣2=0. 【答案】见解析。
中考数学复习:专题9-2 “整体思想”的主要表现形式分类例析
“整体思想”的主要表现形式分类例析【专题综述】在数学解题过程中,我们若能善于从大处着眼,由整体(或全局)入手,将一些看似彼此独立实质上又紧密相关的数学对象视为一个整体去思考与分析,常常可以摆脱常规模式的羁绊,化难为易.本文按“整体思想”的主要表现形式分类例析,供参考.【方法解读】一、整体代换例1 若x2-3x+1=0,则2421xx x++的值为________.分析解出x,再代入式中求值显然是不可取的.观察题设和待求式的联系,可得如下方法:点评整体运作,可以减少运算量,法一运用“逐步降次法”,法二运用“取倒数法”,看似玄妙,其实并非无中生有,都是建立在整体感知已知条件和待求式的基础上完成的.其中,法一将已知条件变形得到一些“工具式”,再调整待求式,分离出这些“工具式”,巧妙代换,达到“降次”的目的,分离“工具式”还可以采用如下方法:分离x2-3x,以-1代换;分离x2+1,以3x代换;分离x2-3x+1,以0代换;分离x2+x+1,以4x代换;分离3x,以x2+1代换;分离1,以3x-x2代换.二、整体消元例2 如图1,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为_______(结果保留π).分析利用S1、a、S3共同构成小半圆,S1、b、S2共同构成大半圆,S1、a、b共同构成△ABC,可得S1+S3+a=12·π·12;①S1+S2+b=12·π·22;②S1+a+b=12×2×4;③①+②-③,得S1+S2+S3=52π-4.点评本例借用整体消元,大大减少运算量,使问题巧妙获解.此外,还用到了方程这架通过“已知”称量“未知”的数学天平,并通过对图形合理分割,整体组合,变“不标准图形”成“标准图形”,化难为易.三、整体运算例3已知M、N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()(A)有最大值,最大值为9 2(B)有最大值,最大值为9(C)有最小值,最小值为9 2(D)有最小值,最小值为9分析由M(a,b),知N(-a,b).又M在双曲线上,则ab=12;N在直线上,则b=-a+3,即a+b=3.于是,二次函数y =-abx 2+(a +b)x=-12x 2+3x =-12(x -3)2+92,它有最大值,为92.点评 本例考查了轴对称的性质,利用点在函数图象上,分别代入对应解析式,整体运算,求得ab 和a +b 的值,从而构建二次函数式,开展下一步研究. 四、整体观察例4 如图2,在矩形ABCD 中,AB =10,BC =5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为() (A) 15 (B)20(C)25 (D)30分析 整体观察图形,由折叠过程可知阴影部分图形的周长为: EA 1+A 1D 1+BC +FC +EB +D 1F =EA +AD +BC +FC +EB +DF =(EA +EB)+AD +BC +(FC +DF) =AB +AD +BC +CD =2(AB +BC) =2(10+5)=30.点评 整体观察主要针对图形(或数式)的构造特征,从中发现规律,进而巧妙组合,顺利实现化归,优化思考,减化运算,本例的周长割补与组合,就源于这一点. 五、整体联想 例5 方程22221111132567129208x x x x x x x x +++=++++++++的解为_______. 分析 把原方程各分母分解因式,可得点评整体联想是在整体观察的基础上,结合问题的结构特征展开联想.“相关”、“相似”、“相近”、“因果”、“对比”等是联想的“桥梁”,善于联想可以为构造、完善图形(或数式)提供方法支撑,为转化、变更问题提供突破思路.六、整体转化例6如果三个方程x2-2kx-2k+3=0,x2+(k-1)x+k2=0,x2+kx-k=0中,至少有一个方程有实根,求k的取值范围.分析分别考虑三个方程实根的情况将难以处理,而如果整体分析,从反面考虑,则问题可以顺利实现转化,设三个方程都没有实数根,则有:即当k≤-3或k≥-1时,三个方程中至少有一个方程有实根.点评对一些问题,要通过研究问题的整体形式和结构特征,变更命题,整体转化处理,达到突破问题的目的.七、整体补形例7如图3(1),六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.分析题目所给的图形很不“标准”,难以下手!考察题、图特征,就能想到通过整体“补形”来完善原图,把条件“化分散为集中”,迅速找到解题方法.如图3(2)(3)(4)(5),易得原六边形周长为15.点评 “整体补形”,让题目呈现出“统一”、“对称”、“和谐”的特征,达到化生为熟、化繁为简、化难为易的目的. 八、整体改造例8 如果正实数a ,b ,c ,d 满足(1)a 2+b 2=c 2;(2)c 22a d -=a 2,求证:ab =cd .分析 整体考虑题目所给条件,由(1)得到启示,如图4,可构造Rt △ABC .由条件(2)可联想到作斜边AB 上的高CD .借助相似三角形的知识,容易证明 a 2=B D ·c =c 22a d -, 即a ,b ,c , d 满足条件, 再把△ABC 面积算两次,可得12AB ×CD =12AC ×BC , 即a b =cd .点评 本例通过整体考虑,化代数问题为几何问题,利用直观的形来分析抽象的数,降低了问题的抽象程度,可谓出奇制胜. 九、整体操作例9 印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为4页,再对折一次为8页,连续对折三次为16页,…;然后再排页码.如果想设计一本16页的毕业纪念册,请你按图5(1)、(2)、(3)(图中的1,16表示页码)的方法折叠,在表*中填上按这种折叠方法得到的各页在该面相应位置上的页码.分析 采用整体操作的策略,把一张纸按图示方法折叠,然后按照要求先写上页码1,16,再依序写上其它页码,展开易知填法(见下表).评注 大部分与几何体表面展开图、视图有关的抽象且不易着手的数学问题,采取整体操作的方法均较易获解,此法直观、易用.综上可见,从整体上去认识问题、思考问题,常常能化繁为简、化生为熟、化难为易. 【强化训练】1.(2017四川省内江市)若实数x 满足2210x x --=,则322742017x x x -+-= . 2.(2016山东省烟台市)已知220x y x y -+++-=,则22x y -的值为. 3.(2017贵州省安顺市)已知3x y +=,6xy =,则22x y xy +的值为 .4.(2016四川省眉山市)已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13 D .125.(2017浙江省嘉兴市)若二元一次方程组⎩⎨⎧=-=+4533y x y x 的解为⎩⎨⎧==by ax ,则a ﹣b =( )A .1B .3C . 41-D .476.(2016宁夏)已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为( )A .9B .7C .5D .37.在直角坐标系xOy 中,已知点P (m ,n ),m ,n 满足(m 2+1+n 2)(m 2+3+n 2)=8,则OP 的长为()A.18.已知m 、n 是方程x 2﹣2x ﹣1=0的两根,且(m 2﹣2m+a )(3n 2﹣6n ﹣7)=8,则a 的值为( ) A. ﹣5B. 5C. ﹣3D. 39. 若(x 2+ y 2-5)2=4,则x 2+ y 2=__________ 10. 阅读材料:善于思考的小军在解方程组253{4115x y x y +=+=①②时,采用了一种“整体代换”的解法:解:将方程②变形: 4105x y y ++=即()2255x y y ++=③ 把方程①带入③得: 2351y y ⨯+=∴=-, 把1y =-代入①得4x =∴,方程组的解为4{ 1x y ==-.请你解决以下问题:()1模仿小军的“整体代换”法解方程组325{9419x y x y -=-=①②()2已知x y ,满足方程组2222321247{ 2836x xy y x xy y -+=++=①②. ()i 求224x y +的值; ()ii 求112x y+的值.。
中考数学复习解题思想方法技巧--第一讲:整体思想
中考数学复习解题思想方法技巧第一讲:整体思想整体思想,就是探究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法。
从整体上去认识问题、思考问题,常常能化繁为简、变难为易。
整体思想的表现形式有:整体代入、整体约减、整体换元、整体合并等。
一、整体代入主体思想:求代数式的值时,通常会遇到各种各样关于未知数的关系式的条件,利用常规方法在这些关系式中求出未知数后再代入求值,其计算往往很复杂,甚至有时求不出具体的数值。
这时往往需要研究问题的条件和结论的整体形式,挖掘式子结构上的特征联系,将已知条件进行恰当变形,或把一些已知关系式作为整体,直接代入求值式中计算,过程简洁明了。
例题精析:m=1+,n=1-,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于()A.-5B.5C.-9D.9点拨提示:如果将m,n的值直接代入,运算量很大。
观察含a的方程中,7m2-14m和m=1+隐约有一定的关系,尝试将m=1+变形为m-1=,再两边平方可得m2-2m+1=2,整理得m2-2m=1;所以7m2-14m=7(m2-2m)=7×1=7。
用类似的处理方法整体可得3n2-6n 的值,整体代入即可求出a的值。
参考答案:Ca是方程x2-2011x+1=0的一个根,试求a2-2010a + 的值。
点拨提示:由已知得a2-2011a+1=0,直接解方程会有2个根,需要分别都代入求值,而且运算很大。
观察a2-2011a+1=0和所求代数式中的a2-2010a部分,隐约有一定的关系,尝试整体变形处理后再代入。
解题过程:由a2-2011a+1=0得a2-2010a=a-1①,即a2+1=2011a②,显然a≠0,两边同除以a得a+=2011③,将①、②、③式代入得:原式=a-1+ =a-1+= a+-1=2011-1=2010同步练习:当时,求多项式(4x3-2007x-2004)2004的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法技巧专题三整体思想解析在数学思想中整体思想是最基本、最常用的数学思想。
它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。
运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。
它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。
整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一、数与式中的整体思想【例题】(2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【同步训练】(2017湖北江汉)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.二、方程(组)与不等式(组)中的整体思想【例题】先阅读,然后解方程组.解方程组时,可由①得x-y=1, ③然后再将③代入②得4×1-y=5,求得y=-1,从而进一步求得这种方法被称为“整体代入法”, 请用这样的方法解下列方程组解:由①得2x-3y=2, ③把③代入②得,+2y=9,解得y=4,把y=4代入③得,2x-3×4=2,解得x=7,∴原方程组的解为【同步训练】仔细观察下图,认真阅读对话根据对话的内容,试求出饼干和牛奶的标价各是多少元?【考点】一元一次不等式组的应用.【分析】设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,用整体代入的思想求出x的取值,注意为整数且小于10,代入②可求牛奶的价格.【解答】解:设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,由②得y=9.2﹣0.9x③③代入①得x+9.2﹣0.9x>10∴x>8∵x是整数且小于10∴x=9∴把x=9代入③得y=9.2﹣0.9×9=1.1(元)答:饼干的标价是9元/盒,牛奶的标价是1.1元/袋.三、函数与图像中的整体思想【例题】某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求+的值.【考点】平面镶嵌(密铺).【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: ++=360,两边都除以180得:1﹣+1﹣+1﹣=2,两边都除以2得: +=.【点评】本题考查了平面镶嵌(密铺).解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.【同步训练】(2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.四、几何与图形中的整体思想:【例题】小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180 B.210 C.360 D.270【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【同步训练】如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13 .【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【达标检测】1.(2017.江苏宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9 .【考点】33:代数式求值.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:92.已知是方程组的解,则a2﹣b2= 1 .【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.3.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.4.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中, O是对角线BD上任意一点.(如图①)求证:S△OBC •S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.【解析】证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=BO•AE,S△COD=DO•CF,S△AOD=DO•AE,S△BOC=BO•CF,∴S△AOB •S△COD=BO•DO•AE•CF,S△AOD •S△BOC=BO•DO•CF•AE,∴S△AOB •S△COD=S△AOD•S△BOC.;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD •S△BOC=S△AOB•S△DOC,已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD •S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD =DO•AE,S△BOC=BO•CF,S△OAB =OB•AE,S△DOC=OD•CF,∴S△AOD •S△BOC=OB•OD•AE•CF,S△OAB •S△DOC=BO•OD•AE•CF,∴S△AOD •S△BOC=S△OAB•S△DOC.四个.如图所示:。