数值传热学习题答案权威版
传热学习题(附参考答案)

传热学习题(附参考答案)一、单选题(共56题,每题1分,共56分)1.下列不能提高对流传热膜系数的是( )。
A、利用多管程结构;B、增大管径;C、在壳程内装折流挡板;D、冷凝时在管壁上开一些纵槽。
正确答案:B2.传热过程中当两侧流体的对流传热系数都较大时,影响传热过程的将是( )A、管壁热阻;B、管内对流传热热阻;C、污垢热阻;D、管外对流传热热阻;正确答案:C3.在一输送系统中,改变离心泵的出口阀门开度,不会影响( )A、泵的工作点B、管路特性曲线C、管路所需压头D、泵的特性曲线正确答案:D4.用l20℃的饱和蒸汽加热原油,换热后蒸汽冷凝成同温度的冷凝水,此时两流体的平均温度差之间的关系为(Δtm)并流( )(Δtm)逆流A、大于B、小于C、不定D、等于正确答案:D5.橡胶与塑料和纤维比较,正确的是( )。
A、模量最大B、强度最大C、结晶度最大D、Tg最低正确答案:D6.某单程列管式换热器,水走管程呈湍流流动,为满足扩大生产需要,保持水的进口温度不变的条件下,将用水量增大一倍,则水的对流传热膜系数为改变前的( )A、2倍B、1.149倍C、1.74倍D、不变正确答案:C7.按照离心泵完好标准,轻石脑油返输用离心泵机械密封允许泄漏量( )。
A、允许每分钟5滴B、比液化气的允许泄漏量多5滴C、允许每分钟15滴D、允许每分钟10滴正确答案:D8.对于列管式换热器,当壳体与换热管温度差( )时,产生的温度差应力具有破坏性,因此需要进行热补偿A、大于50℃B、大于60℃C、大于45℃D、大于55℃正确答案:A9.下列哪个选项是离心泵的主要部件( )A、电机B、轴封装置和轴向力平衡装置C、密封环D、叶轮和泵壳正确答案:D10.蒸汽中不凝性气体的存在,会使它的对流传热系数α值( )A、升高B、降低C、都可能D、不变正确答案:B11.以乙烯为原料经催化剂催化聚合而得的一种热聚性化合物是( )A、PB、PC、PVCD、PP正确答案:B12.关闭出口阀启动离心泵的原因是( )A、轴功率最大B、能量损失最小C、处于高效区D、启动电流最小正确答案:D13.若被输送液体的黏度增大时,离心泵的效率( )。
传热学习题(附参考答案)

传热学习题(附参考答案)一、单选题(共56题,每题1分,共56分)1.安装在管路中的阀门( )A、需考虑流体方向B、不必考虑流体方向C、不必考虑操作时的方便D、不必考虑维修时的方便正确答案:A2.用水蒸气在列管换热器中加热某盐溶液,水蒸气走壳程。
为强化传热,下列措施中最为经济有效的是( )A、增大换热器尺寸以增大传热面积B、减少传热壁面厚度C、改单管程为双管程D、在壳程设置折流挡板正确答案:C3.下列不能提高对流传热膜系数的是( )。
A、增大管径;B、利用多管程结构;C、冷凝时在管壁上开一些纵槽。
D、在壳程内装折流挡板;正确答案:A4.离心泵是依靠离心力对流体作功,其作功的部件是( )。
A、电机B、泵轴C、叶轮D、泵壳正确答案:C5.对于活化能越大的反应,速率常数随温度变化越 ( )A、不确定B、大C、小D、无关正确答案:B6.有机玻璃是指( )。
A、聚甲基丙烯酸甲酯B、聚苯乙烯C、聚乙烯D、聚氯乙烯正确答案:A7.水在无相变时在圆形管内强制湍流,对流传热系数αi为1000W /(m2·℃)若将水的流量增加1倍,而其他条件不变,则αi为( )A、不变B、500C、2000D、1741正确答案:D8.不属于换热器检修内容的是( )A、清扫管束和壳体B、管束焊口、胀口处理及单管更换C、检查修复管箱、前后盖、大小浮头、接管及其密封面,更换垫片D、检查校验安全附件正确答案:D9.间歇反应器的一个生产周期不包括( )A、出料时间B、反应时间C、加料时间D、设备维修时间正确答案:D10.可在器内设置搅拌器的是( )换热器A、套管B、釜式C、热管D、夹套正确答案:D11.流体流量突然减少,会导致传热温差( )。
A、始终不变B、下降C、升高D、变化无规律正确答案:B12.下列哪个选项不是列管换热器的主要构成部件。
( )A、封头B、管束C、外壳D、蛇管正确答案:D13.列管式换热器一般不采用多壳程结构,而采用( )以强化传热效果A、翅片板B、折流挡板C、隔板D、波纹板正确答案:B14.裂解气深冷分离过程中采用的主要方法是( )A、精馏法B、特殊精馏法C、萃取法D、吸附法正确答案:A15.下面关于裂解气分离流程说法正确的是( )A、一套乙烯装置采用哪种流程,主要取决于流程对所需处理裂解气的适应性、能量消耗、运转周期及稳定性、装置投资等几个方面。
数值传热课后学习题及答案(权威版)

习题 4-14
充分发展区的温度控制方程如下:
c
p
u
T x
1 r
r
(r
T r
)
对于三种无量纲定义 T Tw 、 T T 、 T Tw 进行分析如下
Tb Tw
Tw T
T Tw
1)由 T Tw 得: Tb Tw
T (Tb Tw ) Tw
由 T 可得:
T [(Tb Tw ) Tw ] Tb (1 ) Tw
x
x
x
x
T r
[(Tb
Tw ) Tw ] r
(Tb
Tw
)
r
(1 ) Tw r
由 Tb 与 r
无关、
与 x 无关以及
T x
、
T r
的表达式可知,除了 Tw 均匀的情况外,该无量
纲温度定义在一般情况下是不能用分离变量法的;
2)由 T T 得: Tw T
T (Tw T ) T
由 T 可得:
节点 3:
T2 4T3 75
求解结果:
T2 85 , T3 40
对整个控制容积作能量平衡,有:
qB Sx h f (T f T3 ) Sx 15 (20 40) 150 2 0
即:计算区域总体守恒要求满足
习题 4-5
在 4-2 习题中,如果 h 10 (T3 T f )0.25 ,则各节点离散方程如下:
coematrix(n,n)=A(1,n); if n>=2
coematrix(n,n-1)=-1*B(1,n); end if n<mdim
coematrix(n,n+1)=-1*C(1,n); end end %计算 D 矢量 D=(coematrix*T')'; %由已知的 A、B、C、D 用 TDMA 方法求解 T %消元 P(1,1)=C(1,1)/A(1,1); Q(1,1)=D(1,1)/A(1,1); for n=2:mdim P(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1)); Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1)); end %回迭 Tcal(1,mdim)=Q(1,mdim); for n=(mdim-1):-1:1 Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n);
(完整版)传热学试卷和答案

传热学(一)第一部分选择题1. 在稳态导热中 , 决定物体内温度分布的是 ( )A. 导温系数B. 导热系数C. 传热系数D. 密度2. 下列哪个准则数反映了流体物性对对流换热的影响 ?( )A. 雷诺数B. 雷利数C. 普朗特数D. 努谢尔特数3. 单位面积的导热热阻单位为 ( )A. B. C. D.4. 绝大多数情况下强制对流时的对流换热系数 ( ) 自然对流。
A. 小于B. 等于C. 大于D. 无法比较5. 对流换热系数为 100 、温度为 20 ℃的空气流经 50 ℃的壁面,其对流换热的热流密度为()A. B. C. D.6. 流体分别在较长的粗管和细管内作强制紊流对流换热,如果流速等条件相同,则()A. 粗管和细管的相同B. 粗管内的大C. 细管内的大D. 无法比较7. 在相同的进出口温度条件下,逆流和顺流的平均温差的关系为()A. 逆流大于顺流B. 顺流大于逆流C. 两者相等D. 无法比较8. 单位时间内离开单位表面积的总辐射能为该表面的()A. 有效辐射B. 辐射力C. 反射辐射D. 黑度9. ()是在相同温度条件下辐射能力最强的物体。
A. 灰体B. 磨光玻璃C. 涂料D. 黑体10. 削弱辐射换热的有效方法是加遮热板,而遮热板表面的黑度应()A. 大一点好B. 小一点好C. 大、小都一样D. 无法判断第二部分非选择题•填空题(本大题共 10 小题,每小题 2 分,共 20 分)11. 如果温度场随时间变化,则为。
12. 一般来说,紊流时的对流换热强度要比层流时。
13. 导热微分方程式的主要作用是确定。
14. 当 d 50 时,要考虑入口段对整个管道平均对流换热系数的影响。
15. 一般来说,顺排管束的平均对流换热系数要比叉排时。
16. 膜状凝结时对流换热系数珠状凝结。
17. 普朗克定律揭示了按波长和温度的分布规律。
18. 角系数仅与因素有关。
19. 已知某大平壁的厚度为 15mm ,材料导热系数为 0.15 ,壁面两侧的温度差为 150 ℃,则通过该平壁导热的热流密度为。
数值传热学 第六章答案 (2)

数值传热学第六章答案简介本文档将为读者提供《数值传热学》第六章的答案。
第六章主要涉及热对流传热的数值计算方法,包括网格划分、边界条件、离散方法等内容。
通过本文档,读者将了解如何使用数值方法解决热对流传热问题,并学会应用这些方法进行实际计算。
问题回答1. 简述热对流传热的数值计算方法。
热对流传热的数值计算方法主要包括三个步骤:网格划分、边界条件设置和离散方法。
网格划分是指将传热区域划分为若干个离散的小单元,每个单元内部温度变化均匀。
常见的网格划分方法有结构化网格和非结构化网格。
结构化网格适用于简单几何形状,易于处理;非结构化网格则适用于复杂几何形状。
边界条件设置是指给定物体表面的边界条件,如温度或热流密度。
边界条件的设置需要根据实际问题来确定,可以通过实验或经验公式来获取。
离散方法是指将传热控制方程进行离散化,通常使用有限差分法或有限元法。
有限差分法将控制方程离散化为代数方程组,而有限元法则通过近似方法将方程离散化。
2. 什么是结构化网格和非结构化网格?它们在热对流传热计算中有何不同?结构化网格是指由规则排列的矩形或立方体单元组成的网格。
在结构化网格中,每个单元与其相邻单元之间的联系都是固定的,因此易于处理。
结构化网格适用于简单几何形状,如长方体或圆柱体。
非结构化网格是指由不规则形状的三角形、四边形或多边形组成的网格。
在非结构化网格中,每个单元与其相邻单元之间的联系可能是不确定的,需要使用邻接表来表示网格拓扑关系。
非结构化网格适用于复杂几何形状,如复杂流体流动中的腔体或障碍物。
在热对流传热计算中,结构化网格和非结构化网格的主要区别在于网格的配置方式和计算复杂度。
结构化网格由正交单元组成,计算稳定性较高,但对于复杂几何形状的处理能力较差。
非结构化网格可以灵活地适应复杂几何形状,但计算复杂度较高。
3. 如何设置边界条件?边界条件的设置是热对流传热计算中非常重要的一步,它决定了计算结果的准确性和可靠性。
数值传热学 习题答案

数值传热学习题答案数值传热学习题答案数值传热学是热力学的一个重要分支,主要研究热量在物质中传递的机理和规律。
在实际工程中,我们经常会遇到各种与传热有关的问题,通过数值计算可以得到准确的答案。
下面我将为大家提供一些数值传热学习题的答案,希望能够帮助大家更好地理解和应用这门学科。
1. 一个铝制热交换器的表面积为10平方米,其表面温度为100摄氏度,环境温度为20摄氏度。
已知铝的导热系数为200 W/(m·K),求热交换器的传热速率。
答:根据传热定律,传热速率与传热面积、传热系数和温度差之间成正比。
传热速率 = 传热系数× 传热面积× 温度差。
将已知数据代入公式中,可得传热速率= 200 × 10 × (100 - 20) = 160,000 W。
2. 一个房间的尺寸为5米× 5米× 3米,墙壁和天花板的厚度为0.2米,墙壁和天花板的导热系数为0.5 W/(m·K),室内温度为25摄氏度,室外温度为10摄氏度。
求房间的传热损失。
答:房间的传热损失可以通过计算墙壁和天花板的传热速率来得到。
墙壁和天花板的传热速率 = 传热系数× 传热面积× 温度差。
墙壁和天花板的传热面积 = 2 × (5 × 5) + 2 × (5 × 3) = 70平方米。
将已知数据代入公式中,可得墙壁和天花板的传热速率= 0.5 × 70 × (25 - 10) = 525 W。
因此,房间的传热损失为525瓦特。
3. 一个水箱的体积为1立方米,初始温度为20摄氏度,水的密度为1000千克/立方米,比热容为4186 J/(千克·摄氏度),水箱的表面积为2平方米,表面温度为100摄氏度。
已知水的传热系数为0.6 W/(m^2·K),求水箱内水的温度随时间的变化。
数值传热学习题答案(汇总版)
2-4-9
= rP rS
式(2-4-9)也可以写成 a PTP = a E TE + aW TW + b 的形式。而且两种结果是一致的。
2—6:
n n TE −TW dT P , n = 解:将 , dx 2x n n TE −2TPn + TW d 2T P , n = , dx2 x 2
dk = f (x ) 代入原方程,得: dx
令
2-4-4
rk rk a E = , aW = , a P = a E + aW , b x w x e
= SrP r ,
式(2-4-4)可以写成 a PTP = a E TE + aW TW + b 的形式。 2. 再用 Taylor 展开法导出 k
2 2 uE + uP u = , 2 2 e
2 2 uW + uP u = 2 2 w
t u ut N − uP y = (y ) , n n
t
t ut u p − uS y = (y ) 。 s s
t
(y ) n = (y ) s = y
n n n n TE −TW TE −2TPn + TW k + f (x ) +S=0 整理得: 2x x 2
4kT P= 2k + xf ( x)T E+2k − xf ( x)T W +2x 2 S
− 2k 时, a E 会成为负值, x 2k 当 f(x)> 时, aW 会成为负值。 x
rk dr = rk r r dr dr dr
w
e
1 d
传热学第五版完整版答案
1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a 、地面向冰雹导热所得热量;b 、冰雹与周围的空气对流换热所得到的热量;c 、冰雹周围的物体对冰雹辐射所得的热量。
2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。
白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。
4.现在冬季室内供暖可以采用多种方法。
就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。
答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。
(完整版)数值传热学陶文铨主编第二版习题答案
数值传热学4-9章习题答案习题4-2一维稳态导热问题的控制方程:022=+∂∂S xTλ依据本题给定条件,对节点2节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程:节点1:1001=T 节点2:1505105321-=+-T T T 节点3:75432=+-T T 求解结果:,852=T 403=T 对整个控制容积作能量平衡,有:2150)4020(15)(3=⨯+-⨯=∆+-=∆+x S T T h x S q f f B 即:计算区域总体守恒要求满足习题4-5在4-2习题中,如果,则各节点离散方程如下:25.03)(10f T T h -⨯=节点1:1001=T 节点2:1505105321-=+-T T T 节点3:25.03325.032)20(4015])20(21[-⨯+=-⨯++-T T T T 对于节点3中的相关项作局部线性化处理,然后迭代计算;求解结果:,(迭代精度为10-4)818.822=T 635.353=T 迭代计算的Matlab 程序如下:x=30;x1=20;while abs(x1-x)>0.0001a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b;x1=x;x=t(3,1);endtcal=t习题4-12的Matlab程序%代数方程形式A i T i=C i T i+1+B i T i-1+D imdim=10;%计算的节点数x=linspace(1,3,mdim);%生成A、C、B、T数据的基数;A=cos(x);%TDMA的主对角元素B=sin(x);%TDMA的下对角线元素C=cos(x)+exp(x); %TDMA的上对角线元素T=exp(x).*cos(x); %温度数据%由A、B、C构成TDMAcoematrix=eye(mdim,mdim);for n=1:mdimcoematrix(n,n)=A(1,n);if n>=2coematrix(n,n-1)=-1*B(1,n);endif n<mdimcoematrix(n,n+1)=-1*C(1,n);endend%计算D矢量D=(coematrix*T')';%由已知的A、B、C、D用TDMA方法求解T%消元P(1,1)=C(1,1)/A(1,1);Q(1,1)=D(1,1)/A(1,1);for n=2:mdimP(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1));Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1)); end%回迭Tcal(1,mdim)=Q(1,mdim);for n=(mdim-1):-1:1Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n);endTcom=[T;Tcal];%绘图比较给定T值和计算T值plot(Tcal,'r*')hold onplot(T)n gin th a r e 结果比较如下,由比较可知两者值非常切合(在小数点后8位之后才有区别):习题4-14充分发展区的温度控制方程如下:)(1rTr r r x T uc p ∂∂∂∂=∂∂λρ对于三种无量纲定义、、进行分析如下w b w T T T T --=Θ∞∞--=ΘT T T T w ww T T T T --=Θ∞1)由得:wb wT T T T --=Θww b T T T T +Θ-=)(由可得:T x T x T x T T T x T w b w w b ∂∂Θ-+∂∂Θ=∂+Θ-∂=∂∂)1(])[(rT r T T r T T T r T w w b w w b ∂∂Θ-+∂Θ∂-=∂+Θ-∂=∂∂)1()(])[(由与无关、与无关以及、的表达式可知,除了均匀的情况外,该无量b T r Θx x T ∂∂rT∂∂w T 纲温度定义在一般情况下是不能用分离变量法的;2)由得:∞∞--=ΘT T T T w ∞∞+Θ-=T T T T w )(由可得:T xT x T T T x T w w ∂∂Θ=∂+Θ-∂=∂∂∞∞])[(rT r T T r T T T r T w w w ∂∂Θ+∂Θ∂-=∂+Θ-∂=∂∂∞∞∞)(])[(由与无关、与无关以及、的表达式可知,在常见的四种边界条件中除了b T r Θx x T ∂∂rT ∂∂轴向及周向均匀热流的情况外,有,则该无量纲温度定义是可以用分const q w =0=∂∂rT w离变量法的;3)由得:wwT T T T --=Θ∞ww T T T T +Θ-=∞)(由可得:T xT x T T T x T w w w ∂∂Θ-=∂+Θ-∂=∂∂∞)1(])[(r T T r T T T r T w w w -+∂Θ∂-=∂+Θ-∂=∂∂∞∞1()(])[(同2)分析可知,除了轴向及周向均匀热流const q w =温度定义是可以用分离变量法的;习题4-181)采用柱坐标分析,写出统一的稳态柱坐标形式动量方程:S r r r r r r x x w r v r r r u x +∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂+∂∂(1)(1)()(1)(1)(θφλθφλφλφρθφρφρ、和分别是圆柱坐标的3个坐标轴,、和分别是其对应的速度分量,其中x r θu v w 是管内的流动方向;x 对于管内的层流充分发展有:、,;0=v 0=w 0=∂∂xu并且方向的源项:x x pS ∂∂-=方向的源项:r r pS ∂∂-=方向的源项:θθ∂∂-=pr S 1由以上分析可得到圆柱坐标下的动量方程:方向:x 0)(1)(1=∂∂-∂∂∂∂+∂∂∂∂x pu r r r u r r r θλθλ方向:r 0=∂∂r p 方向:θ0=∂∂θp 边界条件:,R r =0=u ,;对称线上,0=r 0=∂∂r u 0=∂∂θu 不考虑液体的轴向导热,并简化分析可以得到充分发展的能量方程为:)(1(1θλθλρ∂∂∂∂+∂∂∂∂=∂∂Tr r r T r r r x T uc p 边界条件:,;,R r =w q r T =∂∂λ0=r 0=∂∂rT,πθ/0=0=∂∂-θλT2)定义无量纲流速:dxdp R uU 2-=λ并定义无量纲半径:;将无量纲流速和无量纲半径代入方向的动量方程得:R r /=ηx 0))1((1)1((122=∂∂-∂-∂∂∂+∂-∂∂∂xp U dx dp R R R R U dx dp R RR R θληλθηηλληηη上式化简得:011(1(1=+∂∂∂∂+∂∂∂∂θηθηηηηηU U 边界条件:,1=η0=U ,;对称线上,0=η0=∂∂ηU 0=∂∂θU定义无量纲温度:λ/0R q T T b-=Θ其中,是折算到管壁表面上的平均热流密度,即:;0q Rq q wπ=0由无量纲温度定义可得:bT Rq T +Θ=λ0将表达式和无量纲半径代入能量方程得:T η(1)(100θληλθηηλληηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂R q R R R R q R R R x T uc b p 化简得:(1))1(1)(10θηθηηηηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂x T u c q R b p 由热平衡条件关系可以得:mm m b m p b p p RU U q R u u R q A u u dx dT A u c x T u c x T uc 020221221)(===∂∂=∂∂ππρρρ将上式代入式(1)可得:)1(1)(12θηθηηηηη∂Θ∂∂∂+∂Θ∂∂∂=m U U 边界条件:,;,0=η0=∂Θ∂η1=ηR q q w πη10==∂Θ∂,;,0=θ0=∂Θ∂θπθ=0=∂Θ∂θ单值条件:由定义可知: 且: 0/0=-=ΘλR q T T b b b ⎰⎰Θ=ΘAAb UdAUdA 即得单值性条件:=Θ⎰⎰AA UdAUdA 3)由阻力系数及定义有:f Re 228)(21/Re ⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=D D U D u u dx dp D f e m e m me νρ且:m W b m W b m W R q T T D T T q Nu ,0,,0~2)/(2Θ=-=-=λλ5-21.一维稳态无源项的对流-扩散方程如下所示: (取常物性)xx u 22∂∂Γ=∂∂φφρ边界条件如下:LL x x φφφφ====,;,00上述方程的精确解如下: 11)/(00--=--⋅Pe L x Pe L e e φφφφΓ=/uL Pe ρ2.将分成20等份,所以有:L ∆=P Pe 20 1 2 3 4 5 6……………………… 17 18 19 20 21对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)中心差分中间节点: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ20,2 =i 2)一阶迎风中间节点: ∆-∆++++=P P i i i 2)1(11φφφ20,2 =i 3)混合格式当时,中间节点: 1=∆P 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ 20,2 =i 当时,中间节点: 10,5=∆P 1-=i i φφ20,2 =i 4)QUICK 格式*12111)35(8122121⎥⎦⎤⎢⎣⎡---++++++=+--∆∆-∆∆+∆i i i i i i i P P P P P φφφφφφφ2≠i*1111)336(8122121⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆i i i i i i P P P P P φφφφφφ2=i 数值计算结果与精确解的计算程序如下:%except for HS, any other scheme doesnt take Pe<0 into consideration %expression of exact solutiony=dsolve('a*b*Dy=c*D2y','y(0)=y0,y(L)=yL','x')y=subs(y,'L*a*b/c','t')y=simple(subs(y,'a*b/c*x','t*X'));ysim=simple(sym(strcat('(',char(y),'-y0)','/(yL-y0)')))y=sym(strcat('(',char(ysim),')*(yL-y0)','+y0'))% in the case of Pe=0y1=dsolve('D2y=0','y(0)=y0,y(L)=yL','x')y1=subs(y1,'-(y0-yL)/L*x','(-y0+yL)*X')%grid Pe number tt=[1 5 10];%dimensionless length m=20;%mdim is the number of inner node mdim=m-1;X=linspace(0,1,m+1);%initial value of variable during calculation y0=1;yL=2;%cal exact solution for n=1:size(tt,2) t=m*tt(1,n); if t==0 yval1(n,:)=eval(y1); else yval1(n,:)=eval(y); end end%extra treatment because max number in MATLAB is 10^308if max(isnan(yval1(:))) yval1=yval1'; yval1=yval1(:);indexf=find(isnan(yval1)); for n=1:size(indexf,1) if rem(indexf(n,1),size(X,2))==0 yval1(indexf(n),1)=yL; else yval1(indexf(n),1)=y0; endendyval1=reshape(yval1,size(X,2),size(yval1,1)/size(X,2));yval1=yval1';end%CD solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*tt(1,n))*y0;d(n,mdim)=0.5*(1-0.5*tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval2=TDMA(a,b,c,d,mdim);yval2=[repmat([1],size(tt,2),1),yval2,repmat([2],size(tt,2),1)]; Fig(1,X,yval1,yval2,tt);title('CD Vs. Exact Solution')% FUS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval3=TDMA(a,b,c,d,mdim);yval3=[repmat([1],size(tt,2),1),yval3,repmat([2],size(tt,2),1)]; Fig(2,X,yval1,yval3,tt);title('FUS Vs. Exact Solution')% HS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);if t>2b(n,:)=repmat([0],1,mdim);c(n,:)=repmat([1],1,mdim);d(n,1)=y0;elseif t<-2b(n,:)=repmat([1],1,mdim);c(n,:)=repmat([0],1,mdim);d(n,mdim)=yL;elseb(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*t)*y0;d(n,mdim)=0.5*(1-0.5*t)*yL;endendc(:,1)=0;b(:,mdim)=0;% numerical cal by using TDMA subfuctionyval4=TDMA(a,b,c,d,mdim);yval4=[repmat([1],size(tt,2),1),yval4,repmat([2],size(tt,2),1)]; Fig(3,X,yval1,yval4,tt);title('HS Vs. Exact Solution')%QUICK Solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval5=zeros(size(tt,2),mdim);yval5com=yval5+1;counter=1;%iterativewhile max(max(abs(yval5-yval5com)))>10^-10if counter==1yval5com=TDMA(a,b,c,d,mdim);endfor nn=1:size(tt,2)for nnn=1:mdimif nnn==1d(nn,nnn)=((6*yval5com(nn,nnn)-3*y0-3*yval5com(nn,nnn+1))*tt(1,nn))/(8*(2+tt(1,nn)))+((1+tt(1,nn))/(2+tt(1,nn))*y0);elseif nnn==2d(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-y0)*tt(1,nn))/(8*(2+tt(1,nn)));elseif nnn==mdimd(nn,nnn)=((5*yval5com(nn,nnn)-3*yL-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)))+(1/(2+tt(1,nn))*yL);elsed(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)));endendendyval5=TDMA(a,b,c,d,mdim);temp=yval5;yval5=yval5com;yval5com=temp;counter=counter+1;endyval5=yval5com;yval5=[repmat([1],size(tt,2),1),yval5,repmat([2],size(tt,2),1)];Fig(4,X,yval1,yval5,tt);title('QUICK Vs. Exact Solution')%-------------TDMA SubFunction------------------function y=TDMA(a,b,c,d,mdim)%form a b c d resolve yval2 by using TDMA%eliminationp(:,1)=b(:,1)./a(:,1);q(:,1)=d(:,1)./a(:,1);for n=2:mdimp(:,n)=b(:,n)./(a(:,n)-c(:,n).*p(:,n-1));q(:,n)=(d(:,n)+c(:,n).*q(:,n-1))./(a(:,n)-c(:,n).*p(:,n-1));end%iterativey(:,mdim)=q(:,mdim);for n=(mdim-1):-1:1y(:,n)=p(:,n).*y(:,n+1)+q(:,n);end%-------------ResultCom SubFunction------------------function y=ResultCom (a,b,c)for n=1:max(size(c,2))y(2*n-1,:)=a(n,:);y(2*n,:)=b(n,:);end%-------------Fig SubFunction------------------function y=Fig(n,a,b,c,d)figure(n);plot(a,b);hold onplot(a,c,'*');str='''legend(';for n=1:size(d,2)if n==size(d,2)str=strcat(str,'''''Pe=',num2str(d(1,n)),''''')''');elsestr=strcat(str,'''''Pe=',num2str(d(1,n)),''''',');endendeval(eval(str));a n d A l l t h i n g s i n t h ei r b e i n g a r e g 13精确解与数值解的对比图,其中边界条件给定,。
传热学练习题与参考答案
传热学练习题与参考答案一、单选题(共56题,每题1分,共56分)1.水在无相变时在圆形管内强制湍流,对流传热系数αi为1000W /(m2·℃)若将水的流量增加1倍,而其他条件不变,则αi为( )A、1741B、500C、2000D、不变正确答案:A2.在两灰体间进行辐射传热,两灰体的温度差为50℃,现因某种原因,两者的温度各升高100℃,则此时的辐射传热量与原来的相比,应该( )A、不确定B、增大C、不变D、变小正确答案:B3.对自催化反应A+P→P+S而言,必然存在最优反应时间,使反应的( )最大。
A、转化率B、反应速率C、收率D、选择性正确答案:B4.工业生产中,沸腾传热应设法保持在( )A、过渡区B、自然对流区C、膜状沸腾区D、核状沸腾区正确答案:D5.当两个同规格的离心泵串联使用时,只能说( )A、当流量相同时,串联泵特性曲线上的扬程是单台泵特性曲线上的扬程的两倍B、在管路中操作的串联泵,流量与单台泵操作时相同,但扬程增大两倍C、串联泵的工作点处较单台泵的工作点处扬程增大一倍D、串联泵较单台泵实际的扬程增大一倍正确答案:A6.泵若需自配电机,为防止电机超负荷,常按实际工作的( )计算轴功率N,取(1.1-1.2)N作为选电机的依据。
A、最大流量B、最大扬程C、最小扬程D、最小流量正确答案:A7.若被输送的流体黏度增高,则离心泵的压头( )A、提高B、不变C、降低正确答案:C8.对管束和壳体温差不大,壳程物料较干净的场合可选( )换热器。
A、U型管式B、套管式C、固定管板式D、浮头式正确答案:C9.与平推流反应器比较,进行同样的反应过程,全混流反应器所需要的有效体积要( )A、相同B、无法确定C、小D、大正确答案:D10.有机化合物及其水溶液作为载冷剂使用时的主要缺点是( )A、凝固温度较高B、价格较高C、腐蚀性强D、载热能力小正确答案:B11.气体的导热系数数值随温度的变化趋势为( )A、T升高,λ增大B、T升高,λ减小C、T升高,λ可能增大或减小D、T变化,λ不变正确答案:A12.为防止反应釜中的物料被氧化,可采用以下措施( )A、向反应釜通空气B、将反应釜的物料装满C、向反应釜通N2气或水蒸汽D、对反应釜抽真空正确答案:C13.化工厂常见的间壁式换热器是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题4-2一维稳态导热问题的控制方程:022=+∂∂S xTλ 依据本题给定条件,对节点2节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程: 节点1: 1001=T节点2: 1505105321-=+-T T T 节点3:75432=+-T T求解结果:852=T ,403=T对整个控制容积作能量平衡,有:02150)4020(15)(3=⨯+-⨯=∆+-=∆+x S T T h x S q f f B即:计算区域总体守恒要求满足习题4-5在4-2习题中,如果25.03)(10f T T h -⨯=,则各节点离散方程如下:节点1: 1001=T节点2: 1505105321-=+-T T T节点3:25.03325.032)20(4015])20(21[-⨯+=-⨯++-T T T T对于节点3中的相关项作局部线性化处理,然后迭代计算; 求解结果:818.822=T ,635.353=T (迭代精度为10-4)迭代计算的Matlab 程序如下: x=30; x1=20;while abs(x1-x)>0.0001a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b; x1=x; x=t(3,1);endtcal=t习题4-12的Matlab程序%代数方程形式A i T i=C i T i+1+B i T i-1+D imdim=10;%计算的节点数x=linspace(1,3,mdim);%生成A、C、B、T数据的基数;A=cos(x);%TDMA的主对角元素B=sin(x);%TDMA的下对角线元素C=cos(x)+exp(x); %TDMA的上对角线元素T=exp(x).*cos(x); %温度数据%由A、B、C构成TDMAcoematrix=eye(mdim,mdim);for n=1:mdimcoematrix(n,n)=A(1,n);if n>=2coematrix(n,n-1)=-1*B(1,n);endif n<mdimcoematrix(n,n+1)=-1*C(1,n);endend%计算D矢量D=(coematrix*T')';%由已知的A、B、C、D用TDMA方法求解T%消元P(1,1)=C(1,1)/A(1,1);Q(1,1)=D(1,1)/A(1,1);for n=2:mdimP(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1));Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1));end%回迭Tcal(1,mdim)=Q(1,mdim);for n=(mdim-1):-1:1Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n);endTcom=[T;Tcal];%绘图比较给定T值和计算T值plot(Tcal,'r*')hold onplot(T)结果比较如下,由比较可知两者值非常切合(在小数点后8位之后才有区别):习题4-14充分发展区的温度控制方程如下:)(1rTr r r x T uc p ∂∂∂∂=∂∂λρ 对于三种无量纲定义w b w T T T T --=Θ、∞∞--=ΘT T T T w 、w w T T T T --=Θ∞进行分析如下1)由wb wT T T T --=Θ得:w w b T T T T +Θ-=)(由T 可得:x T x T x T T T x T w b w w b ∂∂Θ-+∂∂Θ=∂+Θ-∂=∂∂)1(])[(rT r T T r T T T r T w w b w w b ∂∂Θ-+∂Θ∂-=∂+Θ-∂=∂∂)1()(])[( 由b T 与r 无关、Θ与x 无关以及x T ∂∂、rT∂∂的表达式可知,除了w T 均匀的情况外,该无量纲温度定义在一般情况下是不能用分离变量法的; 2)由∞∞--=ΘT T T T w 得: ∞∞+Θ-=T T T T w )(由T 可得:xT x T T T x T w w ∂∂Θ=∂+Θ-∂=∂∂∞∞])[(rT r T T r T T T r T w w w ∂∂Θ+∂Θ∂-=∂+Θ-∂=∂∂∞∞∞)(])[( 由b T 与r 无关、Θ与x 无关以及x T ∂∂、rT∂∂的表达式可知,在常见的四种边界条件中除了轴向及周向均匀热流const q w =的情况外,有0=∂∂rT w,则该无量纲温度定义是可以用分离变量法的; 3)由wwT T T T --=Θ∞得: w w T T T T +Θ-=∞)(由T 可得:xT x T T T x T w w w ∂∂Θ-=∂+Θ-∂=∂∂∞)1(])[(rT r T T r T T T r T w w w w ∂∂Θ-+∂Θ∂-=∂+Θ-∂=∂∂∞∞)1()(])[( 同2)分析可知,除了轴向及周向均匀热流const q w =温度定义是可以用分离变量法的;习题4-181)采用柱坐标分析,写出统一的稳态柱坐标形式动量方程:S r r r r r r x x w r v r r r u x +∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂+∂∂)(1)(1)()(1)(1)(θφλθφλφλφρθφρφρ x 、r 和θ分别是圆柱坐标的3个坐标轴,u 、v 和w 分别是其对应的速度分量,其中x 是管内的流动方向;对于管内的层流充分发展有:0=v 、0=w ,0=∂∂xu; 并且x 方向的源项:x pS ∂∂-=r 方向的源项:r pS ∂∂-= θ方向的源项:θ∂∂-=pr S 1 由以上分析可得到圆柱坐标下的动量方程: x 方向: 0)(1)(1=∂∂-∂∂∂∂+∂∂∂∂x pu r r r u r r r θλθλ r 方向:0=∂∂r pθ方向:0=∂∂θp边界条件: R r =,0=u0=r ,0=∂∂r u ;对称线上,0=∂∂θu 不考虑液体的轴向导热,并简化分析可以得到充分发展的能量方程为:)(1)(1θλθλρ∂∂∂∂+∂∂∂∂=∂∂Tr r r T r r r x T uc p 边界条件: R r =,w q r T =∂∂λ;0=r ,0=∂∂rTπθ/0=,0=∂∂-θλT2)定义无量纲流速:dxdp R uU 2-=λ并定义无量纲半径:R r /=η;将无量纲流速和无量纲半径代入x 方向的动量方程得:0))1((1))1((122=∂∂-∂-∂∂∂+∂-∂∂∂xp U dx dp R R R R U dx dp R RR R θληλθηηλληηη 上式化简得:01)1(1)(1=+∂∂∂∂+∂∂∂∂θηθηηηηηU U 边界条件:1=η,0=U0=η,0=∂∂ηU ;对称线上,0=∂∂θU定义无量纲温度:λ/0R q T T b-=Θ其中,0q 是折算到管壁表面上的平均热流密度,即:Rq q wπ=0; 由无量纲温度定义可得:b T Rq T +Θ=λ将T 表达式和无量纲半径η代入能量方程得:)(1)(100θληλθηηλληηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂R q R R R R q R R R x T uc b p 化简得:)1(1)(10θηθηηηηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂x T u c q R b p (1)由热平衡条件关系可以得:mm m b m p b p p RU U q R u u R q A u u dx dT A u c x T u c x T uc 020221221)(===∂∂=∂∂ππρρρ 将上式代入式(1)可得:)1(1)(12θηθηηηηη∂Θ∂∂∂+∂Θ∂∂∂=m U U 边界条件:0=η,0=∂Θ∂η;1=η,R q q w πη10==∂Θ∂0=θ,0=∂Θ∂θ;πθ=,0=∂Θ∂θ单值条件: 由定义可知:0/0=-=ΘλR q T T b b b 且: ⎰⎰Θ=ΘAAb UdAUdA即得单值性条件:0=Θ⎰⎰AA UdAUdA 3)由阻力系数f 及Re 定义有:228)(21/Re ⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=D D U D u u dx dp D f e m e m me νρ 且:m W b m W b m W R q T T D T T q Nu ,0,,0~2)/(2Θ=-=-=λλ5-21.一维稳态无源项的对流-扩散方程如下所示:xx u 22∂∂Γ=∂∂φφρ (取常物性)边界条件如下:L L x x φφφφ====,;,00上述方程的精确解如下:11)/(00--=--⋅PeL x Pe L e e φφφφ Γ=/uL Pe ρ 2.将L 分成20等份,所以有:∆=P Pe 201 2 3 4 5 6 ………… …………… 17 18 19 20 21 对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下: 1) 中心差分中间节点: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ 20,2 =i2) 一阶迎风中间节点: ∆-∆++++=P P i i i 2)1(11φφφ 20,2 =i3) 混合格式当1=∆P 时,中间节点:2)5.01()5.01(11-∆+∆++-=i i i P P φφφ20,2 =i当10,5=∆P 时,中间节点: 1-=i i φφ 20,2 =i 4) QUICK 格式*12111)35(8122121⎥⎦⎤⎢⎣⎡---++++++=+--∆∆-∆∆+∆i i i i i i i P P P P P φφφφφφφ 2≠i *1111)336(8122121⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆i i i i i i P P P P P φφφφφφ 2=i数值计算结果与精确解的计算程序如下:%except for HS, any other scheme doesnt take Pe<0 into consideration %expression of exact solutiony=dsolve('a*b*Dy=c*D2y','y(0)=y0,y(L)=yL','x')y=subs(y,'L*a*b/c','t')y=simple(subs(y,'a*b/c*x','t*X'));ysim=simple(sym(strcat('(',char(y),'-y0)','/(yL-y0)')))y=sym(strcat('(',char(ysim),')*(yL-y0)','+y0'))% in the case of Pe=0y1=dsolve('D2y=0','y(0)=y0,y(L)=yL','x')y1=subs(y1,'-(y0-yL)/L*x','(-y0+yL)*X')%grid Pe numbertt=[1 5 10];%dimensionless lengthm=20;%mdim is the number of inner nodemdim=m-1;X=linspace(0,1,m+1);%initial value of variable during calculationy0=1;yL=2;%cal exact solutionfor n=1:size(tt,2)t=m*tt(1,n);if t==0yval1(n,:)=eval(y1);elseyval1(n,:)=eval(y);endend%extra treatment because max number in MATLAB is 10^308if max(isnan(yval1(:)))yval1=yval1';yval1=yval1(:);indexf=find(isnan(yval1));for n=1:size(indexf,1)if rem(indexf(n,1),size(X,2))==0yval1(indexf(n),1)=yL;elseyval1(indexf(n),1)=y0;endendyval1=reshape(yval1,size(X,2),size(yval1,1)/size(X,2));yval1=yval1';end%CD solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*tt(1,n))*y0;d(n,mdim)=0.5*(1-0.5*tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval2=TDMA(a,b,c,d,mdim);yval2=[repmat([1],size(tt,2),1),yval2,repmat([2],size(tt,2),1)]; Fig(1,X,yval1,yval2,tt);title('CD Vs. Exact Solution')% FUS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval3=TDMA(a,b,c,d,mdim);yval3=[repmat([1],size(tt,2),1),yval3,repmat([2],size(tt,2),1)]; Fig(2,X,yval1,yval3,tt);title('FUS Vs. Exact Solution')% HS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);if t>2b(n,:)=repmat([0],1,mdim);c(n,:)=repmat([1],1,mdim);d(n,1)=y0;elseif t<-2b(n,:)=repmat([1],1,mdim);c(n,:)=repmat([0],1,mdim);d(n,mdim)=yL;elseb(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*t)*y0;d(n,mdim)=0.5*(1-0.5*t)*yL;endendc(:,1)=0;b(:,mdim)=0;% numerical cal by using TDMA subfuctionyval4=TDMA(a,b,c,d,mdim);yval4=[repmat([1],size(tt,2),1),yval4,repmat([2],size(tt,2),1)]; Fig(3,X,yval1,yval4,tt);title('HS Vs. Exact Solution')%QUICK Solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval5=zeros(size(tt,2),mdim);yval5com=yval5+1;counter=1;%iterativewhile max(max(abs(yval5-yval5com)))>10^-10if counter==1yval5com=TDMA(a,b,c,d,mdim);endfor nn=1:size(tt,2)for nnn=1:mdimif nnn==1d(nn,nnn)=((6*yval5com(nn,nnn)-3*y0-3*yval5com(nn,nnn+1))*tt(1,nn))/(8*(2+tt(1, nn)))+((1+tt(1,nn))/(2+tt(1,nn))*y0);elseif nnn==2d(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-y0)*tt (1,nn))/(8*(2+tt(1,nn)));elseif nnn==mdimd(nn,nnn)=((5*yval5com(nn,nnn)-3*yL-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt (1,nn))/(8*(2+tt(1,nn)))+(1/(2+tt(1,nn))*yL);elsed(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-yval5 com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)));endendendyval5=TDMA(a,b,c,d,mdim);temp=yval5;yval5=yval5com;yval5com=temp;counter=counter+1;endyval5=yval5com;yval5=[repmat([1],size(tt,2),1),yval5,repmat([2],size(tt,2),1)];Fig(4,X,yval1,yval5,tt);title('QUICK Vs. Exact Solution')%-------------TDMA SubFunction------------------function y=TDMA(a,b,c,d,mdim)%form a b c d resolve yval2 by using TDMA%eliminationp(:,1)=b(:,1)./a(:,1);q(:,1)=d(:,1)./a(:,1);for n=2:mdimp(:,n)=b(:,n)./(a(:,n)-c(:,n).*p(:,n-1));q(:,n)=(d(:,n)+c(:,n).*q(:,n-1))./(a(:,n)-c(:,n).*p(:,n-1));end%iterativey(:,mdim)=q(:,mdim);for n=(mdim-1):-1:1y(:,n)=p(:,n).*y(:,n+1)+q(:,n);end%-------------ResultCom SubFunction------------------ function y=ResultCom (a,b,c)for n=1:max(size(c,2))y(2*n-1,:)=a(n,:);y(2*n,:)=b(n,:);end%-------------Fig SubFunction------------------ function y=Fig(n,a,b,c,d)figure(n);plot(a,b);hold onplot(a,c,'*');str='''legend(';for n=1:size(d,2)if n==size(d,2)str=strcat(str,'''''Pe=',num2str(d(1,n)),''''')''');elsestr=strcat(str,'''''Pe=',num2str(d(1,n)),''''',');endendeval(eval(str));精确解与数值解的对比图,其中边界条件给定10=φ,2=L φ。