第10讲一次函数的实际应用-尖子班
一次函数的实际应用PPT课件

∵y=﹣50m+15000,k=﹣50<0,
∴y随x的增大而减小,∴当m=34时,y有最大值,
最大值为:﹣50×34+15000=13300(元).
答:当购进A型自行车34辆,B型自行车6. 6辆时获利最大,最大利润为13300元.5
例2.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往 来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用 16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一 件A型商品的进价比一件B型商品的进价多10元. (1)求一件A,B型商品的进价分别为多少元? (2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的 件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件, B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客 商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围; (3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商 品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商 品并捐献慈善资金后获得的最大收益.
1.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅 游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数 之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、 乙两团队分别购买门票,两团队门票款之和为W元. (1)求W关于x的函数关系式,并写出自变量x的取值范围; (2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别 购票最多可可节约多少钱; (3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数 不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门 票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下, 若甲、乙两个旅行团队“五一”小黄金周之后去游玩,甲乙两团队联合 购票比分别购票最多节约3400元,求a的值.
一次函数与实际应用ppt课件

课堂小结
1.分段函数解析式确定的方法: ① 推导法;② 待定系数法。
2.应用的数学思想: ① 分类讨论; ② 数学建模
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
1.某市为了鼓励居民节约用水,采用分段计费的 方法按月计算用户家庭的水费,月用水量不超过 20m3时,按2元/m3计算;月用水量超过20m3时, 其中的20m3仍按2元/m3计费,超过部分按2.6元 /m3计费。设每户家庭月用水量为xm3时,应交水 费为y元。⑴写出y关于x的函数解析式;⑵小明 家第二季度交纳水费的情况如下表:
练习
y (元)
1.如图,折线ABC是在某市乘 出租车所付车费y(元)与行 14
车里程x(km)之间的函数关 A B 7
系图像。
① 根据图像,写出当x≥3时
该图像的函数关系式;
o
3
② 某人乘坐2.5km,应付多少钱?
C
8
x (km)
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
解:(2)设购买种子数量为x千克,付款金额为y元。
当0≤x ≤ 2时,y=5x. 当x>2时,y=5 ×2 + 5× 0.8(x-2)=4x+2
5x (0≤x ≤ 2)
Y (元)
y= 4x+2 (x>2)
18
y=4x+2
函数图像:
10
y=5x o 24
x(千克)
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
一次函数实际应用(带解析)

一次函数实际应用(解析版)1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?y (件)5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。
浙教版八年级数学上册课件:5.5.1 一次函数的实际应用 (共23张PPT)

知2-练
3 李老师开车从甲地到相距240千米的乙地,如果油
箱剩余油量y(升)与行驶里程x(千米)之间是一次函 数关系,其图像如图所示,那么到达乙地时油箱 剩余油量是________升.
(来自《典中点》)
知2-练
十堰)张师傅驾车从甲地到乙地,两地相距500千米, 2 (中考·
汽车出发前油箱有油25升,途中加油若干升,加油前、后 汽车都以100千米/时的速度匀速行驶,已知油箱中剩余油
2 5
(千米/分).设
2 5
乙车出发x分后两车相遇.根据题意,得
(x-10)
+
(x+20)=32,解得x=35.
∴乙车出发35分后两车相遇.
知2-讲
总 结
本题运用了数形结合思想和待定系数法.由题意可得出 点E的坐标,用待定系数法求出直线EF,MN的表达式, EF,MN交点的横坐标即是两车相遇的时间.
(来自《教材》)
知1-练
2 如图,小球从点A运动到点B,速度v(米/秒)和时间 t(秒)之间的函数表达式是v=2t.如果小球运动到点B时 的速度为6米/秒,则小球从点A运动到点B的时间是 ( )
A.1秒
B.2秒
C.3秒
D.4秒
(来自《典中点》)
知1-练
3 在一定范围内,弹簧的长度y(cm)与它所挂的物体 的质量x(g)之间满足表达式y=kx+b,已知挂重50 g 时,弹簧长12.5 cm;挂重200 g时,弹簧长20 cm, 那么当弹簧长15 cm时,挂重是( )
(来自《教材》)
知1-导
(1)通过实验、测量获得数量足够多的两个变量的对应值. (2)建立合适的直角坐标系,在坐标系中,以各对应值为 坐标描点,并 用描点法画出函数图象. (3)观察图象特征,判定函数的类型.
一次函数的简单应用省公开课一等奖全国示范课微课金奖PPT课件

k
第2页
4、正百分比函数y=kx(k≠0)性质: ⑴当k>0时,图象过一__、__三__象限;y随x增大而____增。大 ⑵当k<0时,图象过二__、__四__象限;y随x增大而___减_。小
(4)某外地客人坐出租车游
5
览本市,车费为31元,试求 出他乘车里程。
0
3 5 s(km)
第8页
思绪 :利用一次函数解题时,先要判断是否是一次函数, 怎样判断呢?我们能够从图象或函数解析式上加以判断, 本课件中例1和例2就是为了说明这个问题。例3和例4主 要是利用图象判断函数类型,然后分段建立函数解析式, 刻画两个变量间改变关系,利用解析式解题。
(2)当气温x=22 ℃时,小明看到烟花燃放5秒后才听 到声响,那么小明与燃放烟花所在地相距多远。
第5页
例2:生物学家测得7条成熟雄性鲸全长y和吻尖到喷水 孔长度x数据以下表(单位:米)
吻尖到喷水
孔的长度 1.78 1.91 2.06 2.32 2.59 2.82 2.95
x(m)
全长y(m) 10.00 10.25 10.72 11.52 12.50 13.16 13.90
第9页
第3页
再次回顾
• 增减性解题; • 怎样平移。 y=3x怎样平移得到y=3x+2
第4页
例1:经试验检测,不一样气温下声音传输速度以下表所表
示
气温x(℃)
0 5 10 15 20
【寒假课程初二数学】第10讲 一次函数的应用_教案

复习预习1.待定系数法:先设出解析式,再根据条件列方程或方程组求出未知系数,从而写出这个解析式的方法,叫做待定系数法。
关键:确定一次函数y= kx+ b中的字母k与b的值。
步骤:1、设一次函数表达式2、将x,y的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中2.一次函数图像的性质:k>0时,y随x的增大而增大;k<0时,y随x的增大而减少。
知识讲解考点11、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.2、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.3、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键考点2(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.例题精析【例题1】如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【例题2】如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.【例题3】小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?【例题4】六一儿童节,某学习用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠。
浙教版八年级数学上册课件:5.5.1 一次函数的实际应用

A.1秒
B.2秒
C.3秒
D.4秒
(来自《典中点》)
知1-练
3 在一定范围内,弹簧的长度y(cm)与它所挂的物体 的质量x(g)之间满足表达式y=kx+b,已知挂重50 g 时,弹簧长12.5 cm;挂重200 g时,弹簧长20 cm, 那么当弹簧长15 cm时,挂重是( ) A.80 g B.100 g C.120 g D.150 g
然后从这家超市 返回家中.小聪离家的路程s(千米)
和所经过的时间t(分)之间的函数关系如图所示.请
根据图象回 答下列问题:
(1)小聪去超市途中的速度是多 少?
回家途中的速度是多少?
(2)小聪在超市逗留了多少时间?
(3)小聪在来去途中,离家1千米处的时间是几时几
分?
的各点,观察这些点是否在(或大致在)一条直线上, 从而判断y是不是关于 x的一次函数.如果是,就可以 用待定系数法求出 y关于x的函数表达式.
知1-讲
解: 在直角坐标系中画出以表中x的值为横坐标,y的值为 纵坐标的7个点(如图).
知1-讲
这7个点几乎在同一条直线上,所以所求的函数可以看成一
次函数,即可用一次函数来刻画这两个量x和y的关系.
知识点 1 建立一次函数模型解实际问题
知1-导
在日常生活和生产实践中有不少问题的数量关系可以用一次 函数来刻 画.在运用一次函数解决实际问题时,首先判定问题 中的两个变量之间是 不是一次函数关系.当确定是一次函数关 系时,可求出函数表达式,并运用 一次函数的图象和性质进 一步求得我们所需要的结果. 确定两个变量是否构成一次函数关系的一种常用方法是利用 图象去获得经验公式,这种方法的基本步骤是:
吻尖到喷水孔 的 1.78 1.91 2. 06 2. 32 2. 59 2. 82 2. 95
2024年河北省中考数学一轮复习考点突破课件:一次函数的实际应用

重
难
题
型
∴y 与 x 的函数关系式为 y= x-1,
∵ 这 n 个玩具调整后的单价都大于 2 元,
∴ 56 x-1>2,解得 x> ,∴x 的取值范围是 x>
(2)将 x=108 代入 y= x-1,
得 y= ×108-1=89,∵108-89=19(元),
∴ 顾客购买这个玩具省了 19 元;
第三节 一次函数的实际应用
重
3 x=10,∴x=15,
难
题
在 AB 段上无人机与小明之间距离为10 m 时,则 15-
型
∴ 无人机与小明之间距离不超过 10 m的时长为 9 s.
第三节 一次函数的实际应用
突 破
2 长为 300 m 的春游队伍,以 v(m/s)的速度向东行进.如图 1 和图 2,
重 当队伍排尾行进到位置 O 时,在排尾处的甲有一物品要送到排头,送到后立即
重 P)始终以 3 km/min 的速度在离地面5 km 高的上空匀速向右飞行,2 号试飞机
难
题
(看成点 Q)一直保持在1 号机 P 的正下方,2 号机从原点 O 处沿 45°仰角
••
•••
型 爬升,到 4 km高的 A 处便立刻转为水平飞行,再过 1 min 到达 B 处开始沿直
线 BC 降落,要求 1 min 后到达 C(10,3)处.
型
第三节 一次函数的实际应用
突
破
解:(1)∵2 号机爬升角度为 45°,
重
∴OA 上的点的横纵坐标相同,∴A(4,4).设 OA 的解析式为 h=ks,
难
题
∴4k=4,∴k=1.∴OA 的解析式为 h=s.
型
∵2 号试飞机一直保持在 1 号机的正下方,∴ 它们飞行的时间和飞行
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数实际应用题的命题形式多样,可以大致归为以下几类:⑴方案设计问题(物资调运、方案比较);⑵分段函数问题(分段价格、几何动点);⑶解读图象(单个函数图象、多个函数图象)。
⑷一次函数多种变量及其最值问题。
这些问题都渗透着函数的方法和思想,其中一次函数多种变量及其最值是一个重难点,解决此问题的窍门是——列表【例1】(1)小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A .12分钟B .15分钟C .25分钟D .27分钟(2)甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地。
其中符合图象描述的说法有()A.2个B.3个C.4个D.5个一次函数实际应用【例2】某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断:⑴0点到3点只进水不出水;⑵3点到4点不进水只出水,⑶4点到6点不进水也不出水.其中正确的是()A.⑴B.⑶C.⑴⑶D.⑴⑵⑶【巩固】有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完。
现已知水池内有水200升,先打开进水管5分钟,再打开出水管,两管同时开放直至把容器的水放完。
则能正确反映这一过程中容器的水量Q(升)随时间t(分钟)变化的图象是()【例3】(1)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的函数关系.根据图象可知:当x为时,两车之间的距离为300千米.(2)学校组织学生外出踏青,学生队伍从学校先步行出发,一段时间后王老师从学校骑车追赶学生,追上学生时接到电话要求王老师返回,因此王老师又立即按原速返回,当王老师回到学校时,学生还在继续前行,直到目的地.设王老师和学生队伍间的距离为y米,从王老师出发开始计时,设时间为x分钟,图中折线表示y与x的函数关系,则王老师比学生队伍的速度快米/分钟.(3)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.第二组由甲地出发首次到达乙地需比由乙地到达丙地多耗时h.【例4】(1)东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠办法.甲:买一枝毛笔就赠送一本书法练习本.乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10枝,书法练习本(10)x x 本.⑴写出每种优惠办法实际的金额y甲(元),y乙(元)与x(本)之间的函数关系式;⑵比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;⑶如果商场允许可以任意选择一种优惠办法购买,也可以同时选两种优惠办法购买,请你就购买这种毛笔10枝和书法练习本60本设计一种最省钱的购买方案.(2)一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)(3)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,,两仓库.已知甲库有粮食100吨,乙库有粮食80吨,全部转移到具有较强抗震功能的A B,两库的路程和运费如下而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A B表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币),两库的总运费y(元)与x(吨)的⑴若甲库运往A库粮食x吨,请写出将粮食运往A B函数关系式.⑵当甲、乙两库各运往A B,两库多少吨粮食时,总运费最省,最省的总运费是多少?【巩固】(1)我市某乡A 、B 两村生产柑橘,A 村有柑橘200吨,B 村有柑橘300吨。
现将这些柑橘运到C 、D 两个冷藏仓库,已知C 仓库可存储240吨,D 仓库可存储260吨;从A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为每吨15元和18元。
设从A 村运往C 仓库的柑橘质量为x 吨,A 、B 两村运往两仓库的柑橘运输费用的分别为A y 元和A y 元⑴请求出A y 、B y 与x 之间的函数关系式;⑵试讨论A 、B 两村中,哪个村的运费较少⑶考虑到B 村的经济承受能力,B 村的柑橘运费不得超过4830元,在这种情况下,请问怎么样调运,才能使两村运费之和最小?求出这个最小值?【例5】(1)2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.⑴哪个队先到达终点?乙队何时追上甲队?⑵在比赛过程中,甲、乙两队何时相距最远?(2)某气象研究中心观测到一场沙尘暴从发生到减弱的过程,开始一段时间风速平均每小时增加2千米;4小时后,沙尘暴经过开阔荒漠地带,风速平均每小时增加4千米;此后风速保持不变;当沙尘暴遇到绿色植被区时,其风速平均每小时减少1千米,最终停止.(3)⑴在沙尘暴从发生到结束的全过程中,0时至10时风速是否在不断变化?什么时间内风速保持不变?⑵在4时和12时的风速各是多少?图中的A、B分别表示什么?⑶沙尘暴是经过几个小时后停止的?【题1】如果等腰三角形的周长为16,那么它的底边长y与腰长x之间的函数图像为()【题2】一名考生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了___________分钟.【题3】如图,,A B l l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。
走了一段路后,自行车发生故障,进行修理,若B 的自行车不发生故障,保持出发时的速度前进,相遇点离B 的出发点千米.【题4】第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.在比赛过程中,甲、乙两队在出发后小时相距最远.【题5】我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元收费,超过10吨的部分,按每吨b 元()b a >收费.设一户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图所示.⑴求a 的值;某户居民上月用水8吨,应收水费多少元?⑵求b 的值,并写出当10x >时,y 与x 之间的函数关系式;⑶已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求上月分别用水多少吨?【题6】某服装厂现有A 种布料70m ,B 种布料52m .现计划用这两种布料生产M ,N 两种型号的时装80套,已知做一套M 型号的时装需要A 种布料0.6m ,B 种布料0.9m ,可获利45元;做一套N 型号的时装需要A 种布料1.1m ,B 种布料0.4m ,可获利50元.若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获的总利润为y 元.⑴求y 与x 的函数关系式,并求出自变量x 的取值范围;⑵该服装厂在生产这批时装中,当生产N 型号的时装多少套时,所获利润最大?最大利润是多少?【题7】某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复。
已知机器运行需运行185分钟才能将这批工件加工完。
如图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象。
根据图象回答下列问题:⑴求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量的取值范围)⑵机器运行多少分钟时,第一个加工过程停止?⑶加工完这批工件,机器耗油多少升?【题8】如图,某公司专销A产品,第一批A产品上市40天内全部售完.该公司对第一批A产品上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中甲图中的折线表示的是市场日销售量与上市时间的关系;乙图中的折线表示的是每件A产品的销售利润与上市时间的关系.⑴试写出第一批A产品的市场日销售量y与上市时间t的关系式;⑵第一批A产品上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?【题9】密码学与数学是有关系的.某校初二一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种密钥的编制程序.他们首先设计了一个“字母——明码对照表”:字母A B C D E F G H I J K L M 明码12345678910111213字母N O P Q R S T U V W X Y Z 明码14151617181920212223242526例如,以311y x =+为密钥,将“努力”二字进行加密转换后得到下表:汉字努力拼音N U L I 明码:x1421129密钥:311y x =+密码:y 5374因此,“努”字加密转换后的结果是“5374”.问题:⑴请你求出当密钥为311y x =+时,“力”字经加密转换后的结果;⑵为了提高密码的保密程度,需要频繁地更换密钥.若“努力”二字用新的密钥加密转换后得到下表:汉字努力拼音N U L I 明码:x 1421129密钥:y kx b =+密码:y 9173请求出这个新的密钥,并直接写出“努”字用新的密钥加密转换后的结果.。