多项式乘以多项式详解
多项式的乘法

多项式的乘法多项式的乘法是代数学中的一种基本运算,用于计算两个多项式的乘积。
在多项式的乘法运算中,我们将一个多项式的每一项与另一个多项式的每一项相乘,并将结果相加得到最终的乘积。
本文将介绍多项式的乘法运算规则,并通过例子详细说明其计算方法。
1. 多项式的乘法运算规则设有两个多项式:P(x) = anxn + an-1xn-1 + ... + a1x + a0Q(x) = bmxm + bm-1xm-1 + ... + b1x + b0其中,an, an-1, ..., a1, a0, bn, bm-1, ..., b1, b0为常数系数,n, m为非负整数,n ≥ m。
两个多项式的乘积定义为:P(x) * Q(x) = (anxn + an-1xn-1 + ... + a1x + a0) * (bmxm + bm-1xm-1 + ... + b1x + b0)根据乘法的分配律,我们可以将上式展开为:P(x) * Q(x) = anxn * (bmxm + bm-1xm-1 + ... + b1x + b0) + an-1xn-1 * (bmxm + bm-1xm-1 + ... + b1x + b0) + ... + a1x * (bmxm + bm-1xm-1 + ... + b1x + b0) + a0 * (bmxm + bm-1xm-1 + ... + b1x + b0)再根据乘法的结合律,我们可以进一步简化上式为:P(x) * Q(x) = anxn * bmxm + anxn * bm-1xm-1 + ... + anxn * b1x + anxn * b0 + an-1xn-1 * bmxm + an-1xn-1 * bm-1xm-1 + ... + an-1xn-1 *b1x + an-1xn-1 * b0 + ... + a1x * bmxm + a1x * bm-1xm-1 + ... + a1x * b1x + a1x * b0 + a0 * bmxm + a0 * bm-1xm-1 + ... + a0 * b1x + a0 * b0由此可见,多项式的乘法运算实际上是将两个多项式的每一项进行相乘,并将结果按指数次数相加。
人教八年级数学上册《多项式乘以多项式》课件

14.1 整式的乘法
第6课时 多项式乘以多项式
得分
卷后分
自我评价
多项式与多项式相乘,先用一个多项式的每一项 乘 另一个多项式的 每一项,再把所得的积 相加 , 即(a+b)(m+n)= am+an+bm+bn .
多项式与多项式相乘
1.(3分)计算(x+4y)(x-5y)等于( C ) A.x2-20y2 B.x2-9xy-20y2 C.x2-xy-20y2 D.x2+xy-20y2 2.(3分)下列计算结果正确的是( B ) A.(x-2)(x+3)=x2+x+6 B.(x-3)(x+2)=x2-x-6 C.(x+3)(x+2)=x2+6x+6 D.(x-3)(x-2)=x2-5x-6
三、解答题(共36分) 13.(8分)先化简,再求值:(x+3)(x-3)-x(x-2), 其中x=4. 解:原式=2x-9,当x=4时,原式=-1 14.(8分)解方程: (x-2)(x-3)+2(x+6)(x-5)=3(x2-7x+15).
解:x=121
15.(10分)若多项式x2+px+8和多项式x2-3x+q的 乘积中不含x2和x3项,你能否求出p和q的值?
11.如图,在长方形ABCD中,横向阴影部分是长 方形,另一阴影部分是平行四边形,依照图中标注 的数据,计算图中空白的面积,其面积是( B )
A.bc-ab+ac+c2 B.ab-bc-ac+c2 C.a2+ab+bc-ac D.b2-bc+a2-ab
二、填空题(共6分) 12.如图,用A类、B类、C类卡片若干张, 拼成一个长为2a+3b,宽为a+2b的矩形,则 分别需要A类卡片__2__张,B类卡片__7__张,C 类卡片__6__张.
解:pq==31
【综合运用】 16.(10分)甲、乙二人共同计算一道整式乘法:
《多项式与多项式相乘》

相同项合并
总结词
在两个多项式相乘的结果中,对于两个多项式中相同 的项,将其系数合并。
详细描述
例如,假设有两个多项式A(a1x^n + a2x^(n-1) + ... + an)和B(b1x^n + b2x^(n-1) + ... + bm),其中 an=bm,那么在它们相乘的结果中,这一项的系数就 是两个多项式相应项系数的乘积再加上余项的系数。 例如,如果an=bm=5,那么这一项的系数就是 5*5+1=26。
排列的计算
多项式相乘可以用于计算排列数,即将n 个不同元素全部排列在一起,共有多少种 排列方式。
VS
组合的计算
多项式相乘也可以用于计算组合数,即将 n个不同元素中取出m个元素进行组合, 共有多少种组合方式。
05
多项式相乘的例子
两个二次三项式的相乘
例子1
$多项式A:2x^2+3x+1$,$多项式 B:x^2+2x+3$,相乘结果为: $2x^4+7x^3+9x^2+6x+3$。
展开平方差公式
利用平方差公式可以将多 项式中的某些项进行展开 ,简化多项式的形式。
微积分中的近似计算
泰勒级数展开
利用多项式相乘可以将一个函数展开成泰勒级数,从而近似计算函数的值。
近似计算
在进行微积分中的近似计算时,可以利用多项式相乘来近似表达一个函数, 提高计算的精度。
组合数学中的排列与组合计算
03
多项式相乘的步骤
确定多项式的项数和次数
确定第一个多项式的项数和次 数。
确定第二个多项式的项数和次 数。
计算两个多项式的项数和次数 的乘积,得到相乘后的多项式
多项式乘以多项式

课题:多项式乘多项式
句容二中
复习:计算
1、 2a c) (3bc) (
2
2、 3a b)( 2a b (
2n
n 1
n 1
)
3、 6a(a 3b)
1 2 2 4、 ab( ab 4ab) 2 3
句容二中
9.3
多项式乘多项式
句容二中
计算下图的面积,并把你的算法与同学交流
dac ad bc bd
此时,这个大长 c 方形的面积可表 示为
a
b
句容二中
由此得到
(a b)(c d ) = ac ad bc bd
一般的,对于任意的a、b、c、d,把 (a+b)看成一个整体,利用单项式乘 多项式法则可以得到
(a b)(c d ) = (a b)c + (a b)d
注意:多项式与多项式相乘的结果中,要 合并同类项.
句容二中
(1)( x 1)( 2 x 3) (2) (7 3x)(7 3x) (3) n(n 2)( 2n 1) (4) (6a 5)
2
1 、计算
法则Leabharlann 句容二中2、计算图中变压器的L形硅钢片的面积
n
2n
m
m
3、一块边长分别为a cm、b cm的长方 形地砖,如果长、宽各裁去2 cm,剩余 部分的面积是多少?
句容二中
2、计算
(1)(a b)(a 2b) (a 2b)(a b)
(2) 5 x( x 2 x 1) (2 x 3)( x 5)
2
句容二中
3.解方程
4( x 2)( x 5) (2 x 3)(2 x 1) 5
七年级数学下册第一章课件:多项式乘以多项式

B )
4.(福州中考)计算:(x-1)(x+2)的结果是 x2+x-2 的面积是 xy-x+y-1
5.将一个长为 x,宽为 y 的长方形的长增加 1,宽减少 1,得到的新长方形 .
6.计算: (1)(2a+3b)(3a-b); (2)(-2m-1)(3m-2).
解:(1)原式=6a2+7ab-3b2; (2)原式=-6m2+m+2.
第一章 整式的乘除
4
整式的乘法
第3课时
多项式乘以多项式
多项式乘以多项式. 【例 1】计算: (1)(x+1)(x2-x+1); (2)(a-b)(a2+ab+b2).
【思路分析】用二项式 x+1 的每一项去乘以三项式 x2-x+1 的每一项,再 把积相加即可.
【规范解答】 (1)原式=x3-x2+x+x2-x+1=x3-x2+x2+x-x+1=x3+1;
解:a2+7a+12;a2+a-12;a2-a-12;a2-7a+12;(1)x2+(p+q)x+pq; (2)①x2-3016x+2016000;②x2-4015x+4030000;
(3)
11.若等式(x-5)(x-7)=x2-mx+35 成立,则 m 的值为 12 12.若(ax+3y)(x-y)的展开式不含 xy 项,则 a 的值为 3 .
13.如图,正方形卡片 A 类、B 类和长方形卡片 C 类若干张,如果要拼一 个长为(a+2b),宽为(a+b)的大长方形,那么需要 C 类卡片 3 张.
14.计算: (1)(3x+4)(2x-1); (2)(x+7)(x-6)-(x-2)(x+1).
解:(1)原式=6x2+5x-4; (2)原式=2x-40.
15.先化简,再求值: 3x(2x+1)-(2x+3)(x-5),其中 x=-2.
多项式乘以多项式

(3)展开后若有同类项要合并,化成最简形式。
多项式与多项式相乘的法则
多项式与多项式相乘,先用一个多项式的每 一项分别乘以另一个多项式的每一项,再把 所得的积相加
在进行多项式乘法运算的过程中运用 了哪些数学思想方法?与同伴交流1)(1 x)(0.6 x) (2)(2x y)(x y) (3)(x 2y)2 (4)(2x 5)2
多项式乘以多项式
以下不同形状的长方形卡片各有若干张, 请你选取其中的两张,用它们拼成更大 的长方形,尽可能采用多种拼法。
n m
a m
n b
a b
n
a m
m (a+n )= ma+mn
n
a b
b (a+n) = ba+bn
n
n
m
b
a
a
m
b
n (m+b) = mn+bn
a (m+b) = am+ab
(5)(x 2)( y 3) (x 1)( y 2) (6)a2 (a 1)2 2(a 1)(a 2)
练习:课本33页:随堂练习和知识技能
(1)用一个多项式的每一项依次去乘另一个多 项式的每一项,不要漏乘,在没有合并同类项之 前,两个多项式相乘展开后的项数应是原来两个 多项式项数之积。
《多项式乘多项式》课件

8.方程(x-1)(2x+1)=(2x-1)(x+2)的解为__x_=_14___. 9.商店经营一种产品,定价为12元/件,每天能售出8件,而每降价x 元,则每天多售出(x+2)件,则降价x元后每天的销售总收入是 __(-__x_2_+__2_x_+__1_2_0_)_元.
18.甲、乙二人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄 错了第一个多项式中 a 的符号,得到的结果为 6x2+11x-10;由于乙漏 抄了第二个多项式中 x 的系数,得到的结果为 2x2-9x+10.
(1)你能知道式子中 a,b 的值各是多少吗? (2)请你计算出正确结果. 解:(1)由题意,得(2x-a)(3x+b)=6x2-(3a-2b)x-ab=6x2+11x - 10 , (2x + a)(x + b) = 2x2 + (a + 2b)x + ab = 2x2 - 9x + 10 , 则 有 -a+(23ba=--2b9),=11,解得ab==--52, (2)(2x-5)(3x-2)=6x2-19x+10
3.若(x+2)(x-1)=x2+mx+n,则m+n=( C ) A.1 B.-2 C.-1 D.2 4.下列计算结果是x2-5x-6的是( B ) A.(x+6)(x-1) B.(x-6)(x+1) C.(x-2)(x+3) D.(x-3)(x+2)
5.(习题5变式)计算: (1)(x+1)(2x-1); 解:原式=2x2+x-1
10.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的关系为( B ) A.M=N B.M>N C.M<N D.M与N的大小由x的取值而定 11.若(x2-mx-1)(x-2)的积中,x的二次项系数为0,则m的值是
多项式乘以多项式PPT课件

多项式的乘法法则
多项式与多项式相乘, 先用一个 多项式的每一项乘以另一个多项式 的每一项, 再把所得的积相加.
2020年10月2日
3
例题教学
(1) (x+2y)(3a+2b)
解:原式= (x·3a) + (x·2b)+ (2y·3a) + (2y·2b)
=3ax+2bx+6ay+4by
(2) (2x–3)(x+4)
+(3y·(-xy) )+( 3y·2y )
2
=-2x3 +2x2y-4xy2+3x2y-3xy2+6y3
=-2x3 +5x2y-7xy2+6y3
2020年10月2日
5
展示风采
(1) (2a–3b)(a+5b) ;
(2) (xy–z)(2xy+z) ;
(3) (x–1)(x2+x+1) ;
2020年10月2日
解:原式= (2x·x) + (2x·4) + (-3·x) + (-3·4)
=2x2+8x+(-3x)+(-12)
=2x2+5x-12
2020年10月2日
4
(3) (-2x+3y)(x2-xy+2y2) 解:原式= (-2x·x2)+( -2x ·(-xy) )+(-2x·2y2 )+( 3y·x2 )
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巩固法则
问题3 计算: (1)(x 2)(x 3); x2+5x+6. (2)(x 4)(x 1); x2-3x-4. (3)(y 4)(y 2); y2+2y-8. (4)(y 5)(y 3). y2-8y+15.
根据上述求解过程,观察计算结果的各项系数与原 式中的系数有怎样的关系?
q
p
abຫໍສະໝຸດ 探索法则(a b)(p q)=ap aq bp bq
你能类比单项式与多项式相乘的法则,叙述多项式 与多项式相乘的法则吗?
多项式与多项式相乘的法则: 多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加.
探索法则
不同的表示方法: (a b)(p q); ( a p q) ( b p q); ( p a b) ( q a b); ap aq bp bq.
根据上节课积累的探究经验,你能得到什么结论 呢?
巩固法则
例1 计算: (1)(3x 1)(x 2); (2)(x 8y)(x y); (3)(x y)(x2 xy y2).
解:(1)原式=3x2+6x+x+2=3x2+7x+2. (2)原式=x2-xy-8xy+8y2=x2-9xy+8y2. (3)原式=x3-x2y+xy2+x2y-xy2+y3=x3+y3.
课堂小结
(1)本节课学习了哪些主要内容? (2)在运用多项式与多项式相乘的法则时,你认为
应该注意哪些问题? (3)举例说明在探索多项式与多项式相乘的法则的
过程中,体现了哪些思想方法?
14.1.4 整式的乘法
第3课时 多项式与多项式相乘
解决实际问题
问题1 已知某街心花园有一块长方形绿地,长为 a m,宽为p m.则它的面积是多少?
p
a
b
若将这块长方形绿地的长增加b m,则扩大后的绿 地面积是多少?
探索法则
问题2 若将原长方形绿地的长增加b m、宽增加 q m,你能用几种方法求出扩大后的长方形绿地的面积 呢?
探索法则
你认为在运用法则计算时,应该注意什么问题?
巩固法则
练习 计算: (1)(2x 1)(x 3); 2x2+7x+3. (2)(m 2n)(3n m);-m2+mn+6n2 (3)(a 1)2; a2-2a+1. (4)(a 3b)(a 3b);a2-9a2. (5)(2x2 1)(x 4); 2x3-8x2-x+4. (6)(x2 2x 3)(2x 5). 2x3-2x2-4x-15.
方法技能: 1.多项式与多项式相乘,要按一定的顺序进行,做到不重不漏. 2.多项式中每一项都包括它前面的符号,在计算时应先准确地确定 积的每一项符号. 3.多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项 数应该等于两个多项式的项数之积.相乘后,若有同类项的应合并. 易错提示: 多项式与多项式相乘时易漏乘或误判符号而出错.