浅谈中学数学解题方法(论文) 精品

合集下载

课题研究论文:浅析初中数学解题技巧

课题研究论文:浅析初中数学解题技巧

151359 数学论文浅析初中数学解题技巧一、有理数和无理数的辨析初中刚接触无理数,用根式表达,无理数也是数轴上的一个点,学生总是无法理解,为什么要用根式表达,无理数到底是什么,其实数学的领域是非常广泛的,除了无理数和有理数的分类以外,还有很多不同的分类,还有我们很多不知道的数,这些其实生活中很难用到,它是数学上的专业术语,根据不同的需要和不同的性质进行的分类,学生只要把它当作一个分类方式和分类符号就行,不必要去专牛角尖。

无理数和有理数是有很多不同的,有理数能直接相加减,而无理数不行,因为无理数并不是一个确定的数,只是一个估计数,是不能做加减法的,学生要记住一些特殊的常用的无理数的估计值是多少,帮助今后的估算,无理数的概念不难理解,但也需要过程,老师应该充分给学生时间去消化。

还有注意一个问题,根式表达和指数表达的转化,换底公式的记忆和运用。

二、几何图形的解题技巧初中要学习三角形,平行四边形,梯形,还要学习一些简单的立体图形,三角形不具有稳定性,有很多特殊的性质,也有很多特殊类型的三角形,这一部分也是初中教学的重点,但是图形图像对于学生来说太抽象了,老师要注意形象教学,要注意培养学生的抽象思维,空间想象力。

开始教学时应该多做一些图形展示,来吸引学生的注意力,来培养学生的空间能力。

几何图形的学习要注意培养学生的观察能力,生活中多进行观察和想象,来培养空间感,这样才能有助于后续的学习。

还要注意这些图像特殊的性质,三角形不具有稳定性,平行四边形具有稳定性,梯形上底和下底互相平行,圆的性质也是非常多,不过初中不涉及很多,只要知道圆周角,圆的周长和面积公式即可,还有扇形的计算,也要去?住公式,弧长,扇形面积等。

另外,图形学习中最重要的是三角形,涉及到一些新的概念,相似三角形,全等三角形,这就需要运用到全等三角形的相应判断公式,老师不防运用一些实例,来说明哪些是全等三角形,哪些是相似三角形。

这也是初中考试中常常出现在证明题中的形式。

《探析初中几何问题的解题方法及要领》论文

《探析初中几何问题的解题方法及要领》论文

探析初中几何问题的解题方法及要领随着教育与课程的不断改革,初中数学中的几何教学课程也发生了很大变化. 新课程将初中几何内容大致分为了图形认识、图形与变换、图形与坐标、图形与证明四大模板. 从研究方式上,也可将其分为实验几何与论证几何. 《数学课程标准》中指出,在几何问题的教学中,应帮助学生建立空间观念,培养学生的几何逻辑推理能力. 那么如何更好的落实新课程目标,培养学生的逻辑推理能力呢?笔者结合实践经验,对于论证几何教学进行了深入的思考,总结了一些论证几何教学的基本策略.一、将文字语言转化为符号语言几何教学中存在着不同形式的语言,大致有图形语言、文字语言和符号语言三种. 教师在教学过程中,首先要让学生理解掌握这三种不同的语言,继而还需培养学生将这三种语言相互间进行转化的能力. 不同语言在几何内容的学习中发挥着不同的作用. 图形语言一般较为直观,能够形象地向学生展示问题;而文字语言则是概括和抽象的,重点是对于图形或图形本身中蕴含的深层关系予以准确的描述,对几何的定义、定理、题目等予以精确的表述;符号语言则是对于语言文字的再次抽象,它具有简化作用,有更深的抽象性,也是最难掌握的一种,是逻辑推理必备的能力基础所在. 初中阶段的学习需要循序渐进,由简单推理再到符号表示进行推理. 教师在教学过程中应有意识地引导学生将文字语言转化为符号语言,培养学生将文字语言转化为特定符号的意识,训练学生转化的能力,从而为论证几何的学习打下良好的基础. 二、将题目所含条件转化为图形几何题目中,用各种不同符号把已知条件通过图形直观的表达出来,对于处理较复杂的几何问题有很大的帮助. 学生中普遍存在“看图忘条件”的现象,无法将题目与图形有机结合起来,教师需要培养学生画图的意识,这样方便将题目中的条件直观清晰地呈现出来,实现条件与图形的有机融合,帮助学生理清做题思路.例1 已知点E,F在BC上,BE=CF,AB=DC,∠B=∠C. 求证:∠A=∠D.分析如图1,将已知条件通过画图展现出来,这样可以将已知条件在图形中得以直观的表现,对于学生也是一种暗示和提醒,利于问题的有效解答.三、培养综合解决问题的能力综合化解决问题,即指导学生在分析问题时从已知条件出发,从结论入手,结合图形进行解答. 综合分析法是几何题目解题中通常会用到的逻辑思维方法. 其特点在于从已知推可知,逐步再推出未知,从未知看需知,逐步靠近已知. 在较为复杂的问题当中,需要良好地运用综合分析法,从已知出发,从结论入手,形成完整的体系,寻求最后解决问题的接洽点所在,进而达到解决问题的目的.例2如图2,分别以△ABC的边AB,AC为直角边向△ABC外部作等腰直角三角形BDA和等腰直角三角形CEA,点P,M,N分别为BC,BD,EC的中点. 求证:PM=PN.分析若从已知条件出发,“△BDA和△CEA是等腰直角三角形”,即可轻易的推出结论,AB=AD,AC=AE,再根据做题思路,即可得出△ADC≌△ABE,从而可以得到△ADC和△ABE的对应边相等、对应角相等. 若从结论“PM=PN”入手,从未知看需知. 则思路可以如下:已知PM和PN分别是△BDC和△CBE的中位线,所以只需证CD=BE. 从已知条件出发我们可以得到CD=BE,从结论入手我们需要CD=BE,这样相当于我们找到了题目的接洽点所在,问题也就迎刃而解了.综合分析法不仅帮助学生高效率地解答几何题目,从而帮助学生掌握基本的数学思维,利于学生综合思维能力的培养,提高学生解决问题的能力和水平.四、灵活进行图形变换新课程中的初中数学增添了图形变换的内容,如平移、旋转、轴对称等. 灵活进行图形变换即是将图形变换作为一种解题思路方法,通过图形变换为学生解决几何问题打开一扇窗.例3如图3,正方形ABCD中,E在BC边上移动,∠EAF=45°,AF交CD于F,连接EF. 求证:EF=BE+DF.分析这道题目需要增添辅助线来助于解答,因此对于大部分学生来说是比较难的. 增添辅助线是几何教学中的重要内容,该题中要证EF=BE+DF,就需要将分散的线段BE,DF集中起来,若运用旋转变换法,将△ADF绕点A顺时针旋转90°,如图4,即可将BE和DF转到同一直线上,得到线段BE与DF的和,继而可将三条线段EF,BE,DF构造到一对全等三角形中. 这样就轻易地得到了辅助线法证明思路:延长CB到M,使BM=DF,连接AM,如图5,得到ME=BE+DF,这时只需要证明△AEM≌△AEF就可解决问题了.教师在几何教学中,需要有意识地教导学生图形变换的方法,让学生掌握好平移、旋转和轴对称等相关知识,并能够运用这些知识探索解题思路、发现解题方法. 同时,这样利于学生的空间想象力的培养.以上是笔者关于论证几何问题中提出的一些做题思路和方法. 总而言之,论证几何教学是几何教学内容的核心,是重点也是难点,需要对其进行研究和思考,发掘有效的教学策略,提高论证几何教学的效率,重视培养学生的逻辑思维能力和综合思考能力.。

浅谈中学数学解题方法(论文) 精品

浅谈中学数学解题方法(论文) 精品

本科生毕业论文(设计)册学院数学与信息科学学院专业数学与应用数学班级 2006级A班学生孔祥东指导教师麻常利河北师范大学本科毕业论文(设计)任务书编号:数信学院2010届613论文(设计)题目:浅谈中学数学解题方法院系:数信与信息科学学院专业:数学与应用数学班级: 06A班学生姓名:孔祥东学号: 2006012613 指导教师:职称:1、论文(设计)研究目标及主要任务深入研究中学(特别是高中)的数学问题,探寻用更短的时间解决更多的中学数学问题,以及掌握处理大多数中学数学问题的通法通解。

2、论文(设计)的主要内容本文针对中学的几种典型的数学方法进行了研究和总结,并以示范性典例和再现性典例的形式加以归纳和再现,以典型题来阐述各数学方法的精妙。

3、论文(设计)的基础条件及研究路线半年来对中学数学试题的广泛研究,尤其是北京地区高考题的研究,加之对众多教辅资料的研读与分析,结合自己的心得和体会加以研究和归纳。

4、主要参考文献[1] 郑毓信、肖柏荣、熊萍数学思维与数学方法论 [M]. 成都:四川教育出版社[2] 陆书环、傅海伦数学教学论[M]. 北京:科学出版社[3] 张雄、李得虎数学方法论与解题研究 [M]. 北京:高等教育出版社[4] 周房安.数学选择题解答策略[J].广东教育,2006,(04).62~63.[5] 傅钦志.高考解题中的优先策略[J].高中数理化,2004,(02).1~2.指导教师签名:系主任(教研室主任)签名:年月日年月日学院审查意见:教学院长签名:年月日河北师范大学本科生毕业论文(设计)开题报告书数学与信息科学学院数学与应用数学专业 2010 届本科生毕业论文设计浅谈中学数学解题方法作者姓名指导教师所在学院数学与信息科学学院专业(系)数学教育班级(届) 06级A班完成日期 2010 年 5 月 6 日目录中文摘要、关键词 (2)引言 (3)一、配方法 (3)二、换元法 (3)三、待定系数法 (3)四、定义法 (3)五、数学归纳法 (3)六、参数法 (3)七、反证法 (3)参考文献…………………………………………………………()英文摘要、关键词………………………………………………()附录………………………………………………………………()摘要:在与北京地区十余位高中毕业班学生的接触后,结合我自身的经验,我发现当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学方法融会贯通时,才能提出新看法、巧解法。

浅谈中学常见数学解题策略

浅谈中学常见数学解题策略

浅谈中学常见数学解题策略以《浅谈中学常见数学解题策略》为标题,写一篇3000字的中文文章随着数学教学的深入,越来越多学生开始参与到中学数学的学习中,学习中学数学的解题策略也受到了越来越多的关注。

学生完成众多的数学题的解题,除了明确知识点的学习,还要掌握以解决中学数学题的常见策略。

首先,要学会分析和推理。

分析和推理是数学解题的基础,是数学思维的基本功,也是中学数学解题的重要策略之一。

在进行题目分析时,学生要学会把握关键信息,解决问题的关键是“联系”,将问题中焦点所在以及各个问题联系起来,进行合理的推理,把问题的解法找出来,使解题工作更加具体。

其次,学生要掌握理解题意这一重要策略。

无论任何数学题,只有正确理解题意,才能正确思考、正确求解,提高解题能力。

理解题意无关于任何数学技巧,一般而言只需简单的“读懂”就可以解决问题,因此学生应该注意对题目内容进行完整和准确的理解,从而把握题目正确思路,保证解题的正确性。

再次,学生应该学会利用“演绎法”进行求解。

演绎法又称“归纳法”,是一种比较高超的概念,它不仅可以应用于数学,也可以应用于其他学科,是一种综合思维、模拟思维和系统思维的思维模式。

在数学解题中,学生应该学会用“演绎法”来求解问题,既可以使解题有规律性和系统性,又可以把握解题的思路和方法,提高解题能力。

最后,学生也要掌握筛选法。

筛选法是指根据问题提供的条件,反复地进行计算,消去条件、范围,减少最终的可行解的数量,最后通过比较解答,得出正确答案的方式。

筛选法解决问题运算量较少,但是前提是要掌握解题过程中筛选有效要素,只有熟练掌握这一策略,才能更快速和准确地筛选有效信息并得出正确答案。

总之,中学数学解题策略多种多样,有分析推理、理解题意、演绎法和筛选法,熟练掌握其中的每一种策略,都可以极大地提升解题能力,不断完善解题思路,最终找出问题的准确答案。

借助这些解题策略,学生们可以更有效地完成和解决中学数学,从而为学习带来更多的成就感,让他们有信心跨越任何数学困难、提高学习效率。

初中数学问题解决方法(含学习方法技巧、例题示范教学方法)

初中数学问题解决方法(含学习方法技巧、例题示范教学方法)

初中数学问题解决方法第一篇范文在学生的学习过程中,数学学科以其严谨的逻辑性和丰富的思维性,一直占据着重要的地位。

特别是对于初中阶段的学生来说,数学学科的学习不仅能够锻炼他们的逻辑思维能力,还能够提高他们的抽象思维能力。

在这个过程中,掌握有效的数学问题解决方法是至关重要的。

本文将详细探讨几种初中数学问题解决方法。

一、理解题目,明确问题在解决任何数学问题时,首先需要做的就是理解题目,明确题目所要求解的问题。

这个过程看似简单,实则非常重要。

因为只有正确理解了题目,才能够保证后续的解题步骤的正确性。

在这个过程中,学生需要注意以下几点:1.仔细阅读题目,确保理解题目中的每一个信息。

2.明确题目所要求解的问题,是要求解一个数的值,还是要求判断某个结论是否正确。

3.注意题目中的关键词,如“整数”、“正数”、“负数”等,这些关键词可能会对解题步骤产生影响。

二、梳理知识点,选择合适的解题方法在明确了题目要求后,学生需要根据题目所涉及的知识点,选择合适的解题方法。

初中数学中常见的解题方法有很多,比如:1.代数法:通过设定未知数,建立方程来解决问题。

2.几何法:利用几何图形的性质来解决问题。

3.数形结合法:将数与形相结合,通过观察图形来解决问题。

4.排除法:通过逐一排除不符合题意的选项,找出正确答案。

学生需要根据题目的具体要求,灵活选择合适的解题方法。

三、制定解题计划,逐步求解选择了解题方法后,学生需要制定解题计划,按照计划逐步求解。

在这个过程中,学生需要注意以下几点:1.按照逻辑顺序进行计算,避免跳步骤。

2.在每一步计算后,都要进行验算,确保结果的正确性。

3.遇到不会解决的问题时,不要慌张,可以先跳过,待解决完其他问题后再回来解决。

四、总结反思,提高解题能力在完成所有问题的解答后,学生需要对解题过程进行总结反思,以此来提高自己的解题能力。

这个过程是非常重要的,因为只有通过不断的总结反思,学生才能够找到自己的不足,从而在今后的学习中避免类似错误的发生。

初中数学解题技巧探究(含学习方法技巧、例题示范教学方法)

初中数学解题技巧探究(含学习方法技巧、例题示范教学方法)

初中数学解题技巧探究第一篇范文在初中数学教学中,解题技巧的培养是提高学生数学素养的关键。

本文从以下几个方面对初中数学解题技巧进行探究:理解题意、分析问题、设计算法、演绎推理、检验结果。

一、理解题意理解题意是解题的第一步,要求学生仔细阅读题目,把握题目的本质要求。

在实际操作中,学生应关注以下几点:1.理解题目中的关键词,如“相等”、“不等”、“最大值”、“最小值”等。

2.明确题目的已知条件和求解目标。

3.注意题目中的限制条件和特殊要求。

二、分析问题分析问题是解题的核心环节,要求学生运用所学知识对问题进行深入分析,找出问题的内在联系。

具体步骤如下:1.梳理已知条件,找出未知量。

2.分析已知条件与未知量之间的关系,建立数学模型。

3.确定解题思路,选择合适的解题方法。

三、设计算法设计算法是根据分析结果,选择合适的数学方法进行求解。

在这一环节,学生应掌握以下几点:1.熟悉各种数学运算,如加、减、乘、除、乘方、开方等。

2.了解解方程、不等式的方法,如代入法、消元法、图像法等。

3.学会运用数学公式、定理、性质解决实际问题。

四、演绎推理演绎推理是数学解题的重要环节,要求学生遵循逻辑规律,进行严密的推理。

在实际操作中,学生应关注以下几点:1.遵循三段论推理,确保推理过程的正确性。

2.注意推理过程中的逻辑严密性,避免出现跳跃性思维。

3.学会运用反证法、归纳法等推理方法。

五、检验结果检验结果是解题的最后一步,要求学生对解题过程和结果进行回顾,确保解答的正确性。

具体步骤如下:1.检查计算过程,是否存在错误或遗漏。

2.分析解题结果是否符合题目的要求。

3.检查答案是否合理,如数值是否过大或过小,符号是否正确等。

综上所述,初中数学解题技巧的培养应注重以下几点:1.加强基础知识的储备,提高学生的数学素养。

2.培养学生分析问题、解决问题的能力。

3.注重逻辑思维训练,提高学生的演绎推理能力。

4.培养学生检查答案的习惯,提高解题的准确性。

初三重要数学考题的解题方法解析论文

初三重要数学考题的解题方法解析论文

初三重要数学考题的解题方法解析论文初三重要数学考题的解题方法解析论文近年来,随着新课程改革的不断深入,初中数学重要考题更具有综合性与全面性,注重对初中学生的全面考查。

初三是初中学生升学考试前的重要时期,应加强对数学知识的综合知识的应用能力,可以说,初中数学初中重要考题一直是学生的难点问题。

初三学生在系统学习过初一、初二、初三的课程后,对初中数学知识的结构有了大致的了解,重要考题是知识与方法综合性的体现,主要考查学生对各个知识点的综合运用能力。

对于初中数学教师与学生来说,初中数学重要考题一直都是重点关注的方面。

在数学教学中,如何让学生能够综合运用各个知识点,一直是初中数学教师的难点问题。

一、初中数学初中重要考题的发展趋势教师作为在数学课堂教学中的重要引导者,应为学生创设一个有趣、轻松、愉悦、和谐的教学氛围,并在课前备课工作中认真挑选重要的初中考题,对其知识点进行细分,将重要考题讲解作为提高教学效率的重要环节。

此外,初三也是巩固学生数学基础知识的重要时段。

随着新课程改革的不断深入,初中数学尤其是初三重要考题的题型也越来越灵活。

总的来说,初中数学重要考题主要发展趋势分为:第一,考察学生通过建立坐标系实现数形结合,正确处理代数与几何的关系;第二,通过构造函数与方程式,考察学生对抛物线或直线知识的理解与灵活运用能力;第三,考察学生综合运用几何与代数的思想。

考虑到初中数学重要考题是对学生思维能力的一种全方位检测,而不是单纯的知识考察,并且其解题方法与涉及的知识点也较为全面、广泛。

因此,初中数学教师应了解并掌握初中数学重要考题的发展趋势,不断探索更为有效地解题思路与方法,以促进学生的全面发展。

二、初三重要数学考题的解题方法解析1.存在性问题可以说,存在性问题是近年来必考的重要考题,主要包括点的存在、线的存在、直线的存在以及平行、垂直、相等的存在等。

如在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B (3,-2√3/3)三点。

浅谈中学数学解题方法(论文)[1]

浅谈中学数学解题方法(论文)[1]

琼州学院浅谈中学数学解题研究学院理工学院专业数学与应用数学班级 12级学生王永确学号 ******** 指导教师陈德钦目录中文摘要、关键词 (2)引言 (3)一、配方法 (3)二、换元法 (3)三、待定系数法 (3)四、定义法 (3)五、数学归纳法 (3)六、参数法 (3)参考文献…………………………………………………………()英文摘要、关键词………………………………………………()附录………………………………………………………………()摘要:随着素质教育的推进,在学习中学数学方法时,常会遇到一些比较复杂的问题,如果用直接求解的方式来解答,往往会使问题变得更加复杂,于是我们提出了数学常用解题方法和技巧,,同时也证实了掌握数学解题方法和技巧是十分必要的。

数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。

数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。

可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学方法和数学思想的认识和运用,数学素质的综合体现就是“能力”。

为了让读者能够更系统地了解中学数学常用的解题方法和技巧,本文通过理论阐述和例题分析就中学数学常用的解题方法和技巧进行详细的以下介绍:本文浅陋介绍高考中常用的数学基本解题方法:配方法、换元法、待定系数法、数学归纳法等等。

在每节的内容中,先是对方法或者问题进行综合性的叙述,再以例题的形式出现进行详细的解答和分析,对方法和问题进行示范,每个例中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

关键词:解题方法和技巧数学解题思想配方法换元法待定系数法数学归纳法1、配方法配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。

这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科生毕业论文(设计)册学院数学与信息科学学院专业数学与应用数学班级 2006级A班学生孔祥东指导教师麻常利河北师范大学本科毕业论文(设计)任务书编号:数信学院2010届613论文(设计)题目:浅谈中学数学解题方法院系:数信与信息科学学院专业:数学与应用数学班级: 06A班学生姓名:孔祥东学号: 2006012613 指导教师:职称:1、论文(设计)研究目标及主要任务深入研究中学(特别是高中)的数学问题,探寻用更短的时间解决更多的中学数学问题,以及掌握处理大多数中学数学问题的通法通解。

2、论文(设计)的主要内容本文针对中学的几种典型的数学方法进行了研究和总结,并以示范性典例和再现性典例的形式加以归纳和再现,以典型题来阐述各数学方法的精妙。

3、论文(设计)的基础条件及研究路线半年来对中学数学试题的广泛研究,尤其是北京地区高考题的研究,加之对众多教辅资料的研读与分析,结合自己的心得和体会加以研究和归纳。

4、主要参考文献[1] 郑毓信、肖柏荣、熊萍数学思维与数学方法论 [M]. 成都:四川教育出版社[2] 陆书环、傅海伦数学教学论[M]. 北京:科学出版社[3] 张雄、李得虎数学方法论与解题研究 [M]. 北京:高等教育出版社[4] 周房安.数学选择题解答策略[J].广东教育,2006,(04).62~63.[5] 傅钦志.高考解题中的优先策略[J].高中数理化,2004,(02).1~2.指导教师签名:系主任(教研室主任)签名:年月日年月日学院审查意见:教学院长签名:年月日河北师范大学本科生毕业论文(设计)开题报告书数学与信息科学学院数学与应用数学专业 2010 届本科生毕业论文设计浅谈中学数学解题方法作者姓名指导教师所在学院数学与信息科学学院专业(系)数学教育班级(届) 06级A班完成日期 2010 年 5 月 6 日目录中文摘要、关键词 (2)引言 (3)一、配方法 (3)二、换元法 (3)三、待定系数法 (3)四、定义法 (3)五、数学归纳法 (3)六、参数法 (3)七、反证法 (3)参考文献…………………………………………………………()英文摘要、关键词………………………………………………()附录………………………………………………………………()摘要:在与北京地区十余位高中毕业班学生的接触后,结合我自身的经验,我发现当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学方法融会贯通时,才能提出新看法、巧解法。

高考试题十分重视对于数学解题方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。

我们要有意识地应用数学解题方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。

数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学解题方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学方法和思想也还是对你起作用。

数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。

数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。

可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学方法和数学思想的认识和运用,数学素质的综合体现就是“能力”。

为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本文浅陋介绍高考中常用的数学基本解题方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法。

在每节的内容中,先是对方法或者问题进行综合性的叙述,再以两种典例的形式出现。

示范性典例进行详细的解答和分析,对方法和问题进行示范,再现性典例是一组简单的选择填空题进行方法的再现旨在检查学习的效果,起到巩固的作用。

每个典例中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

关键词:高考解题方法数学解题技巧数学思想配方法换元法待定系数法数学归纳法参数法消去法反证法1、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。

何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。

有时也将其称为“凑配法”。

最常见的配方是进行恒等变形,使数学式子出现完全平方。

它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式(a +b)2=a 2+2ab +b 2,将这个公式灵活运用,可得到各种基本配方形式,如:a 2+b 2=(a +b)2-2ab =(a -b)2+2ab ;a 2+ab +b 2=(a +b)2-ab =(a -b)2+3ab =(a +b 2)2+(32b )2; a 2+b 2+c 2+ab +bc +ca =12[(a +b)2+(b +c)2+(c +a)2] a 2+b 2+c 2=(a +b +c)2-2(ab +bc +ca)=(a +b -c)2-2(ab -bc -ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sin αcos α=(sin α+cos α)2;x 2+12x =(x +1x )2-2=(x -1x)2+2 ;…… 等等。

1.1、示范性典例:例1. 已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。

A. 23 B. 14 C. 5 D. 6 【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z ,则211424()()xy yz xz x y z ++=++=⎧⎨⎩ ,而欲求对角线长x y z 222++,将其配凑成两已知式的组合形式可得。

【解】设长方体长宽高分别为x,y,z ,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:211424()()xy yz xz x y z ++=++=⎧⎨⎩。

长方体所求对角线长为:x y z 222++=()()x y z xy yz xz ++-++22=6112-=5 所以选B 。

【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。

这也是我们使用配方法的一种解题模式。

例2. 设方程x 2+kx +2=0的两实根为p 、q ,若(p q )2+(q p )2≤7成立,求实数k 的取值范围。

【解】方程x 2+kx +2=0的两实根为p 、q ,由韦达定理得:p +q =-k ,pq =2 , (p q )2+(q p )2=p q pq 442+()=()()p q p q pq 2222222+-=[()]()p q pq p q pq +--2222222=()k 22484--≤7, 解得k ≤-10或k ≥10 。

又 ∵p 、q 为方程x 2+kx +2=0的两实根, ∴ △=k 2-8≥0即k ≥22或k ≤-22 综合起来,k 的取值范围是:-10≤k ≤-22 或者 22≤k ≤10。

【注】 关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。

本题由韦达定理得到p +q 、pq 后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p +q 与pq 的组合式。

假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。

例3. 设非零复数a 、b 满足a 2+ab +b 2=0,求(a a b +)1998+(b a b+)1998 。

【分析】 对已知式可以联想:变形为(a b )2+(a b )+1=0,则a b=ω (ω为1的立方虚根);或配方为(a +b)2=ab 。

则代入所求式即得。

【解】由a 2+ab +b 2=0变形得:(a b )2+(a b)+1=0 , 设ω=a b ,则ω2+ω+1=0,可知ω为1的立方虚根,所以:1ω=b a ,ω3=3=1。

又由a 2+ab +b 2=0变形得:(a +b)2=ab ,所以 (a a b +)1998+(b a b +)1998=(a ab 2)999+(b ab 2)999=(a b )999+(b a )999=ω999+ω999=2 。

【注】 本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用ω的性质,计算表达式中的高次幂。

一系列的变换过程,有较大的灵活性,要求我们善于联想和展开。

【另解】由a 2+ab +b 2=0变形得:(a b )2+(a b )+1=0 ,解出b a =-±132i 后,化成三角形式,代入所求表达式的变形式(a b )999+(b a )999后,完成后面的运算。

此方法用于只是未-±132i 联想到ω时进行解题。

假如本题没有想到以上一系列变换过程时,还可由a2+ab+b2=0解出:a=-±132ib,直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算。

1.2、再现性典例:1. 在正项等比数列{an }中,a1♦a5+2a3♦a5+a3∙a7=25,则 a3+a5=_______。

2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。

A. 14<k<1 B. k<14或k>1 C. k∈R D. k=14或k=13. 已知sin4α+cos4α=1,则sinα+cosα的值为______。

A. 1B. -1C. 1或-1D. 04. 函数y=log12(-2x2+5x+3)的单调递增区间是_____。

A. (-∞, 5]B. [5,+∞)C. (-1,5]D. [5,3)5. 已知方程x2+(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x2+y2=4上,则实数a=_____。

【简解】 1小题:利用等比数列性质am p-am p+=am2,将已知等式左边后配方(a3+a5)2易求。

答案是:5。

2小题:配方成圆的标准方程形式(x-a)2+(y-b)2=r2,解r2>0即可,选B。

3小题:已知等式经配方成(sin2α+cos2α)2-2sin2αcos2α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。

相关文档
最新文档