1悬链线方程的推导
系泊系统悬链线方程

系泊系统悬链线方程引言系泊系统是一个用于固定船只或其他浮动物体的装置。
在海洋工程中,悬链线常被用作系泊系统的一部分,用于支撑和固定船只。
了解悬链线方程可以帮助工程师更好地设计和计算系泊系统,以确保船只的安全。
本文将介绍悬链线的概念以及如何推导悬链线的方程。
我将向您解释悬链线的基本原理,并提供一个简单的数学推导,从而得出悬链线的方程。
悬链线的基本原理悬链线是指在自由悬挂的条件下所呈现的线形。
当在自由空间中的两个点之间拉起悬链线时,其形状与悬链线的长度和两个拉力有关。
悬链线形成的原因是张力与重力在平衡状态下相互作用。
在船只的系泊系统中,悬链线呈现出类似于倒钟的形状。
这是因为船只的重力在悬链线上形成一个上向的张力,而风力和浪力则在悬链线上形成一个下向的张力。
这种平衡状态使船只能够固定在一个位置,并抵抗外部的力量。
推导悬链线的方程为了推导悬链线的方程,我们可以使用悬链线微元的分析方法。
假设有一段长度为ds的悬链线,在这段悬链线上的张力为T,重力为dF。
考虑到悬链线的长度非常小,我们可以使用近似的方法进行推导。
首先,我们可以将悬链线微元的受力分解为水平方向和垂直方向的分量。
垂直方向的受力平衡可以表示为:T * cosθ = dF其中,θ表示悬链线微元的倾角。
我们可以将dF表示为悬链线微元的重力分量dm乘以重力加速度g,即dF = dm * g。
然后,我们可以将水平方向的受力平衡表示为:T * sinθ = T * dθ悬链线微元的弧长长度可以表示为:ds = R * dθ其中,R表示悬链线微元与悬链线中心线的距离,也就是悬链线的半径。
将上述方程联立解得:T * cosθ = dm * gT * sinθ = R * dθ我们可以进一步将cosθ与sinθ之间的关系表示为:sinθ = √(1 - cos²θ)将这个关系带入前面的方程,我们可以得到:dm * g = R * dθ * √(1 - cos²θ)对上述方程进行微分运算,并将dm表示为dM/dθ:g * dM/dθ = R * dθ * √(1 - cos²θ)将上述方程进行变量分离和积分运算,得到:∫dθ/√(1 - cos²θ) = ∫g * R / M dM其中,M表示总质量等效值。
悬链线方程

之阳早格格创做常常所有资料包罗导线正在内,皆具备一定的刚刚性,但是由于悬挂正在杆塔上的一档导线相对付较少,果此导线资料的刚刚性对付其几许形状的效率很小,故正在估计中假定:(1)导线为理念的柔索.果此,导线只启受轴背弛力(或者推力),任性一面的直矩为整.那样导线力教估计可应用表里力教中的柔索表里举止估计.(2)效率正在导线上的荷载均指共一目标,且沿导线匀称分散.一、悬链线圆程及直线弧少为了分解便当,咱们先从悬挂面等下,即相邻杆塔导线悬挂面无下好的情况计划导线的应力及几许闭系.本量上,导线悬正在空中的直线形态,从数教角度用什么圆程去形貌是举止导线力教分解的前题.由于假定视导线为柔索,则可依照表里力教中的悬链线闭系去举止分解,将要导线架设正在空中的几许形态视为悬链形态,而由此导出的圆程式为悬链线圆程.如图2-5所示,给出了悬挂于A、B二面间的一档导线,假定为悬挂面等下的孤坐档,设以导线的最矮面O面为本面修坐直角坐标系.图2-5导线悬链线及坐标系共时假定导线牢固正在导线地圆的仄里,可随导线所有晃动,隐然那是一个仄里力系.根据那个坐标举止导线的受力分解,可修坐导线的悬链线圆程.咱们先从局部受力分解启初,再找出其普遍顺序.最先正在导线上任与一面D(x,y),而后分解OD段导线的受力闭系,由图2-5所示,此OD段导线受三个力而脆持仄稳,其中D面启受推力为T x=σx S,它与导线直线相切,与x轴夹角为α; O面启受推力为T0=σ0S,T0为导线O面的切线目标,恰与x轴仄止,故又称火仄弛力;别的另有OD 段导线自己的荷载为G=gSL x,其中L x为OD段导线的弧少.将OD段导线的受力闭系绘为一个三角形表示,如图2-6所示,图2-6导线受力情况由静力教仄稳条件可知,正在仄里坐标系中,其火仄分力,笔直分力的代数战分别等于整.或者沿x轴或者y轴上分力代数战分别等于整.笔直目标分力G=T x sinα=gSL x;火仄目标分为T0=T x cosα=σ0S.其中σ0、T0为导线最矮面的应力战弛力,σx、T x为导线任一面的应力战弛力,S、g为导线截里战比载.将上述二式相比,则可供得导线任性一面D的斜率为:(2-10)由微分教知识可知,直线上任一面的导数即为切线的斜率.式(2-10)是悬链直线的微分圆程.咱们要用坐标闭系表示出导线受力的普遍顺序,还需要将没有定量L x消去,果此,将式对付x微分得:(微分教中弧少微分公式为dS2=(dx)2+(dy)2)将上式移项整治后,二端举止积分那是个隐函数,果此,再举止分散变量积分,查积分公式有:(2-11)再举止分散变量积分,有于是,导线任一面D的纵坐标为:(2-12)式(2-12)是悬链圆程的一般形式,其中C1战C2为积分常数,其值可根据与坐标本面的位子及初初条件而定.如果将坐标本面于导线最矮面处,则有下述初初条件:x=0, dy/dx=tgα=0代进式(2-11)则C1=0,将x=0,y=0,C1= 0 代进式(2-12),,如许,供得坐标本面最矮面O处的悬链圆程为:(2-13)式中σ0—火仄应力(即导线最矮面应力),MPa;2.当坐标本面选正在其余面(比圆选正在悬挂面处)时,悬链线圆程的常数项将有所分歧,不妨得到分歧的公式.若式(2-13)中x代表档距的时间,则y即为导线的弧垂,果此悬链线圆程形貌了导线弧垂与应力、比载及档距之间的基础闭系,此式称为透彻式.本量上导线的悬链线圆程还不妨从另一种办法举止推导,底下介绍如下:由式,对付其供导得:变更为,为找本函数举止积分,由积分式二边积分,则有:形成指数形式为那是个隐函数,为解出,对付应有式:将二式相减则有:果为单直正弦函数为:单直余弦函数为:又果为:末尾积分有:定积分常数,果正在坐标本面则,其截止是一般的,即正在线路安排中,为了估计上的便当,普遍没有使用透彻式圆程,而是将其展启为泰勒级数形式.将悬链线圆程式(2-13)展启成无贫级数(正在x=0面),可得:(2-14)2.直线弧少(或者弧少圆程)导线最矮面O至任一面的直线少度喊干弧少,用Lx表示.将式(2-11)代进式(2-10)中,且积分常数C1=0,得导线的弧少圆程为(2-15)根据式(2-15)不妨估计一个档距内导线的直线少度(也喊一档线少)将弧少圆程式(2-15)展启成无贫级数可得:(2-16)一品量匀称分散的绳二端悬挂时绳子所表示的直线为悬链线.闭于悬链线剖析圆程的供解,尔很早便知讲其圆程为单直余弦函数.然而当时数教火仄尚已谦脚央供.厥后教会闭于单直函数的相闭真量后,又由于脆疑绳中弛力到处相等而推出悖论,本钻研便此停顿.直到7月初,尔又念起了该直线的圆程供解问题.需要证明的一面是,绳中弛力到处相等央供绳子无品量、绷紧,对付于悬链隐然没有适用.但是受力目标沿着绳是透彻的,所以必须分散力的目标去供解.假设一个无限少的品量匀称分散的绳子正在沉力效率下自然下垂.设绳底端受到推力为T0,线稀度为ρ,沉力加速度g.如图所示修坐直角坐标系,设绳对付应的函数为y=f(x)对付于横坐标从0至x那一段的绳,设品量为m,少度L,受沉力为G,受顶端推力大小为T,该力倾斜角为θ该段绳受三力仄稳:T、G、T0,绘出受力示企图,有G/T0=tanθ由导数的几许意思,tanθ=dy/dx,而G=mg=ρgL,故ρgL/T0=dy/dx,ρgL=T0*dy/dx对付上式与微分,得ρg*dL=T0*d2y/dx,而dL=(dx2+dy2)1/2=[1+(dy/dx)2]1/2*dx,代进得ρg[1+(dy/dx)2]1/2=T0*d2y/dx2=T0*d(dy/dx)/dx,令dy/dx=P,则ρg(1+P2)1/2=T0*dP/dx,ρg/T0*dx=dP/(1+P2)1/2对付二侧与积分得∫ρg/T0*dx=∫dP/(1+P2)1/2ρgx/T0=sinh-1P+C1,P=sinh(ρgx/T0-C1),dy/dx=sinh(ρgx/T0-C1)当x=0时,dy/dx=0,代进得sinh(-C1)=0,C1=0,故dy=sinh(ρgx/T0)*dx再次积分,得y=T0/ρg*cosh(ρgx/T0)+C2当x=0时,y=0,故0=T0/ρg*cosh0+C2,C2=-T0/ρg设k=T0/ρg,则y=kcosh(x/k)-k,若只思量其形状可忽略常数项,故悬链线圆程为y=kcosh(x/k)-k,其中k=T0/ρg闭于单直函数的一些证明:单直正弦函数sinhx=(e x-e-x)/2,单直余弦函数coshx=(e x+e-x)/2由其定义可得d(sinhx)/dx=coshx,d(coshx)/dx=sinhx,cosh2x-sinh2x=1其反函数分别为反单直正弦函数sinh-1x=ln[x+(x2+1)1/2],反单直余弦函数cosh-1x=ln[x+(x2-1)1/2]波及的一步积分:正在∫dP/(1+P2)1/2中,令P=sinht∫dP/(1+P2)1/2=∫d(sinht)/(1+sinh2t)1/2=∫cosht*dt/cosht=∫dt=t+C=si nh-1P+C。
1悬链线方程的推导

1 悬链线方程的推导 锚链一端受到水平预张力()0T KN ,并在其均匀分布的自重力作用下产生下垂。
设锚链水中 单位重力为()/W KN m ,建立如图1所示的直角坐标系,并设锚链曲线对应的函数为()y f x =。
对于横坐标上0至x 这段锚链,长度为L ,则G wL =,顶端拉力为T ,该力倾角为θ,水平张力0T ,根据力学原理可知,T ,G 和0T 三力平衡。
可知0tan /G T θ=(图2). 图1图2假定该水平张力在锚链上处处相等,对于任意一段锚链L ,该平衡均成立,0tan wL T θ=,而tan dy dxθ=,对该式取微分,则有()()00tan x w d d L T θ===(1) 弧长微分ds=1)分离变量后并积分: 0tan d w dx T θ=⎰(2) 对式(2)积分后得到:10tan w sh x c T θ⎛⎫=+ ⎪⎝⎭(3)对式(3)再次分离变量后,得10w dy sh x c dx T ⎛⎫=+ ⎪⎝⎭(4)并积分,10w y sh x c dx T ⎛⎫=+ ⎪⎝⎭⎰(5)查积分公式可得:0120T w y ch x c c w T ⎛⎫=++ ⎪⎝⎭(6) 式(6)即为锚链悬链线的一般方程。
假设锚链末端拖地,并设拖地点为原点,则对于拖地点有,0,0,tan 0x y θ===,代入式(3)和(6),联立方程后,可解得:10c =,2T c w=,代入式(6)得: 001T w y ch x w T ⎛⎫=- ⎪⎝⎭(7) 式(5)即为拖地点为原点的悬链线一般方程。
而对于悬挂点为原点的悬链线方程,仅系数有所变化,如下式表示,推导过程不再叙述。
该方程对于有悬锤的悬链线更适用。
0,0,tan wL x y Tθ===,代入式(3),(6)可解得: 002cosh sinh wL T a T c w⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎣⎦=(8) 式(8)即是以悬挂点为原点的悬链线一般方程。
悬链线方程的推导过程

悬链线方程的推导过程嘿,朋友们!今天咱就来聊聊悬链线方程的推导过程,这可有意思啦!咱先来说说啥是悬链线。
你看那悬挂起来的链条,它自然下垂形成的那个曲线,就是悬链线啦。
就好像咱平时看到的晾衣绳,或者那种古老的吊桥的铁链,它们垂下来的样子。
那为啥要研究它的方程推导呢?这可重要啦!它在好多地方都有用武之地呢,比如建筑设计呀,桥梁工程呀。
要是咱能搞清楚它,那不是能让好多东西建得更漂亮更稳固嘛!那怎么推导呢?咱先从最基本的开始。
想象一下,把这个悬链分成一小段一小段的。
每一小段都受到重力的作用,对吧?然后呢,再考虑这些小段之间的相互关系。
这就好像拼图一样,一块一块地拼起来,慢慢地就能看出整个图案啦。
咱再深入一点。
这些小段之间的力呀,得平衡才行。
这就好比拔河比赛,两边的力量得差不多,不然不就被拉跑啦。
通过研究这些力的平衡,就能找到一些规律。
然后呢,咱就可以用一些数学知识啦。
什么微积分呀,函数呀,都可以派上用场。
就好像是给这个悬链线穿上了一件数学的外衣,让它变得更加清晰明了。
你说这是不是很神奇?从一个看起来普普通通的链条,通过一点点的分析和推导,就能得出一个那么复杂又那么有用的方程。
这就好比是从一粒小小的种子,最后长成了一棵参天大树。
而且啊,这个推导过程可不是一帆风顺的哟!有时候会遇到难题,就好像爬山的时候遇到了陡峭的山坡。
但咱可不能退缩呀,得鼓起勇气往上爬。
当我们终于推导出来的时候,那种成就感呀,简直无与伦比!就好像是解开了一道超级难的谜题,心里那叫一个痛快!所以说呀,悬链线方程的推导过程虽然有点复杂,但真的很值得我们去研究。
它让我们看到了数学和现实世界的紧密联系,也让我们感受到了探索的乐趣和成就感。
大家不妨也去试试,说不定你也能发现其中的奥秘呢!。
悬链线方程的推导

悬链线方程的推导 一根无比柔软的绳子,两固定,自然静止状态下,它的形状是悬链线。
其实曲线是以绳子命名的。
如何根据绳子的受力来推导出悬链线方程呢?用高等数学所学的知识就够了。
第一步:背景知识 ㈠我们熟悉如何将)2sin(πα⋅+n 转化成余弦的形式,口诀是奇变偶不变,符号看象限。
现在扩展一下,研究正切、余切,正割、余割的转化口诀。
tanx cotx 转换:奇变号变偶不变。
也就是说,n 为奇数时,要转化成相反形式,且要补一个负号,n 为偶数时就不用变了。
secx cscx 转换:奇变偶不变,符号看象限。
我正弦、余弦非常相似。
㈡不定积分C x x C x x x x d x dx xdx C x x C x x x d x x d x x x dx x dx xdx ++=++-+=++==+-=+=====⎰⎰⎰⎰⎰⎰⎰⎰tan sec ln )2cot()2csc(ln )2sin()2(cos sec cot csc ln 2tan ln 2tan 2tan 2tan 22sec 2cos 2sin 2sin csc 2ππππ求⎰+22ax dx,令t a x tan =,22ππ<<-t aC C C a x x C ax a a x C t t tdt a t a tdt a ln )ln(ln tan sec ln sec tan sec 1122222222-=+++=+++=++==+=⎰⎰㈢双曲余弦 chx e e y x x =+=-2 双曲正弦 shx e e y xx =-=-2反双曲余弦 x>0时,archy y y x =-+=)1ln(2; 反双曲正弦 arshy y y x =++=)1ln(2; 求导:shxchx chx shx ='=')()( 第二步:微分方程平衡方程:,0cos ,0sin =-⋅=-⋅H T gs T θρθ 解得:gH a dx y a y a s H gsx ρρθ='+='===⎰,11tan 02 边界条件:x=0 y=a ; x=0 y'=0。
悬链线的实际解法 -回复

悬链线的实际解法-回复悬链线,也被称为悬臂悬链线,是指在一个绳子或链条的一端固定,另一端悬挂物体的情况下,求解该绳子或链条的形状和张力分布。
悬链线的实际解法,以悬链线的特性、方程的建立和解方程的方法为主题。
本文将一步一步回答有关悬链线的实际解法,并对解法进行详细的解释。
第一步:了解悬链线的特性悬链线的特点是其形状和张力分布在重力作用下达到平衡状态。
这意味着在整个线的长度上,每一点的受力都满足力的平衡方程。
在任何一段绳子或链条上,张力的大小和方向都是连续变化的。
第二步:建立悬链线的方程悬链线的形状可以通过建立方程来描述。
首先,我们假设悬链线的形状为一个函数y(x),其中x表示线的长度,y表示线的高度。
我们可以使用一些基本的物理原理,如受力平衡和力的投影等,来推导出悬链线的方程。
考虑悬链线上一小段dx的任意一点P,其坐标为(x,y)。
根据受力平衡,我们可以得到以下方程:1. 排除重力的作用下,绳子在x方向上的受力为零,即-T * sinα+ T * sin α+ T * dy/dx * cosα= 0。
2. 在y方向上,绳子的受力等于该点的重力,即-T * cosα+ T * cosα+ T * dy/dx * sinα= -dmg。
α表示绳子在该点的倾角,m表示单位长度的绳子或链条质量,g表示重力加速度。
根据三角函数的定义,我们有sinα= dy/ds,cosα= dx/ds,其中ds 表示线元的长度。
结合上面的方程,我们可以得到以下方程:-T * dy/ds * dx/ds + T * dy/ds * dx/ds + T * dy/ds * dy/dx = -dmg。
第三步:解方程现在我们可以解上述的方程,以得到悬链线的形状和张力分布。
为简化计算,我们可以将方程重新组织如下:-T * dx = -dy/ds * T * dx * sinα- dy/ds * T * dx * sinα- dy/dx * T * dy/ds * dx * sinα+ mg * ds。
悬链线公式范文

悬链线公式范文悬链线曲线可以通过悬链线公式来描述,该公式是一种二次积分方程。
悬链线公式的推导可以追溯到17世纪,最早由数学家伽利略提出。
早期的研究主要关注两个重要参数,悬链线的弧长和张力。
在此基础上,经过长期的发展和改进,悬链线公式逐渐完善起来。
y = a * cosh(x/a)其中,y表示曲线上其中一点的纵坐标,x表示该点距离对称轴的横坐标,a是曲线的挂链长度。
这个公式可以用来计算悬链线上任意一点的位置。
在特定的条件下,可以通过解析法或数值计算的方法,确定悬链线上任意一点的坐标。
首先,我们考虑悬链线上其中一点的切线斜率。
根据物理学知识,悬链线上任意一点处切线的斜率等于该点处曲线的斜率。
而曲线的斜率可以通过曲线的微分方程来表示。
因此,我们可以通过微分方程计算出悬链线上其中一点的切线斜率。
接下来,我们将斜率表示为dy/dx的形式,并对其进行积分得到y关于x的函数表达式。
为了求解这个积分方程,我们使用变量代换来简化计算。
最后,我们对积分方程进行求解,得到了悬链线公式。
悬链线公式的应用非常广泛。
在物理学中,它可以用来描述悬链线的形状和张力分布。
在工程学中,悬链线公式可以应用于吊桥、电线杆、挂钟和索道等结构设计。
悬链线的形状对于这些结构的稳定性和载荷分布具有重要影响。
总之,悬链线公式是一种描述悬链线形状的数学公式。
它的推导过程比较复杂,需要运用高等数学知识。
悬链线公式的应用涵盖了物理学和工程学等领域,对于研究结构的稳定性和计算载荷分布非常重要。
悬链线方程的推导

1 悬链线方程的推导 锚链一端受到水平预张力()0T KN ,并在其均匀分布的自重力作用下产生下垂。
设锚链水中 单位重力为()/W KN m ,建立如图1所示的直角坐标系,并设锚链曲线对应的函数为()y f x =。
对于横坐标上0至x 这段锚链,长度为L ,则G wL =,顶端拉力为T ,该力倾角为θ,水平张力0T ,根据力学原理可知,T ,G 和0T 三力平衡。
可知0tan /G T θ=(图2). 图1图2假定该水平张力在锚链上处处相等,对于任意一段锚链L ,该平衡均成立,0tan wL T θ=,而tan dy dxθ=,对该式取微分,则有()()00tan x w d d L T θ===(1) 弧长微分ds=1)分离变量后并积分: 0tan d w dx T =⎰(2) 对式(2)积分后得到:10tan w sh x c T θ⎛⎫=+ ⎪⎝⎭(3)对式(3)再次分离变量后,得10w dy sh x c dx T ⎛⎫=+ ⎪⎝⎭(4)并积分,10w y sh x c dx T ⎛⎫=+ ⎪⎝⎭⎰(5)查积分公式可得:0120T w y ch x c c w T ⎛⎫=++ ⎪⎝⎭(6) 式(6)即为锚链悬链线的一般方程。
假设锚链末端拖地,并设拖地点为原点,则对于拖地点有,0,0,tan 0x y θ===,代入式(3)和(6),联立方程后,可解得:10c =,2T c w=,代入式(6)得: 001T w y ch x w T ⎛⎫=- ⎪⎝⎭(7) 式(5)即为拖地点为原点的悬链线一般方程。
而对于悬挂点为原点的悬链线方程,仅系数有所变化,如下式表示,推导过程不再叙述。
该方程对于有悬锤的悬链线更适用。
0,0,tan wL x y Tθ===,代入式(3),(6)可解得: 002cosh sinh wL T a T c w⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎣⎦=(8) 式(8)即是以悬挂点为原点的悬链线一般方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 悬链线方程的推导
锚链一端受到水平预张力()0T KN ,并在其均匀分布的自重力作用下产生下垂。
设锚链水中 单位重力为()/W KN m ,建立如图1所示的直角坐标系,并设锚链曲线对应的函数为()y f x =。
对于横坐标上0至x 这段锚链,长度为L ,则G wL =,顶端拉力为T ,该力倾角为θ,水平张力0T ,根据力学原理可知,T ,G 和0T 三力平衡。
可知0tan /G T θ=(图2). 图1图2
假定该水平张力在锚链上处处相等,对于任意一段锚链L ,该平衡均成立,0
tan wL T θ=,而tan dy
dx θ=,对该式取微分,则
有()()
00tan x w d d L T θ===(1) 弧长微分ds
=1
)分离变量后并积分: 0
tan d w dx T θ=⎰(2) 对式(2)积分后得到:
()110
tan w sh x c T θ-=+ 10tan w sh x c T θ⎛⎫=+ ⎪⎝⎭
(3)
10tan dy w sh x c dx T θ⎛⎫==+ ⎪⎝⎭
对式(3)再次分离变量后,得
10w dy sh x c dx T ⎛⎫=+ ⎪⎝⎭
(4)
并积分,
10w y sh x c dx T ⎛⎫=+ ⎪
⎝⎭
⎰(5)
查积分公式可得:
0120T w y ch x c c w T ⎛⎫=++ ⎪⎝⎭
(6) 式(6)即为锚链悬链线的一般方程。
假设锚链末端拖地,并设拖地点为原点,则
对于拖地点有,0,0,tan 0x y θ===,代入式(3)和(6),联立方程后,可解得:10c =,2T c w
=,代入式(6)得: 001T w y ch x w T ⎛⎫=- ⎪⎝⎭
(7) 式(5)即为拖地点为原点的悬链线一般方程。
而对于悬挂点为原点的悬链线方程,仅系数有所变化,如下式表示,推导过程不再叙述。
该方程对于有悬锤的悬链线更适用。
0,0,tan wL x y T
θ===
,代入式(3),(6)可解得: 001sinh wL T a T c w
⎛⎫ ⎪⎝⎭= 002cosh sinh wL T a T c w
⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎣⎦=(8) 0000000cosh sinh sinh wL wL T a T a T T T w y ch x w T w w ⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫⎪⎪⎢⎥ ⎪⎢⎥ ⎪⎪⎪⎝⎭⎝⎭⎣⎦⎢⎥=--⎨⎬⎢⎥⎪⎪⎢⎥⎪⎪⎢⎥⎣
⎦⎩⎭ 式(8)即是以悬挂点为原点的悬链线一般方程。
L 为悬链线长度,在y 已知的情况下,根据式(7)可求出x 值,并对曲线积分,即可求出悬链线长度L 。
2 带悬锤的悬链线方程
有悬锤的悬链线,受力模式和求解过程均与一般悬链线相似。
区别的是其初值不同,因此只是1c 和2c 不同而已。
从图3可以看出,以悬锤点为界,上段悬链线中的竖向力多了悬锤重C G 和2L ,水平力均相同,悬锤以下段,悬链线与一般悬链线相同。
图
3
带悬锤的悬链线受力图
悬挂点处初始值:0,0x y ==,且
()120
tan C w L L G T θ++=(9) 式中;C G 为悬锤水下重力,实际重力应作换算。
()()1212000000cosh sinh sinh C C w L L G w L L G T a T a T T T w y ch x w T w w ++⎡⎤⎧⎫++⎡⎤⎢⎥⎪⎪⎢⎥⎪⎪⎣⎦⎢⎥=--⎨⎬⎢⎥⎪⎪⎢⎥⎪⎪⎣⎦⎩⎭
(10) 以悬挂点为原点建立的悬链线方程,同样适用于锚链不拖地的情况,但悬链线方程式应通过试算来确定。
式(10)即为锚链悬挂点至悬锤处的悬链线方程:
悬挂点坐标为,x a y b ==则悬挂点以下悬链线方程为:
11000000cosh sinh sinh wL wL T a T a T T T w y ch x a b w T w w ⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫⎪⎪⎢⎥ ⎪⎢⎥ ⎪⎪⎪⎝⎭⎝⎭⎣⎦⎢⎥=---+⎨⎬⎢⎥⎪⎪⎢⎥⎪⎪⎢⎥⎣
⎦⎩⎭(11) 根据式(10)和(11),对于任意给定的x 坐标,可求出y 值,即可知任意位置的水深值。