重力测量简介分解

合集下载

卫星重力测量技术的原理和数据解读方法

卫星重力测量技术的原理和数据解读方法

卫星重力测量技术的原理和数据解读方法随着现代科学技术的不断发展,卫星重力测量技术逐渐成为地球科学领域的重要研究方法之一。

本文将重点讨论卫星重力测量技术的原理和数据解读方法。

一、卫星重力测量技术的原理卫星重力测量技术是利用卫星携带的高精度重力仪器测量地球表面重力场的变化,从而推断地球内部的密度分布和地壳运动等信息。

1.1 重力测量原理重力,是指地球或其他天体表面对物体吸引的力。

在地球表面上,重力的大小和方向不是一致的,而是会因地球内部的密度分布不均匀而变化。

通过卫星重力测量技术,我们可以获取地表某一点的重力值,并通过对比多个点上的重力值差异,推算出地球内部的密度变化。

1.2 卫星重力测量仪器为了实现卫星重力测量,科学家们研发了一系列高精度的重力测量仪器。

目前常用的卫星重力测量仪器主要有超导量子干涉仪(SQUID),绝对重力仪以及光学干涉测量仪(GIM)。

这些仪器可以测量地球表面的重力值,并将数据传输至地面控制中心进行分析和解读。

二、卫星重力测量数据解读方法卫星重力测量数据是复杂且海量的信息集合,需要进行合理的解读才能获得有价值的地质和地球物理学指标。

下面将介绍几种常见的卫星重力测量数据解读方法。

2.1 重力异常解读重力异常是指相对于参考表面(通常是椭球面)的重力场的偏差。

通过对大量重力异常的分析,可以揭示地球内部的密度梯度。

高重力异常通常对应着密度较大的区域,反之亦然。

这些异常主要与地壳构造、岩石性质和地球动力学等因素相关。

2.2 重力梯度解读在卫星重力测量中,不仅可以获取重力值,同时还可以计算重力的梯度,即重力在空间中的变化率。

重力梯度可以提供更加详细的地下密度变化信息,有助于研究构造和地壳运动等问题。

通过对重力梯度的解读,科学家们可以推测地壳运动引起的地震活动、地热流动以及岩浆活动等。

2.3 反演方法卫星重力测量数据的解读过程中,还常常需要借助反演方法。

反演方法是通过调整模型参数,使得模型产生的重力数据与实测数据拟合得最好。

重力的测量方法

重力的测量方法

重力的测量方法
1.线摆测量法:线摆是最早用于测量重力的仪器之一、它基于物体的振动周期与重力加速度之间的关系。

通过测量物体振动的周期或频率,可以计算出重力加速度的数值。

2.落体自由下落测量法:这种方法使用一个自由下落的物体来测量重力。

物体在重力作用下自由下落的时间与重力加速度成正比。

通过测量物体下落的时间,可以计算出重力加速度的数值。

3. 质量测量法:质量也是重力的一个度量。

利用平衡仪器,可以测量物体与标准质量之间的重力差异。

质量与重力之间的关系式为F=mg,其中F是物体所受的重力,m是物体的质量,g是重力加速度。

通过测量不同质量物体所受的重力,可以计算出重力加速度的数值。

4.万有引力测量法:利用万有引力来测量重力。

牛顿的万有引力定律指出,两个物体之间的引力与它们的质量和距离的平方成正比。

通过测量两个物体之间的引力,可以推算出重力的数值。

5.重力测量仪器测量法:现代科学家使用重力仪器来测量重力。

最常见的是弹簧测力计和平衡仪。

弹簧测力计利用弹簧的伸缩程度来测量物体所受的重力。

平衡仪则利用一个悬臂平衡物体所受的重力。

这些仪器通过测量物体所受的力来计算重力加速度的数值。

尽管有多种方法可以测量重力,但目前最准确的测量方法是使用重力计。

重力计是一种精密的仪器,可以测量地球上不同地点的重力变化。

通过在地球上的不同地点使用重力计进行测量,科学家可以制作出一幅重力场的地图,以了解地球的物理特征。

重力测量介绍

重力测量介绍
6.1 概述
北极
重力的定义
狭义定义:地球所有质量对任
一质点所产生的引力与该点
随地球相对于惯性中心运动
而引起的的离心力之合力。
M
赤道
F G r3 r
C
f 2p ( 2 x, 2 y, 0)
GFf
广地球相对于惯性中心运 动而引起的离心力之合力。 南极
6.1 概述
重力测量的分类
按测量原理分类
动力法:观测物体的运动状态以测定重力,可应用 于绝对重力测量或相对重力测量。
静力法:观测物体受力平衡,量测物体平衡位置受 重力变化而产生的位移来测定两点的重力差,该方 法只能用于相对重力测量。
6.1 概述
重力测量的分类
按观测领域或载体分类
陆地重力测量 海洋重力测量 航空(或机载)重力测量
卫星重力测量:地面跟踪观测卫星轨道摄动、卫 星雷达测高、卫星跟踪卫星测量、卫星重力梯度 测量
6.1 概述
重力测量的分类
按测量方式分类
绝对重力测量:用仪器直接测定地面上某点的绝对重力 值。地球表面上的绝对重力值约在978-983Gal。
相对重力测量:用仪器测定地面上两点之间的重力差值。 地球表面上的最大重力差约为5000mGal。
固定台站重力测量:观测重力随时间的变化。
流动站重力测量:观测重力随空间位置的变化。
f F
g
6.1 概述
重力测量的定义、目的、内容
重力测量定义:测定地球表面(近地面)以及其它天 体表面(或其它天体附近)的重力加速度的大小。
重力测量的目的:通过在天体表面上或附近处所进行 的重力和重力梯度测量,来测定作为位置和时间函数 的地球重力场和其它天体的重力场。
重力测量内容(广义):①位置信息,②地球内部物 质分布信息,③随时间变化的信息。

重力学-重力测量

重力学-重力测量

总基点
测点 △h
大地水准面 或基准面
△h
总基点
测点
σ
△h
大地水准面 或基准面
校正办法:中间层可当作一个厚度为△h,密度为 σ的无限长水平均匀物质面,其校正公式为:
g g .u . 0 .4 1 9 {} g /c m 3 { h } m
测点高于大地水准面或基准面时,△h取正,反之 取负。
自由空间(高度)校正 校正原因:经地形、中间层校正后,测点与大地
水准面或基准面间还存在一个高度差△h,要消除 这一高度差对实测的影响,就要进行高度校正。
△h
校正方法:
gh g.u.3.086hm
测点高于大地水准面或基准面时,△h取正,反之 取负。
布格校正 高度校正和中间层校正都与测点高程有关,将这
读数换算较易于实现线性化等。
零点漂移
弹性重力仪中的弹性元件,在一个力(如重力)的 长期—作用下将会产生弹性疲劳等现象,致使弹 性元件随时间推移而产生极其微小的永久形变, 它严重地影响了重力仪的测量精度,带来了几乎 不可克服的零点漂移。重力仪读数的这种随时间 而改变的现象称为零点漂移。
为消除零点漂移影响,必须获得重力仪零漂的基 本规律和在工作时间段内零漂值的大小,以便引 入相应的校正。
读数范围内格值变化 <1/1000
亮线灵敏度
16~20格(约16~20g.u.)
恒温温阶
15°C, 30°C,45°C
恒温精度
±0.2°C
零点漂移
45°C 条件下1 g.u./h
电源
±2.5V电池组,功耗<1W
净重
6 kg
美国LR型金属弹簧重力仪
技术指标

重力测量的使用教程

重力测量的使用教程

重力测量的使用教程重力测量是一项用于测量地球表面重力场强度的技术。

它在地质学、地球物理学、勘探地质学等领域具有广泛应用。

本文将介绍重力测量的基本原理、仪器设备和数据处理方法,以及几个重要的实际应用案例。

一、基本原理重力测量基于牛顿万有引力定律,即两个物体之间的引力与它们的质量和距离成反比。

在地球表面上,由于地球的形状不规则以及地下地质构造的变化,重力场强度会有所差异。

通过测量这种差异,可以获取地球表面的重力场数据,进而研究地球内部的结构和物质分布。

二、仪器设备重力测量的仪器设备主要包括重力计和全球定位系统(GPS)。

1.重力计是测量重力场强度的主要工具。

重力计通常采用弹簧平衡或气浮平衡的原理。

它们的核心部分是一个质量块(或浮子),当受到重力作用时,质量块会发生位移,通过测量位移量可以计算出重力场强度。

2.GPS是用于确定测量点位置的工具。

重力测量需要在不同的地点进行,通过GPS可以准确获取每个测量点的经纬度和海拔高度,从而确保数据的准确性和可靠性。

三、数据处理重力测量所得的原始数据需要经过一系列的处理和分析才能得到有意义的结果。

1.场地观测:在进行重力测量之前,需要选择合适的观测点,以保证数据的可靠性。

观测点的选择需要考虑地貌变化、地下构造和人类活动等因素的影响。

2.数据记录:重力计通过电子记录仪或数据采集终端将观测到的重力场数据记录下来。

记录过程中需要注意排除外界干扰,如地震、风力等。

3.数据处理:将原始数据进行校正和平滑处理,消除仪器仪表误差和噪声。

常用的方法包括差值处理、滤波和趋势分析等。

4.数据解释:根据处理后的数据,可以制作重力场强度图和等值线图,进一步分析和解释地表和地下的重力异常特征。

常用的分析方法包括谱分析、曲线拟合和异常分区等。

四、实际应用1.矿产资源勘探:重力测量可以帮助寻找矿产资源的分布和储量。

不同类型的矿床对应着不同的重力异常特征,通过重力测量可以判断矿床的存在和规模。

2.地壳运动研究:地壳的隆升和下沉常常伴随着重力场的变化。

重力测量原理

重力测量原理

重力测量原理引言:重力是指地球或其他天体对物体的吸引力。

重力测量原理是一种用于测量地球重力场的方法。

本文将介绍重力测量原理的基本概念、测量方法和应用领域。

一、重力测量原理的基本概念1. 重力场:重力场是指地球或其他天体周围存在的重力力场。

重力场的强度会随着距离地心的远近而变化。

2. 重力加速度:重力加速度是指地球表面上物体受到的重力作用力所产生的加速度。

在地球表面,重力加速度约等于9.8米/秒^2。

3. 重力异常:地球的重力场并不是完全均匀的,存在一些微小的重力异常。

重力异常可以用来研究地下构造和地下资源分布等。

二、重力测量的方法1. 重力仪器:重力测量的主要仪器是重力仪,主要有绝对重力仪和相对重力仪两种。

绝对重力仪可以测量重力的绝对值,而相对重力仪则可以测量不同地点的重力差异。

2. 重力测量点的选择:重力测量需要选择一系列测量点,以覆盖目标区域。

测量点的选择应尽可能均匀分布,以提高测量结果的可靠性。

3. 数据处理:重力测量得到的原始数据需要进行一系列的处理,包括数据滤波、重力异常计算和重力异常图绘制等,以得到最终的测量结果。

三、重力测量的应用领域1. 地质勘探:重力测量可以用来研究地下构造和地下资源分布等。

通过测量重力异常,可以推断地下岩层的厚度、密度和形态等信息,对石油、矿产等资源的勘探具有重要意义。

2. 地震监测:重力测量可以用来监测地震活动。

地震引起的地下岩层位移会导致地表重力场发生变化,通过重力测量可以监测到这种变化,从而提前预警地震。

3. 地质灾害预测:重力测量可以用来预测地质灾害,如滑坡、地面沉降等。

地质灾害通常与地下岩层的变化有关,通过测量地表重力场的变化,可以预测地质灾害的发生。

4. 环境监测:重力测量可以用来监测地下水资源的变化。

地下水的开采和补给会导致地下岩层的变化,进而影响地表重力场的分布。

通过重力测量可以监测地下水资源的利用情况和补给状况。

结论:重力测量原理是一种用于测量地球重力场的方法,通过测量重力异常可以研究地下构造和地下资源分布等。

测绘技术中的重力测量技术详解

测绘技术中的重力测量技术详解

测绘技术中的重力测量技术详解重力测量技术是现代测绘技术中的重要组成部分,它在地质勘探、地震监测、地质灾害预警、地下水资源调查等方面发挥着重要的作用。

本文将详细介绍重力测量技术的原理、应用和发展趋势。

一、重力测量技术的原理重力测量技术是通过测量物体之间的重力相互作用来获取地球重力场的信息。

地球上的重力场是由地球质量分布所引起的,重力的大小和方向在不同地方具有差异。

重力测量技术通过测量地球上不同点的重力值,可以推测地球内部的质量分布情况,从而了解地质结构、地壳运动等信息。

重力测量技术的核心是重力仪,它利用重力作用的平衡原理来测量。

一般来说,重力仪由重轮、射线脱卸装置、摆杆、补偿装置、读数装置等组成。

重轮的重力和射线的张力通过补偿装置来平衡,从而测量出地球的重力场。

二、重力测量技术的应用1. 地质勘探重力测量技术在地质勘探中具有广泛应用。

地质构造的分布和发展过程直接影响着地球的重力场。

通过重力测量,可以获取地下岩层的密度和厚度信息,确定地下构造、矿体和油气藏的位置和性质,为勘探和开发提供重要依据。

2. 地震监测重力测量技术在地震监测中起到重要的作用。

地震活动会引起地壳的变形和应力的释放,进而改变地球的重力场。

通过长期的重力观测,可以监测地震活动的变化趋势,为地震预警和防灾减灾提供重要数据支持。

3. 地质灾害预警地质灾害(如滑坡、地面沉降等)与地下岩体的变形和重力场变化密切相关。

重力测量技术可以监测地质灾害区域的重力场变化,及时发现地下变形,预测地质灾害的发生概率,为防范和减轻地质灾害提供重要依据。

4. 地下水资源调查地下水是重要的水资源,而地下水的分布和流动受地下构造的制约。

通过重力测量技术可以推测地下岩层的厚度和密度,进而预测地下水的分布和流动情况,为地下水资源的合理开发和利用提供依据。

三、重力测量技术的发展趋势随着科技的不断进步,重力测量技术也得到了迅速发展。

未来的重力测量技术将会朝着以下方向发展:1. 高精度化重力测量技术不断追求更高的精度,以满足对地下结构和地质过程细节的要求。

自然科学实验中的重力测量指南

自然科学实验中的重力测量指南

自然科学实验中的重力测量指南引言:自然科学实验中的重力测量是一项重要的技术,它在地质学、物理学、天文学等领域中都扮演着重要的角色。

准确测量重力可以帮助科学家了解地球内部结构、地壳运动以及天体运动等重要信息。

本文将介绍一些重力测量的基本原理和方法,希望能为科学家们提供一些指导。

一、重力测量的基本原理重力是地球或其他天体吸引物体的力量,它是由物体质量和距离的平方决定的。

重力的测量是通过测量物体受到的加速度来实现的。

在地球表面,物体受到的加速度称为重力加速度,通常用g表示。

重力加速度在不同地点可能会有微小的差异,这是由于地球形状不规则以及地下物质分布不均匀等因素引起的。

二、重力测量的仪器和方法1. 弹簧测力计弹簧测力计是一种常用的重力测量仪器。

它利用弹簧的弹性变形来测量物体受到的力量。

通过将物体悬挂在弹簧上,当物体受到重力作用时,弹簧会发生弹性变形,根据变形程度可以推算出物体所受的重力大小。

弹簧测力计的精度较高,适用于小范围内的重力测量。

2. 重力仪重力仪是一种专门用于重力测量的仪器。

它利用质量均匀分布的摆锤来测量重力。

重力仪的工作原理是通过调整摆锤的长度和重力中心位置,使得摆锤在水平方向上保持平衡。

通过测量摆锤的位置变化,可以计算出重力的大小。

重力仪的精度较高,适用于大范围内的重力测量。

3. 重力梯度测量重力梯度测量是一种相对较新的重力测量方法。

它利用多个重力测量点之间的重力差异来计算出重力梯度。

重力梯度是指单位距离内重力的变化率。

通过测量重力梯度,可以更加精确地了解地下物质的分布情况。

重力梯度测量在地质勘探、矿产资源评估等领域有着广泛的应用。

三、重力测量的误差和校正在重力测量中,由于各种因素的影响,可能会产生一些误差。

例如,地球自转引起的离心力、地壳运动引起的重力变化等。

为了减小这些误差,科学家们通常会进行校正。

校正的方法包括使用全球重力模型进行数据处理、进行实地观测等。

通过合理的校正方法,可以提高重力测量的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、重力测量原理
重力测量原理
动力法:观测物体的运动状态以测定重力,可应用于绝对重力测量和相 对重力测量。 静力法:它是观测物体受力平衡,量测物体平衡位置受重力变化而产生 的位移来测定两点的重力差,该方法只能用于相对重力测量。 重力测量类型:陆地重力测量、海洋重力测量、航空(或机载)重力测 量、卫星重力测量(地面跟踪观测卫星轨道摄动、卫星雷达测高、卫星 跟踪卫星测量、卫星重力梯度测量)。
卫星重力场测量
2、低卫星与低卫星SST-GRACE GRACE 卫 星 重 力 计 划
• GRACE重力卫星计划由美国国家宇航署(NASA) 和德国空间飞行中心(DLR)联合开发,旨在获取地 球重力场的中长波部分及全球重力场的时变特征, 并可用于探测大气和电离层环境。 • GRACE重力卫星计划的工程管理由美国喷气动 力实验室(JPL)负责。 • 科学数据处理、分发与管理由美国喷气动力实验 室(JPL)、德克萨斯大学空间研究中心(CSR)和德 国地学研究中心(GFZ)共同承担.

CHAMP卫星结构示意图
星载设备: GPS接受机; 加速度计; 恒星敏感器; SLR反射棱镜; 地磁场探测仪;
CHAMP卫星轨道示意图

Global network of the International Laser Ranging Service (ILRS) (yellow) CHAMP downlink station coverage (blue)
绝对重力测量

自由落体测绝对重力(自由落体三位置法)
绝对重力测量
绝对重力测量

现代绝对重力测量仪器大多是利用自由落体的 原理来测量重力的。用激光干涉技术精密地测 量距离,用极为准确的时钟和电子设备测定时 间。因此,最新的现代绝对重力仪,如FG5类 型已经达到微伽级别精度。我国计量科学研究 所研制的NIM型绝对重力仪和NIM-2绝对重力 仪的精度约为15微伽。摆仪法仪器操作复杂, 精确测定摆长比较困难,精度较低,因此很少 使用。
的精度,该网改正了波茨坦系统的系统误差,增测了 绝对重力基准点,加大了基本点的密度。
二、重力基准
中国2000重力基本网 覆盖了中国的全部领土(除台湾外,包含南海海域和香港、 澳门特别行政区)。全网由133个点组成,其中有17个基准 点(绝对重力点)和116个基本点(相对重力联测点)。为 便于今后联测和作为基本点的备用点,对116个基本点每点
CHAMP卫星预期任务
通过卫星轨道扰动分析得到中、长期地球重力 场的静态和动态模型(至l=50,m=50;或者 4000~1000 km的空间解析度),该模型可以应 用于地球物理学、大地测量学和海洋学。 全球电磁场分布图及其在地球物理学和日地物 理学中的应用。 大气层和电离层探测及其在全球气候研究、天 气预报、灾害研究和导航中的应用。
GOCE卫星的结构图
1.固定的太阳能阵列机翼 2.星体太阳能阵列 3.尾鳍稳定装置 4.重力梯度仪 5.离子推进装置 6.S波段天线 7.GPS接受机
GOCE卫星进入预期轨道后
GOCE卫星科学目标



1.测定高精度和高空间分辨率静态重力场一大地水准面和重力异 常,提供最新的具有高空间解析度、高精度的全球重力场模型和 大地水准面。空间解析度(半波长)将达200~80km,最高可达 65km,因而有望恢复250阶地球重力场模型和1cm精度的大地水准 面,空间重力异常可达1~2magls。 2.丰富地球物理学中关于地球内部的知识,使人们对地球内部的 结构、物质组成、密度结构变化有更加深入的了解。 3.精确测定海洋的水准面,结合卫星测高定量确定海洋的洋流以 及海洋上热量的传递。 4.为地貌、地形等学科提供较好的用于数据连接的海拔参考系, 以实现不同高程系统之间的链接,从而更好地确定地形的起伏变 化,为大地测量服务。 5.通过与岩床地形学结合,精确估计两极冰盖的厚度,为研究冰 盖变化提供依据。
CHAMP卫星工作原理图
GPS卫星
3轴加速度计
地球
CHAMP卫星工作原理



用星载GPS接收机,连续不断地、精确地确定CHAMP 卫星的位置,用轨道摄动的数据推算引力异常。这种用 高空卫星来追踪低空卫星以导出地球引力异常的方案 称为SST-hl (satellite-to-satellite tracking in the high-low mode)。 用三轴加速度计来测量作用于卫星的非引力加速度,如 空气阻力、地球反照和太阳辐射等,以获得仅仅由地球 引力异常导致的轨道偏移。 用一组星光仪确定卫星相对于惯性参考系的姿态。
相对重力测量
卫星重力场测量
测量地球重力场的方法: --利用重力仪进行地球表面重力观测 --海洋地区的卫星测高 --卫星轨道追踪分析得到地球重力场模型

卫星重力场测量

卫星测高技术
卫星测高是在卫星上安置雷达测高仪或激光测高仪, 直接测定卫星至其海面星下点的距离,并利用卫星的 在轨位置确定其星下点的大地高。70年代开始出现卫 星雷达测高,至今发展了多代卫星测高系统,用于精 确测定平均海平面的大地高,确定海洋大地水准面和 海洋重力异常,分辨率可优于10公里,精度优于分米 级。联合SLR低阶重力场模型,至今已建立和发展了 多个高阶地球重力场模型。
相对重力测量



相对重力测量:由重力基准点,根据两地的重 力差值,推求其它点重力的方法。 相对重力测量的方法主要有两种:动力法和静 力法 原理:弹性体在重力下发生形变,而弹性体所 受到的弹性力与重力平衡时,则弹性体处于某 一平衡位置,当重力改变时,则弹性体的平衡 位置就有所改变观测弹性体两次平衡位置的变 化就可以测定两点的重力差。
广义定义:宇宙间全部物质对任一质 点所产生的引力和该点相对于地球的
瞬时角速度及瞬时地极的离心力之合
力。
一、重力的相关概念

重力的单位
一、重力的相关概念

重力异常 重力异常是一个标量,分为大地水准面重力异常和地面重力异常。
一、重力的相关概念
一、重力的相关概念
二、重力基准
世界重力基点: 世界公认的一个重力起始点 维也纳系统(1900年-IUGG) 波茨坦系统(1909年-IUGG,1898-1906年) 国际重力基准网:
GRACE卫星结构图
星载设备: GPS接受机; 高精度的微波测 量装置; 测量非保守力的 加速度计; 恒星敏感器
卫星进入轨道后飞行示意图
GRACE卫星工作原理图
GPS 卫星
GPS 地面站
重力异常
微波测距
GRACE卫星工作原理

以SST-hl模式测量轨道的摄动,由此也可换算出引力 场。 改进的三轴加速度计。 用K-频带18~40GHz测距系统连续不断地测定2颗卫 星之间的距离,测量精度优于10µm。两星间的距离变 化反映两星感受到的引力的变化,也就是说, 2颗卫星之 间距离的变化是地球引力场特征的一种直接的度量。 用一颗低空卫星追踪另一颗低空卫星以导出地球引力 异常,这种方案称为SST-ll(Satellite-to-Satellite Tracking in low-low mode)。
重力测量简介
目录

重力的相关概念 重力基准 重力测量原理 卫星重力场测量简介
一、重力的相关概念
万有引力:质量与质量之间的一种相互吸引力,简称引 力。
一、重力的相关概念
离心力:设坐标系统绕z轴以角速 度转动,则Q点(x,y,z)的 离心力:
P 2 x2 y 2 2 sin
5 108 ms 2 布设了一个引点。重力基准点的观测精度优于
重力基本点的相对观测精度优于 10 10-8ms 2,平差后重力基 本网的中误差不大于 10 108 ms2 。
三、重力测量原理


测量方式:绝对重力测量和相对重力测量 (1)绝对重力测量:用仪器直接测定地面上某点的 绝对重力值。地球表面上的绝对重力值约在978~ 983Gal。 (2)相对重力测量:用仪器测定地面上两点之间的 重力差值。地球表面上的最大重力差约5000mGal。 (3)固定台站重力测量:观测重力随时间的变化。 (4)流动站重力测量:观测重力随空间位置的变化

p (x i y j)
2


离心力为惯性力,但不是物质力,
其方向垂直于自转轴向外,并且 随该点到自转轴距离的增大而增
大。
一、重力的相关概念 重力: G F P G m a


狭义定义: 地球所有质量对任一质点所 产生的引力与该点相对于地球的平均角速
度及平均地极的离心力之合力。
卫星重力场测量

卫星轨道追踪技术测定地球重力场
利用地面观测站对卫星进行追踪观测,可以计算出卫 星轨道。通过对卫星轨道的分析(主要以球函数展开 系数的形式表示)得到重力场模型。目前,应用地面 观测站对多颗卫星的跟踪数据探测地球重力场加上激 光测卫数据和卫星测高数据,先后求得了36~70阶的 卫星重力场模型。 应用卫星进行重力测量的最大弱点就是卫星高度处的 重力衰减问题。克服重力衰减最有效的方法就是采用 低轨卫星。
二、重力基准
中国的重力基准网:在全国范围内提供各种目的
重力测量的基准和最高一级控制
中国曾在1957年建成第一个国家57重力基本网,它的平均 联测精度为: 1985年中国又新建了国家85重力基本网,其平均联测
5 2 20 10 ms 精度较之“57网”提高一个数量级,达到
0.2 105 ms 2
卫星重力梯度SGG-GOCE

GOCE
卫 星 研 究 背 景

虽然CHAMP和GRACE卫星具有不同的轨道高度,由此产生不同 的轨道扰动波谱,互相取长补短,可以给出一个非常可靠的高精 度长波重力场模型,但是它们无法得到高精度的短波重力场,因 此也不可能得出一个精确的全球重力场模型和精化的全球大地水 准面。总的来说,CHAMP卫星是一次概念性的试验,而CRACE 卫星则提供了高精度的静态中长波重力场及重力场的时变信息同。 现代大地测量、地球物理、地球动力学和海洋学等相关地学学科 的发展均迫切需要得到更加精细的全波段地球重力场和厘米级大 地水准面支持,为了满足上述需求,欧空局(ESA)研制了最新的 重力卫星GOCE,用于测定较高空间分辨率的重力场。
相关文档
最新文档