等比数列的性质教案
等比数列的性质教案

等比数列的性质时间:2018.3.22 授课班级:高一(8)班 讲课人:王勤【教学目标】1.结合等比数列的性质,引导学生类比猜想等比数列的几个重要性质,并能初步应用等比数列性质解决相关的简单问题;如:若数列{}n a 是等比数列,*,,,,,m n s t m n s t N +=+∈则n m s t a a a a ∙=∙;2、通过实例让学生明确等比数列性质应满足的条件,避免学生应用性质时由于自己的主观意识,导致性质的错用;3、通过实例变式,提高学生举一反三的能力,渗透转化、类比的思想方法.【教学重点】理解掌握等比数列的几个重要性质,并能根据具体问题选择合适、有效的性质进行解题;【教学难点】等比数列性质满足的条件及如何选择合适的性质解决具体的实际问题;【教学过程】1、复习回顾,创设问题情境,引入新课。
解:{}.,,,,q p n m n a a a a q p n m N q p n m a +=++=+∈+则若,为等差数列,且设数列{}.,1m n m n n m n q a a q a a a -=,则且公比为中任意两项,为等比数列:设性质例1:在等比数列{a n }中,a 3=20 ,q=2 ,求a 6 ,a n想一想:等比数列中有类似性质吗?想一想:你能得到更一般的结论吗?性质2:若等比数列{a n }的首项为a 1 ,公比q ,且 m , n , s , t ∈N +例题分析:(全国卷I )已知{a n }为等比数列,公比q >1,a 2+a 4=10, a 1.a 5=16 求等比数列 {a n }的通项公式.探究二 已知等比数列{a n }首项a 1, 公比q ,取出数列中的所有奇数项,构成新的数列,是否还是等比数列?取出a 1 , a 4 , a 7 , a 11 …… 呢?想一想:你能得到一般性结论吗?性质3:在等比数列中,把序号成等差数列的项按原序列出,构成新的数列,仍是等比数列。
等比数列的性质备课教案

等比数列的性质备课教案一、引言等比数列是数学中常见的一种数列,它具有一些独特的性质和规律。
了解等比数列的性质对于学生深入理解数列的特点以及解题思路具有重要意义。
本教案将介绍等比数列的基本性质,并提供相关的教学活动和练习,帮助学生掌握等比数列的概念和性质。
二、概念讲解1. 等比数列的定义等比数列是指一个数列中,从第二项开始的每一项与前一项的比等于同一个常数。
该常数被称为等比数列的公比,通常用字母q表示。
2. 公式表示一般地,等比数列可以表示为:a,aq,aq^2,aq^3,...其中,a为首项,q为公比。
三、性质讲解1. 性质一:通项公式等比数列的通项公式可以表示为:an = a * q^(n-1)其中,an为第n项,a为首项,q为公比。
2. 性质二:前n项和等比数列的前n项和可以表示为:Sn = a * (q^n - 1) / (q - 1)其中,Sn为前n项和,a为首项,q为公比。
3. 性质三:公比在(0,1)或(-1,0)之间时当等比数列的公比q在(0,1)或(-1,0)之间时,数列的前n项和趋向于一个有限的值,即无穷数列收敛。
4. 性质四:公比大于1或小于-1时当等比数列的公比q大于1或小于-1时,数列的绝对值会无限增大或无限减小,即无穷数列发散。
四、教学活动1. 概念引入通过实际生活中的例子引入等比数列的概念,例如细菌繁殖、利滚利等。
让学生思考这些现象背后是否存在某种规律,并引出等比数列的定义。
2. 探索发现给学生一个等比数列的例子,让他们观察数列的特点,并找出首项、公比、通项公式和前n项和的公式。
帮助学生通过数学归纳法来总结等比数列的性质。
3. 实例练习提供一些练习题,让学生运用等比数列的性质来求解问题。
例如,计算前n项和、找出给定数列的公比等。
通过实际应用题提升学生对等比数列性质的理解和运用能力。
五、课堂总结回顾等比数列的概念和性质,强调公比对数列变化的影响。
总结等比数列的通项公式和前n项和的公式,并鼓励学生多进行实践和练习,以加深对等比数列的理解和运用。
等比数列的性质教学设计

3.1.2等比数列性质【课程分析】等数列是又一特殊数列,它与前面我们刚刚所探讨过的等差数列仅有一字之差,所以我们可用比较法来学习等比数列的相关知识。
在深刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握等比数列的性质。
【学情分析】学生已经学习了等差数列,对于等比数列学生对比等差数列学习较容易接受。
【学习目标】掌握等比数列的性质一.导入新课(一)回顾等比数列的有关概念(1) 定义式:32121(0)n n a a a q q a a a -====≠ (2) 通项公式:11n n a a q -=导入本课题意:与等差数列类似,等比数列也是特殊的数列,它还有一些规律性质,本节课,就让我们一起来探寻一下它到底有一些怎样的性质。
二.推进新课题:就任一等差数列{a n },计算a 7+a 10和a 8+a 9,a 10+a 40和a 20+a 30,你发现了什么一般规律,能把你发现的规律作一般化的推广吗?类比猜想一下,在等比数列中会有怎样的类似结论?引导探:…性质1(板书):在等比数列中,若m+n =p+q ,有a m a n =a p a q探究二. (引导学生通过类比联想发现进而推证出性质2)已知{a n }是等比数列.(1)2537a a a =⋅是否成立?2519a a a =⋅成立吗?为什么?(2)211(1)n n n a a a n -+=⋅>是否成立?你据此能得到什么结论?2()n n k n k a a a n k -+=⋅>是否成立?你又能得到什么结论?)合作探:…性质2(板书):在等比数列中2()n n k n k a a a n k -+=⋅>(本质上就是等比中项) 探究三:一位同学发现:若n S 是等差数列{}n a 的前n 项和,则232,,k k k k k S S S S S --也是等差数列。
在等比数列中是否也有这样的结论?为什么?性质 数列{}n a 是公比为q )0(>q 的等比数列,n S 为{}n a 的前n 项之和,则新构成的数列,......,...,,,)1(232n k kn n n n n n S S S S S S S ----仍为等比数列,且公比为n q 证明 ①当1=q 时,1na S n =,则1)2()1()1(111111)2()1()1(==-----=-----na na na k na k na k kna S S S S n k n k nk kn (常数),所以数列}{)1(n k kn S S --是以n S 为首项,1为公比的等比数列;②当1≠q 时,()qq a S n n --=111 则()()()()n n k n k kn n k n k n k n k kn n k n k nk kn q q q q q q q a q q a q q a q q a S S S S =--=----------=-----------)1()2()1()2(1)1(1)1(11)2()1()1(11111111(常数),所以数列}{)1(n k kn S S --是以n S 为首项,n q 为公比的等比数列;由①②得,数列,......,...,,,)1(232n k kn n n n n n S S S S S S S ----为等比数列,且公比为n q 。
等比数列性质教学教案

等比数列性质教学教案一、教学目标:1. 理解等比数列的概念。
2. 掌握等比数列的性质。
3. 学会运用等比数列的性质解决问题。
二、教学内容:1. 等比数列的概念。
2. 等比数列的性质。
3. 等比数列的通项公式。
4. 等比数列的前n项和公式。
5. 等比数列的应用。
三、教学重点:1. 等比数列的概念及性质。
2. 等比数列的通项公式和前n项和公式。
四、教学难点:1. 等比数列的性质的理解和应用。
2. 等比数列的通项公式和前n项和公式的推导。
五、教学方法:1. 讲授法:讲解等比数列的概念、性质、通项公式和前n项和公式。
2. 案例分析法:分析等比数列的应用实例。
3. 练习法:让学生通过练习题巩固所学知识。
六、教学过程:1. 引入:通过生活中的实例,引导学生思考等比数列的概念。
2. 讲解:讲解等比数列的概念、性质、通项公式和前n项和公式。
3. 案例分析:分析等比数列的应用实例,让学生理解等比数列的实际意义。
4. 练习:让学生通过练习题,巩固所学知识。
5. 总结:对本节课的内容进行总结,强调等比数列的性质和应用。
七、课后作业:1. 等比数列的概念和性质的复习。
2. 等比数列的通项公式和前n项和公式的应用。
八、教学评价:1. 课堂讲解的清晰度和准确性。
2. 学生对等比数列的概念和性质的理解程度。
3. 学生对等比数列的通项公式和前n项和公式的掌握程度。
九、教学反思:在课后,教师应反思本节课的教学效果,是否达到了教学目标,学生是否掌握了等比数列的概念和性质,以及教学过程中是否存在需要改进的地方。
十、教学拓展:1. 等比数列在实际生活中的应用。
2. 等比数列与其他数列的关系。
3. 等比数列的进一步研究。
六、教学策略:1. 采用互动式教学,鼓励学生积极参与讨论,提高学生的思维能力。
2. 通过数学软件或教具展示等比数列的性质,增强学生的直观理解。
3. 设计具有梯度的练习题,让学生在练习中不断深化对等比数列性质的理解。
七、教学准备:1. 准备等比数列的相关教学素材,如PPT、教学案例、练习题等。
关于公开课等比数列教案

关于公开课等比数列教案第一章:等比数列的概念1.1 引入等比数列的概念通过实际例子,让学生理解等比数列的定义和特点。
解释等比数列的通项公式和公比的概念。
1.2 等比数列的性质探讨等比数列的性质,如相邻两项的比值是常数,每一项都是前一项与公比的乘积等。
引导学生通过数学归纳法证明等比数列的性质。
第二章:等比数列的求和公式2.1 引入等比数列的求和公式通过实际例子,让学生理解等比数列的求和公式的推导过程。
解释等比数列求和公式的形式和各个参数的含义。
2.2 等比数列求和公式的应用探讨等比数列求和公式的应用,如求等比数列的前n项和、求等比数列中某一项的值等。
引导学生通过实际例子运用等比数列求和公式解决问题。
第三章:等比数列的通项公式的应用3.1 引入等比数列的通项公式的应用通过实际例子,让学生理解等比数列通项公式的应用,如求等比数列的第n项的值。
解释等比数列通项公式的形式和各个参数的含义。
3.2 等比数列通项公式的进一步应用探讨等比数列通项公式的进一步应用,如判断等比数列的收敛性和发散性。
引导学生通过实际例子运用等比数列通项公式解决问题。
第四章:等比数列的性质和求和公式的综合应用4.1 引入等比数列性质和求和公式的综合应用通过实际例子,让学生理解等比数列的性质和求和公式的综合应用,如求等比数列的前n项和,并判断等比数列的收敛性和发散性。
解释等比数列的性质和求和公式的关系。
4.2 等比数列性质和求和公式的综合应用案例分析探讨等比数列性质和求和公式的综合应用案例,如解决实际问题中的等比数列问题。
引导学生通过实际例子运用等比数列的性质和求和公式解决问题。
第五章:等比数列的应用案例分析5.1 引入等比数列的应用案例分析通过实际例子,让学生理解等比数列的应用案例,如解决金融、经济、物理等领域中的问题。
解释等比数列在实际问题中的应用场景。
5.2 等比数列应用案例分析探讨等比数列在实际问题中的应用案例,如计算复利、求等比数列的极限等。
等比数列性质教学教案

等比数列性质教学教案第一章:等比数列的定义与性质1.1 等比数列的定义引导学生回顾数列的概念,引入等比数列的定义。
通过示例,让学生理解等比数列的特点,即相邻两项的比值相等。
1.2 等比数列的性质探讨等比数列的通项公式,引导学生理解通项公式的推导过程。
引导学生理解等比数列的求和公式,并通过示例进行解释。
第二章:等比数列的求和2.1 等比数列的前n项和公式引导学生推导等比数列的前n项和公式。
通过示例,让学生理解前n项和公式的应用,并能够熟练运用。
2.2 等比数列的求和性质引导学生探讨等比数列的求和性质,例如:等比数列的求和与项数的关系,等比数列的求和与首项和公比的关系等。
第三章:等比数列的图像与性质3.1 等比数列的图像引导学生绘制等比数列的图像,并理解图像的特点。
引导学生通过图像分析等比数列的性质,例如:增长速度,收敛性等。
3.2 等比数列的性质与应用引导学生探讨等比数列的性质,例如:等比数列的单调性,有界性等。
引导学生运用等比数列的性质解决实际问题,例如:人口增长模型,利息计算等。
第四章:等比数列的扩展4.1 等比数列的推广引导学生思考等比数列的推广,例如:等比数列的变体,广义等比数列等。
引导学生理解广义等比数列的性质与应用。
4.2 等比数列与其他数列的关系引导学生探讨等比数列与其他数列的关系,例如:等差数列与等比数列的关系,斐波那契数列与等比数列的关系等。
第五章:等比数列的综合应用5.1 等比数列在数学中的应用引导学生探讨等比数列在数学中的应用,例如:数论中的等比数列,图论中的等比数列等。
引导学生通过解决数学问题,加深对等比数列的理解。
5.2 等比数列在其他学科中的应用引导学生探讨等比数列在其他学科中的应用,例如:物理学中的等比数列,经济学中的等比数列等。
引导学生通过解决实际问题,理解等比数列的实际意义。
第六章:等比数列的练习题解析6.1 基础练习题解析选取一些基础的等比数列练习题,引导学生运用所学的知识进行解答。
等比数列概念教案

等比数列概念优秀教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。
2. 培养学生运用等比数列解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力,提高学生的数学思维品质。
二、教学内容1. 等比数列的定义2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的前n项和公式5. 等比数列的实际应用三、教学重点与难点1. 重点:等比数列的概念、性质、通项公式和前n项和公式的理解和运用。
2. 难点:等比数列实际应用问题的解决。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的概念和性质。
2. 运用案例分析法,让学生通过实际问题体验等比数列的应用价值。
3. 利用小组合作学习法,培养学生合作交流、归纳总结的能力。
五、教学过程1. 导入新课:通过回顾等差数列的概念,引导学生思考等比数列的定义。
2. 自主学习:让学生自主探究等比数列的性质,教师提供必要的引导和帮助。
3. 案例分析:选取实际问题,让学生运用等比数列的知识解决,体会等比数列的应用价值。
4. 小组讨论:让学生分组讨论等比数列的通项公式和前n项和公式的推导过程。
5. 总结提升:引导学生归纳总结等比数列的概念、性质、通项公式和前n项和公式。
6. 巩固练习:布置适量习题,让学生巩固所学知识。
7. 课堂小结:对本节课的内容进行简要回顾,强调重点知识点。
8. 课后作业:布置适量作业,让学生进一步巩固等比数列的知识。
六、教学评价1. 评价目标:检查学生对等比数列概念的理解,以及运用等比数列性质、公式解决实际问题的能力。
2. 评价方法:课堂提问、练习题、小组讨论、课后作业。
3. 评价内容:a. 等比数列的定义及其性质的掌握程度;b. 等比数列通项公式和前n项和公式的运用能力;c. 实际应用题目的解决能力;d. 合作交流、归纳总结的能力。
七、教学反思1. 教师在课后应对本节课的教学效果进行反思,分析学生的学习情况,以便调整教学策略。
等比数列教案

等比数列教案等比数列教案一、引言数学是一门重要的学科,它不仅培养学生的逻辑思维能力,还有助于他们解决实际问题。
数列是数学中的重要概念之一,而等比数列是数列中的一种特殊形式。
本教案将介绍等比数列的定义、性质以及解题方法,旨在帮助学生更好地理解和应用等比数列。
二、等比数列的定义与性质1. 定义等比数列是指一个数列中,从第二项开始,每一项与前一项的比都相等的数列。
这个比值称为公比,通常用字母q表示。
2. 性质(1)等比数列的通项公式:对于等比数列an,其通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。
(2)等比数列的前n项和公式:对于等比数列an,其前n项和Sn = a1 * (1 -q^n) / (1 - q)。
(3)等比数列的性质:等比数列的任意三项可以构成一个等比比例。
三、等比数列的解题方法1. 求某一项的值给定等比数列的首项a1和公比q,如果要求第n项an的值,可以使用通项公式an = a1 * q^(n-1)进行计算。
2. 求前n项的和给定等比数列的首项a1和公比q,如果要求前n项的和Sn,可以使用前n项和公式Sn = a1 * (1 - q^n) / (1 - q)进行计算。
3. 求公比已知等比数列的前两项a1和a2,如果要求公比q,可以通过计算q = a2 / a1得到。
四、等比数列的应用等比数列在实际生活中有着广泛的应用。
以下是两个常见的应用示例:1. 货币贬值问题假设某国货币每年贬值10%,初始价值为1000元。
我们可以使用等比数列来计算每年的货币价值。
首项a1为1000元,公比q为0.9(1-10%),我们可以计算出第n年的货币价值an。
这样,我们就可以预测未来几年货币的贬值情况。
2. 生物繁殖问题某种细菌每小时繁殖一次,初始数量为10个。
我们可以使用等比数列来计算每小时的细菌数量。
首项a1为10个,公比q为2(每小时繁殖一次),我们可以计算出第n小时的细菌数量an。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列的性质(第一课时)
惠来一中 方汉娇
一、【教学目标】
1.结合等比数列的性质,引导学生类比猜想等比数列的几个重要性质,并能初步应用等比数列性质解决相关的简单问题;
如:若数列{}n a 是等比数列,*,,,,,m n p q m n p q N +=+∈则n m p q a a a a •=•;
2、通过实例让学生明确等比数列性质应满足的条件,避免学生应用性质时由于自己的主观意识,导致性质的错用;
3、通过实例变式,提高学生举一反三的能力,渗透转化、类比的思想方法.
二、教学重难点
1、【教学重点】理解掌握等比数列的几个重要性质,并能根据具体问题选择合适、有效的性质进行解题;
2、【教学难点】等比数列性质满足的条件及如何选择合适的性质解决具体的实际问题;
四、【教学过程】
1、回顾旧知,创设问题情境,引入新课。
知识回顾:
3、等比中项:若,,a G b 成等比数列,
则G 成为a b 与的等比中项,且有
2G a b =• 2、 新课讲解
()11111.22.n n n n n n m n n m a a q n q a a a a q a a q +---=≥===定义通项公式
{}(){}(){}(){}1,,?,2?,3,?,n n n n a a k a a 已知是一个无穷等比数列,公比为q.
将数列中的前项去掉剩余各项组成一个新的数列这个新数列是等比数列吗如果是它的首项与公比分别是多少?取出数列中的所有奇数项,组成一个新的数列,这个新数列是等比数列吗如果是
它的首项与公比分别是多少?在数列中每隔10项取出一项,组成一个新的数列,这个新数列是等比数列吗如果是它的首项与公比分别是多少?
{}n a 性质1:对一个等比数列进行等距离抽取,所得项组成一个新的等比数列
问题1:若数列{}n a 是等比数列,*,,,,,m n p q m n p q N +=+∈:n m p q a a a a •=•
是否成立?
证明略
问题2:若数列{}n a 是等比数列,31237145,a a a a a a a a =••=••是否成立? 上述结论成立需要什么条件?
性质2: 若数列{}
n a 是等比数列,*,,,,,m n p q m n p q N +=+∈:n m p q a a a a •=• 特例:当2m n p +=时,2
n m p a a a +=。
注意:①左右两边各项的下标之和相等;②左右两边的项数相同;
③可以推广到多项
练习1:⑴ 在等比数列{}n a 中,若110425,15a a a •==,求7a 的值;
⑵ 在等比数列{}n a 中,若915,a =求315a a •的值;
(3) 在等比数列{}n a 中,若26101,a a a ••=求39a a •的值;
练习2:⑴ 在等比数列{}n a 中,若2435460,225n a a a a a a a >++=,求35a a +的值;
⑵ 在等比数列{}n a 中,3a 和9a 是方程2
71870x x -+=的两个根,求7a 的值;
练习3:
{}26102,8,n a a a ==例
1:在等比数列中,a 求()()()()2n n 5252123221222{a }a a a 2(3),1log a log a log a .21.1..1n n n n A n n B n C n D n --••••=≥≥++•••+=-+-已知等比数列满足>0,n=1,2,且则当n 时,
3、 课堂小结:
⑴ 等比数列的性质:
{}n a 性质1:对一个等比数列进行等距离抽取,所得项组成一个新的等比数列 性质2: 若数列{}
n a 是等比数列,*,,,,,m n p q m n p q N +=+∈:n m p q a a a a •=• 特例:当2m n p +=时,2
n m p a a a +=。
注意:①左右两边各项的下标之和相等;②左右两边的项数相同;
③可以推广到多项
⑵ 解题思路总结
4、课后思考试题:
123123{}7,8,.
n a a a a a ++=••=已知正数等比数列中,若a a 求数列通项公式
5、 布置作业
6、 板书设计(略)。