第七章化学反应动力学
化工-第七章 化学反应动力学基础

反应速率与转化率:
设A组分:n A0 初始量、t反应时间、n At时刻瞬时量 x At时刻瞬时转化率 反应消耗的A的量 n A0 n A xA 反应初始时A的量 n A0 即: n A n A0 (1 x A ) 若反应前后体积变化不大:c A c A0 (1 xA ) 1 dnA 1 nA0 dx A 则: rA V dt V dt nA0 x A
转化为目的产物的反应物的物质的量 选择性()= 反应物被转化掉的物质的量 收率:
收率()= 转化为目的产物的反应物的物质的量 进入反应器的反应物的物质的量
二、复杂反应的速率方程式
1、平行反应:
k2 A B S dcS dcP a1 b1 a b 则:rp k1c A cB rS k2c A2 cB2 dt dt rp k1 a1 a2 b1 b2 平行反应速率之比为: = c A cB rS k2 k1 A B P
第七章 化学反应动力学基础
内容: 2、简单反应的速率方程式 4、本征动力学和宏观动力学
1、化学动力学基本概念 3、简单反应和复杂反应
重点: 2、简单反应和复杂反应
1、简单反应的速率方程式
§7-1 化学动力学基本概念
一、化学计量方程式
复杂的化学计量方程式: 0= i Bi
n
i : 为组分Bi的计量系数。反应物为负、产物为正。
r f (c, T ) r f (T ) (c) f (T ):反应速率的温度效应、 (c):反应速率的浓度效应 f (T )常表示为反应速率常数k : k A exp( E 对于均相反应:aA bB sS
( c) c cB A
07 第七章 均相反应动力学基础

二、复合反应的速率方程式
1. 平行反应
k1 A B P 主反应 k2 A B S 副反应
a1 b1 rP k1cA cB a2 b2 rS k2cA cB
rP k1 a1 a2 b1 b2 cA cB rS k2
ρ :选择率
(1)ρ增大,反应的选择性增大
2. cA,0 ≠ cB,0 cA ≠ cB
rA=kcAcB
cA,0xA = cB,0xB
rA k (cA,0 cA,0 xA )(cB,0 cB,0 xB ) kcA,0 (1 xA )(cB,0 cA,0 xA )
cB,0 令: M rA kcA,0 2 (1 xA )( M xA ) cA,0
ln ln 1 xB cA,0 ( M 1)kt 1 xA 1 xB (cB,0 cA,0 )kt 1 xA
p11,例7-1
三、一级可逆反应
垐 1垎 A噲 垐P k
2
k
A的反应速率为正、逆反应速率的代数和:rA = k1cA-k2cP
rA k1cA k2cP ( k1 k2 )cA,0 ( xA,e xA )
(1)φ(c) 用幂级数的形式表示: (c ) cAcB (2)α,β为反应物A,B的反应级数 (3) α+β= n称为反应总级数。反应级数越高,浓度的变化对反应 速率的影响越显著 (4)基元反应,α,β与计量系数相等 (5)非基元反应,α,β由实验测定,可为整数或分数
四、反应速率的温度效应f(T) (p7)
nA = nA,0(1 - xA,0)
cA = cA,0(1 - xA,0) 1 dnA 1 nA,0dxA 用转化率表示反应速率:rA V dt V dt nA,0 xA 用转化率表示反应进度: νA
第七章 化学动力学 章末习题

第七章 化学动力学章末总结一、内容提要1. 基本概念(1)化学动力学的研究对象研究化学反应的速率和机理以及影响速率的各种因素,如温度、浓度、压力、催化剂、介质和分子结构等。
(2)动力学曲线动力学曲线即反应物或生成物的浓度随时间的变化曲线。
(3)转化速率对应于指明的化学计量方程,反应进度ξ在t 时刻的变化率称为该反应的转化速率,用d dtξ表示,单位为1mol s - 。
(4)化学反应速率 单位体积内的转化率称为反应速率,1d r V dt ξ=。
(5)基元反应与非基元反应① 基元反应:反应物分子一经碰撞直接变成产物。
② 非基元反应:若反应物到产物,必须经过中间步骤称为非基元反应或复杂反应。
(6)反应的速率方程表示反应速率与浓度等参数之间的关系,或表示浓度等参数与时间的关系的方程称为反应的速率方程。
(7)速率系数速率方程中的比例系数称为速率系数或速率常数,用k 表示。
①k 的物理意义:数值上相当于反应物均为单位浓度时的反应速率。
②特点:A. k 数值与反应物的浓度无关。
在催化剂等其他条件确定时,k 的数值仅是温度的函数;B. k 的单位随着反应级数的不同而不同;C. k 的数值直接反映了反应速率的快慢。
(8)质量作用定律基元反应的速率与各反应物浓度的幂乘积成正比,其中各浓度项的方次即为反应方程中各物质的系数,这就是质量作用定律,它只适用于基元反应。
(9)反应级数在反应的速率方程中,所有浓度项方次的代数和称为该反应的级数,用n 表示。
n 可以是正数、负数、整数、分数或零,也有的反应无法说出其反应级数。
(10)反应分子数在基元反应中,反应物分子数之和称为反应分子数,其数值为1,2或3。
2. 具有简单级数反应的特点(1)零级反应定义:反应速率与反应物浓度的零次方成正比,即与反应物的浓度无关。
特点:微分式 0dx k dt= 积分式 0x k t = 线性关系 ~x t半衰期 1022a t k =0k 的单位 3m o l d m - 或 [ -1浓度][时间] (2)一级反应定义:反应速率与反应物浓度的一次方成正比。
物理化学下册习题答案(全部)

解:对一级反应有:
所以要使反应在10 min内转化率达90%,温度应为T2,则:
解:Λ∞=λ∞<H+>+λ∞<HCO3>
=3.4982×10-2+4.45×10-3=0.03943 s•m2•mol-1
Λm=•10-3/C-3.86×10-3×10-3/0.0275=1.4036×10-4s•m2•mol-1
α=Λm/Λ∞=1.4036×10-4/0.03943=3.56×10-3
第七章化学反应动力学
1.以氨的分解反应2NH3==== N2+3H2为例,导出反应进度的增加速率 与 , , 之间的关系,并说明何者用于反应速率时与选择哪种物质为准无关.
解:
∴2H2===== CH3OH
已知 ,求 , 各为多少?
〔答案:2.44,4.88mol·dm-3·h-1〕
4.66
4.66
4.74
4.55
4.52
注:d /dt= <p0-pCH3OCH3> /t,k= < d /dt>×<1/pCH3OCH3>
所得速率常数基本不变,故为一级反应.
9.
10.
11.设有对峙反应A D,A的初始浓度为 =1.89 mol·L-1,t时间测得D的浓度x为:
t/s
180
300
420
<2>在阳极2Cl-→Cl2<g> + 2e
第七章 动力学 公式归纳

第七章动力学1.化学反应速率对定容条件下的化学反应aA + dD →gG + hH化学反应速率2.化学反应速率方程(动力学方程):对基元反应: a A + b B + ··· ···→产物质量作用定律a +b + ··· ------反应级数零级反应r=k ,k的量纲为mol.L-1.s-1一级反应r=kc,k的量纲为s-1;二级反应r=kc2 ,k的量纲为(mol·L -1)-1 ·s-13.经验速率方程复合反应a A + b B + ··· ···→产物经验速率方程k ---- 速率常数;有量纲。
nA、nB。
----- A物质、B物质的分级数。
n = nA + nB + ···----- 反应级数;4.简单级数反应的特征(重要)5. van’t Hoff 温度每升高10℃,反应速率大约增加2~4倍=2~4Arrhenius经验公式(1). 微分形式(2). 不定积分形式(3). 定积分形式(4). 指数形式C --- 积分常数 T :KR = 8.314 J / K·mol E a ---- 活化能 (J / mol) ;A--- 指前因子或频率因子(与k 的单位相同) 6.--- 活化分子的平均能量;--- 反应物分子的平均能量; J / mol --- 1mol 具有平均能量的分子变成活化分子所需要的最低能量; J / mol复合反应及近似处理(作参考,会自己推导)一.对峙反应(可逆反应) 1-1级反应达平衡时A 、B 的平衡浓度:二.平行反应A 物质消耗的总反应速率为: 积分得:三.连串反应 反应四. 链反应。
*E rE a E。
第07章基元反应动力学习题及答案

第07章基元反应动力学习题及答案第07章基元反应动力学习题及答案3第七章 基元化学反应动力学习题及答案1. N 2O 5在25℃时分解反应的半衰期为5.7h, 且与N 2O 5的初始压力无关。
试求此反应在25℃条件下完成90%所需时间。
解:由题意知此反应为一级反应 111216.07.56932.06932.021-===h t kt k y1)11ln(=-h k y t 9.181216.0/)%9011ln(/)11ln(1=-=-=即完成90%所需时间为18.9h 。
2.异丙烯醚气相异构化成丙烯酮的反应是一级反应,其反应速率系(常)数与温度的关系为:k /s -1 =5.4×1011exp(-122 474 J ·mol -1/RT ),150℃下,反应开始时只有异丙烯醚,其压力为101 325 Pa ,问多长时间后,丙烯酮的分压可达54 kPa ?解:k /S-1=5.4×1011exp[-122474/8.314×(150+273)] =4.055×10-4据题意:ktppt=0ln4t410005.454000101325101325ln-⨯=-t =1877S3. 双分子反应2A(g)−→−kB(g) + D(g),在623K 、初始浓度为0.400mol dm -3时,半衰期为105s,请求出(1) 反应速率系数k(2) A(g)反应掉90%所需时间为多少?(3) 若反应的活化能为140 kJ mol -1, 573K 时的最大反应速率为多少? 解:(1) r = k [A]2 , t 0.5= 1/(2 k [A]0) , k = 0.012dm 3mol -1s -1 (2) 1/[A] – 1/[A]0 =2 k t , t = 945 s(3) ln(k/k ’)=(E a /R )(1/T ’-1/T ) , 573K 时k = 0.00223dm 3mol -1s -1,最大反应速率r max = k [A]02=3.6×10-4 moldm -3s -1.4. 450℃时实验测定气相反应3A + B →2C 的速率数据如下;实验 初压 / Pa 初速率-dp B / dt / (Pa/h) P A,0 P B,01. 100 1.00 0.0100 2. 200 1.00 0.0400 3. 400 0.50 0.0800 (1)若反应的速率方程为r = kP A x P B y ,求x 、y 及k 。
化学动力学7

Chemical Kinetics
还有一类十分重要的生物催化剂—酶不适用于这种 分类。酶是复杂的有机分子,通常含有一个蛋白质,形 成一亲液胶体,它不是均相体系也不是复相体系,而是 介于二者之间,因此酶催化既不属于均相催化也不属于 复相催化,由于反应发生的部位不同,各种催化反应也 各有其特点。
工业上所用的催化剂往往不是单一的物质,而是有许多 单质或化合物组成的混合体。因此,常把催化剂分析主体和 载体两部分。主体有主催化剂、共催化剂和助催化剂构成。
例如,可以采用不同的催化剂由乙醇制备不同的产物:
CH 3CHO
Cu 200 ~ 250 C
350 ~ C2 H 4 H 2O 360 C
Al 2 O3 orThO2 140 C
C2 H 5 OH
C2 H 5 2 O H 2O
H 2 SO 4
催化作用能力的大幅度改变,这对复相反应过程尤其明
显。
Principal of Chemical Kinetics
Page 23
§7-3 均相催化的Herzfeld-Laidler机理
Chemical Kinetics
均相催化反应是指催化剂和反应物质处于同一
虽然不同的催化剂的催化作用是多种多样的,
但就其最基本的作用原理来说,他们存在不少的共
同点。
Principal of Chemical Kinetics
Page 7
Chemical Kinetics
(1)催化作用最基本的共同点是在于少量催化剂的存在
可以大幅度地改变反应速率。虽然催化剂在反应终了时
其化学组成不变,但催化剂对于反应并ቤተ መጻሕፍቲ ባይዱ单纯惰性背景 的提供者,而是反应的积极参与者。 (2)由于催化剂参与反应过程,当加入的催化剂浓度不 太大时,催化剂的催化作用常与其加入量有关,近似地 与其加入量成正比。 K表 = k0 + kc c
第七章化学动力学

1. ln CA = -akt + ln CA⋅0
lnCA
斜率 = -ak t
2. k单位:(时间)-1, s-1或min-1或 h-1等
165
3. t1/2与CA⋅0无关 t = t1/2时, CA = t1/2 CA⋅01
t1/2 = ln2/ak = 0.6932/ak
大多数热分解、分子重排、衰变均属此类,是一类简单而又十分重要的反应。 大家知道,14 C除可作标记化合物,用于农业、医药、生物学科研中,以揭示农作物 和人体物质代谢过程和规律外,另一主要应用就是在考古学中推究样品年代。因大 气受到来自外层空间宇宙射线的冲击,会产生中子,这些中子和大气中N作用生成14C (平均生成速率为 2.2×104个原子/m2⋅s), 生存的C4立即与氧结合成14CO2存在与大气 中,含14C 的14CO2被植物吸收,经过光合作用变成植物机体的组成部分。由于植物 被动物和人吃的生物链作用。最终动物和人体必有14C。
单位是mol⋅s-1 ,对均相、复相、流动体系,V 变化与否均适用,且与所选物质无关。 IUPAC物理化学部化学动力学委员会对通常的化学反应,反应速率又定义为单位体 积内反应进度随时间的变化率。
r = dnB/νBV dt 若 V 恒定(密闭容器中的气相反应,体积变化不显著的液相反应)
r = dCB/νBdt
生物体内的14C一方面按放射性衰变规律不断减少,另一方面又同时从大气中不 断得到补充,故在活着的生物体内14C含量一般保持不变。但一量死亡与外界物质交 换即停止,体内14C不再得到补充,只会按衰变规律减少。其t1/2 = 5730 年。
因此,据含碳化石标本里14的减少程度,可推出生物死亡的的年代。
例 1.据说从公元一世纪遗物的死海古书卷中,取出一小块纸片,测得其中14C与12C 的比值是现在活着的植物体内碳同位素比值的 0.795 倍。试估算这批古书的年龄。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章化学反应动力学 LELE was finally revised on the morning of December 16, 2020第七章化学反应动力学一.基本要求1.掌握化学动力学中的一些基本概念,如速率的定义、反应级数、速率系数、基元反应、质量作用定律和反应机理等。
2.掌握具有简单级数反应的共同特点,特别是一级反应和a = b的二级反应的特点。
学会利用实验数据判断反应的级数,能熟练地利用速率方程计算速率系数和半衰期等。
3.了解温度对反应速率的影响,掌握Arrhenius经验式的4种表达形式,学会运用Arrhenius经验式计算反应的活化能。
4.掌握典型的对峙、平行、连续和链反应等复杂反应的特点,学会用合理的近似方法(速控步法、稳态近似和平衡假设),从反应机理推导速率方程。
学会从表观速率系数获得表观活化能与基元反应活化能之间的关系。
5.了解碰撞理论和过渡态理论的基本内容,会利用两个理论来计算一些简单反应的速率系数,掌握活化能与阈能之间的关系。
了解碰撞理论和过渡态理论的优缺点。
6.了解催化反应中的一些基本概念,了解酶催化反应的特点和催化剂之所以能改变反应速率的本质。
7.了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解光敏剂、量子产率和化学发光等光化反应的一些基本概念。
二.把握学习要点的建议化学动力学的基本原理与热力学不同,它没有以定律的形式出现,而是表现为一种经验规律,反应的速率方程要靠实验来测定。
又由于测定的实验条件限制,同一个反应用不同的方法测定,可能会得到不同的速率方程,所以使得反应速率方程有许多不同的形式,使动力学的处理变得比较复杂。
反应级数是用幂函数型的动力学方程的指数和来表示的。
由于动力学方程既有幂函数型,又有非幂函数型,所以对于幂函数型的动力学方程,反应级数可能有整数(包括正数、负数和零)、分数(包括正分数和负分数)或小数之分。
对于非幂函数型的动力学方程,就无法用简单的数字来表现其级数。
对于初学者,要求能掌握具有简单级数的反应,主要是一级反应、a = b的二级反应和零级反应的动力学处理方法及其特点。
动力学的一般处理方法是:对照反应的计量方程,(1)先写出起始(t= 0)和某一时刻(t = t)时,反应物和生成物的浓度;(2)写出速率方程的微分形式;(3)对速率方程进行不定积分,找出反应物(或生成物)的浓度与时间之间的线性关系;(4)对速率方程进行定积分,找出反应物(或生成物)浓度、时间与速率系数之间的定量关系。
这样,就可以从实验测定的已知量求出未知量;(5)找出半衰期与反应物浓度之间的关系;(6)总结该反应的特点。
主要掌握零级反应、一级反应和a = b的二级反应的特点。
确定反应级数的方法通常有4种,即积分法、微分法、半衰期法和改变反应物的比例的方法。
但微分法由于需要多次作图,所以适合于在科学研究中使用。
而改变反应物比例的方法是建筑在前面方法的基础上,仅仅是利用准级数的特点把两个未知级数分别进行确定而已。
所以,通常用得最多的是积分法(也称为尝试法),适合于确定整级数的反应,其次是半衰期法,适合于确定除一级反应以外的其他级数反应。
确定反应级数归根结底是要熟练掌握具有简单级数反应的特点,如速率系数的单位、浓度与时间的线性关系、半衰期的特点等,只要发现有一个特点符合某反应级数,就可以确定其反应级数。
基元反应一定具有简单的反应级数,从基元反应的反应式就可知道其反应级数。
基元反应通常是一级或二级,少数是三级,基元反应不可能是零级、分数级数或负级数。
从基元反应的反应方程式,根据质量作用定律,就可以写出它的速率方程。
值得注意的是具有简单级数的反应不一定是基元反应,这一点不能混淆。
典型的复杂反应是由两个或两个以上的基元反应组成的,所以速率系数不止一个,用一个定积分式无法确定两个速率系数,要从复杂反应的特点,找出两个速率系数之间的关系,才能分别计算两个速率系数的值。
Arrhenius经验式表明了温度对反应速率影响的程度,使用该公式时的温度区间不能太大,因为只有在温度温度区间不太大时,才能像Arrhenius那样把活化能看作为与温度无关的常数。
Arrhenius经验式有若干种表达形式,各有各的用途。
从微分式,很容易看出在速率系数随温度的变化率中,活化能的大小所起的作用,升高相同的温度,活化能高的反应其速率系数增加的比例就多。
从不定积分式,可以看出ln k与1T之间的线性关系,从直线的斜率可以求出反应的活化能,这是科研中常用的求活化能的方法,因为作图的过程就是求活化能平均值的过程。
从Arrhenius公式的定积分式,可以根据两个温度下的速率系数求反应的活化能,这样显然要比作图法简单,但可能引入的误差也大。
利用定积分式,还可以在已知活化能时,从一个温度下的速率系数,计算另一个温度下的速率系数,所以这个公式在做习题或考试时用得较多。
从Arrhenius公式的指数式,可以一目了然地看出在指数项上的活化能和温度对速率系数的影响。
基元反应的活化能有明确的物理意义,是指活化分子的平均能量与反应物分子平均能量的差值,可以利用图形看清楚正、逆反应活化能的含义和吸热反应与放热反应的区别。
而复杂反应的活化能仅是基元反应活化能的数学组合,组合的方式由表观速率系数与基元反应速率系数之间的关系决定,没有明确的物理意义。
在处理复杂反应时,要掌握几种近似的处理方法,常用的近似法有速控步法、稳态近似和平衡假设三种,其中以稳态近似最为重要。
速控步近似法主要用于连续反应,平衡假设只适用于快平衡后面是慢反应的复杂反应,而稳态近似方法对于有活泼中间产物生成的复杂反应基本都适用。
从爆炸反应,一方面了解发生爆炸有不同的机理,如支链爆炸和热爆炸等,但更重要的是要了解引起爆炸的各种原因,要关心日常生活中常见的爆炸事故,如煤矿的瓦斯爆炸、化纤厂的纤维尘爆炸、面粉厂的粉尘爆炸等,并记住今后如何设法防止爆炸的发生。
速率理论只适用于基元反应。
对于碰撞频率等计算公式的推导不必花太多时间,而重点要放在理论是以什么作为模型推导中引进了什么假定计算速率系数的公式中各项的物理意义等,这样才能领会速率理论的优点及不足之处。
在碰撞理论、过渡态理论和单分子反应三种理论中,对于过渡态理论应该了解得更多一点,而单分子理论只是有所了解即可。
催化反应和光化学反应是两个内容丰富的大课题,基础课中不可能讲得很深入,主要了解催化反应和光化学反应的基本概念和特点,了解它们的最新科研成果和应用,以拓宽知识面和提高学习兴趣。
三.思考题参考答案1.有如下几个化学反应计量式,分别写出用参与反应的各种物质表示的速率表示式。
设反应都是基元反应,根据质量作用定律写出反应的速率方程。
(1)A B C +=(2)2A B 2C +=(3)A 2B C 2D +=+(4)22Cl M Cl M +=+ 答:化学反应速率的定义式为B B 1d d c r tν=,用参与反应的任意一种物质表示的速率,都应该有相同的结果。
基元反应的速率与各反应物浓度的幂乘积成正比,其中各浓度项的方次即为反应方程中各种物质的计量系数,这就是质量作用定律,质量作用定律只适用于基元反应。
所以(1)1d[A]d[B]d[C]d d d r t t t=-=-= 11[A] [B]r k = (2)21d[A]d[B]1d[C]2 d d 2 d r t t t=-=-= 222[A] [B]r k = (3)3d[A]1d[B]d[C]1d[D]d 2 d d 2 d r t t t t=-=-== 233[A] [B]r k = (4)241d[Cl]d[M]d[Cl ]d[M]2 d d d d r t t t t =-=-== 244[Cl] [M]r k = 2.某化学反应的计量方程为A B C +=,能认为这是二级反应吗?答:不能。
反应级数应该从实验中求出。
化学反应的计量方程只表示参与反应的各个物质的数量之间的关系,不代表反应机理,无法从计量方程获得反应的级数。
若注明该反应是基元反应,则可以运用质量作用定律,确定它是双分子反应,通常也就是二级反应。
基元反应的反应分子数在绝大部分的情况下就等于反应的级数。
但是,也有例外,同是双分子反应,在不同的反应条件下,大部分表现为二级,但也有可能表现为一级。
3.化学反应的计量方程为3AB A 3B =+,这样的反应是否可能为基元反应?答:不可能。
根据微观可逆性原理,正、逆反应必须遵循相同的反应途径。
至今已知基元反应最多只有三分子反应,现在逆反应有四个分子,所以逆反应不可能是基元反应,则正反应也不可能是基元反应。
4.零级反应是否是基元反应?答:一定不是。
因为不可能有零分子反应。
通常是由于在总的反应机理中,反应的速率控制步骤与反应物的浓度无关,所以对反应物呈现零级反应的特点。
零级反应一般出现在表面催化反应或酶催化反应中。
在表面催化反应中,反应物通常总是过量的,速控步是被吸附在表面上的分子发生反应,所以反应速率与反应物的浓度无关。
例如,3NH (g)在金属钨表面上的分解反应,通常对反应物3NH (g)呈零级的特征。
5.某一反应进行完全所需时间是有限的,且等于0c k (0c 为反应物起始浓度),则该反应是几级反应?答:已知0c t k=,即0c kt =,当反应进行完全时,0x c kt ==,这是零级反应的特征,所以该反应为零级反应。
6.具有简单级数的反应是否一定是基元反应?答:不一定。
基元反应一定具有简单反应级数,但具有简单级数的反应不一定是基元反应。
例如,反应22H (g)I (g)2HI(g)+=,实验测得这是个二级反应,具有简单的反应级数,速率方程为22[H ] [I ]r k =。
但它是个总包反应,反应机理由若干步基元反应组成。
7.对一级、二级(a = b )和三级(a = b = c )反应,当反应物消耗50%,75% 和%所需时间123478t t t ∶∶之比各为何值?答:对一级反应,因为半衰期与反应物的起始浓度无关,是一个常数,所以该比值为12347123t t t =∶∶∶∶对于其他级数(如n 级)的反应,其定积分式的通式为 ()111111n n kt n a a x --⎡⎤-=⎢⎥--⎢⎥⎣⎦对二级反应,2n =,当反应物消耗50%时,12x a =,1t t =;消耗75%时,34x a =,34t t =;消耗%时,78x a =,78t t =;分别代入定积分的通式,再相比得 12347137t t t =∶∶∶∶ 同理,对三级反应,用相同的方法,可得1234781521t t t =∶∶∶∶8.用Arrhenius 公式的定积分式,当用ln k 对1/T 作图时,所得直线发生弯折,可能是什么原因?答:Arrhenius 公式一般只适用于反应速率对温度呈指数关系的一类反应,Arrhenius 假定活化能是与温度无关的常数,所以用ln k 对1/T 作图,应该得到一根直线。