四川省成都市2018届高中毕业班摸底测试数学(文)试题(含答案)
四川省成都市2018届高中毕业班摸底测试数学(文)答案及评分意见

������ ������ ������ ������11 分
∴在这5只小白鼠中随机抽取3只,其中至少有一只 B 项指标数据高于3的概
率 为190.
������ ������ ������ ������12 分
19.解:(Ⅰ)连接 A1F,则 A1,F,C 共线.在三棱柱 ABC-A1B1C1 中,侧棱垂直于底面,
又∵m ≠0.
∴0<m2<6,且 m2≠4.
∵x1
+x2
=
2m -3
,x1x2
=m26-2,
������ ������ ������ ������7 分
∴ PQ = 5 x1-x2 = 5 (x1+x2)2-4x1x2
=5
(-23m )2-4×m26-2=
10������ 3
6-m2 .
又点 M 到直线y=2x+m 的距离d= m , 5
∴S△MPQ
=
1( 2
10������ 3
6-m2 )������
m 5
=
2������ 6
m
������
6-m2
=
2 6
m2(6-m2).
������ ������ ������ ������9 分
∴S2△MPQ =118m2(6-m2).
∵0<m2<6,m2≠4,∴S2△MPQ ∈(0,1 2].
������ ������ ������ ������10 分
∴VF-ABC
=
1 3S△ABC
������h=
4 3
.
������ ������ ������ ������12 分
20.解:(Ⅰ)设 C(x,y). 由题意,可得xy-1������xy+1=-2(x≠±1). ∴曲线 E 的方程为x2+y22=1(x≠±1). (没 有 注 明 取 值 范 围 扣 1 分 )
2018年四川省成都市高考模拟试卷文科数学(一)(解析版)

2018年四川省成都市高考模拟试卷文科数学(一)(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=( )A. B. C. D.【答案】A【解析】分析:求出集合,即可得到.详解:,选A.点睛:本题考查集合的交集运算,属基础题.2. 在等差数列中,若,则的值为()A. 75B. 50C. 40D. 30【答案】D【解析】分析:根据等差数列的性质可得,可求的值.详解:由差数列的性质可得,故,故.故选D.点睛:本题考查等差数列的性质,属基础题.3. 对于两个复数,有下列四个结论:①;②;③;④,其中正确的结论的个数为( )A. lB. 2C. 3D. 4【答案】C【解析】分析:直接利用复数的乘法、除法、复数的模的除法、复数的乘方运算求出数值,判断结论的正误即可.详解:对于两个复数,,故①不正确;②故正确;③正确;④正确.故选C.点睛:本题考查复数的代数形式的混合运算,命题的真假的判断,基本知识的考查.4. 已知偶函数在单调递增,若,则满足的的取值范围是()A. B.C. D.【答案】B【解析】分析:由题意结合函数的性质脱去符号,求解绝对值不等式即可求得最终结果.详解:由题偶函数在单调递增,若,则,即解得或.故选B.点睛:本题考查函数的奇偶性,函数的单调性等,重点考查学生对基础概念的理解和计算能力,属于中档题.5. 岩,则“”是“”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要【答案】A【解析】分析:利用三角函数的性质易得结论.详解:岩,则由“”可得到“”,但当“”时不一定有“”,故“”是“”的充分不必要.故选A.点睛:本题考查了三角函数的性质、简易逻辑的判定方法,考查了推理能力,属于基础题.6. .一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为( )A. B. C. D.【答案】B【解析】分析:由三视图可知还几何体是以ABCD为底面的四棱锥,由此可求其外接球的半径,进而得到它的外接球的表面积.详解:由三视图可知还几何体是以为底面的四棱锥,过作,垂足为,易证面,设其外接球半径为,底面ABCD是正方形外接圆,.设圆心与球心的距离为,则由此可得,故其外接球的表面积故选B.点睛:本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.7. 执行程序框图,假如输入两个数是、,那么输出的=( )A. B. C. 4 D.【答案】C【解析】分析:模拟执行程序框图可知程序框图的功能是求,的值,用裂项法即可得解.详解:模拟执行程序框图,可得是、,,满足条件,满足条件满足条件不满足条件,退出循环,输出的值为4.故选C.点睛:本题主要考查了循环结构的程序框图,考查了数列的求和,属于基础题.8. 已知变量满足,则目标函数的最值是( )A. B.C. ,无最小值D.既无最大值,也无最小值【答案】C【解析】分析:由约束条件画出可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数可求最大值,没有最小值.详解:由约束条件,作可行域如图,联立解得:.可知当目标函数经过点A是取得最大值。
四川省成都市2021届高三2018级高中毕业班摸底测试 文科数学(附答案+全解全析)

成都市2018级高中毕业班摸底测试数 学(文科)本试卷分选择题和非选择题两部分。
第Ⅰ卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}20|{<<=x x A ,}1|{≥=x x B ,则=B A(A)}10|{≤<x x (B)}10|{<<x x (C)}21|{<≤x x (D)}20|{<<x x 2.复数i iiz (22-=为虚数单位)在复平面内对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.已知函数⎩⎨⎧>≤-=.0,ln 0|,1|)(x x x x x f ,则=))1((e f f(A)0 (B)1 (C)1-e (D)24.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部,教育部,团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高-(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日’’宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 若从随机数表第6行第9列的数开始向右读,则抽取的第5名学生的学号是 (A)17 (B)23 (C)35 (D)37 5.记函数)(x f 的导函数是)('x f .若2()cos x f x x π=-,则=)6('πf (A)61-(B)65 (C)6332- (D)6332+6. “3=k ”是“直线2+=kx y 与圆122=+y x 相切”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7.已知离心率为2的双曲线22221(0x y a a b -=>,)0>b 与椭圆22184x y +=有公共焦点,则双曲线的方程为(A)221412x y -=(B)221124x y -=(C)2213y x -=(D)2213x y -= 8.执行如图所示的程序框图,则输出的结果S 为(A)1- (C)0 (D)12--9.如图是某几何体的三视图.若三视图中的圆的半径均为2,则该几何体的表面积为 (A)π14 (B)π16 )(C π18 )(D π2010.在平面直角坐标系xOy 中,已知直线)1(:+=x k y l 与曲线θθθθ(cos sin 2sin 1:⎩⎨⎧+=+=y x C 为参数)在第一象限恰有两个不同的交点,则实数k 的取值范围为(A)(0,1) (B)1(0,)2 (C) (D)1)211.已知函数3||2)(2++-=x x x f .若)2(ln f a =,)3ln (-=f b ,)(e f c =,,则c b a ,,的大小关系为(A)c a b >> (B)a c b >> (C)c b a >> (D)b c a >>12.设R b k ∈,,若关于x 的不等式x b kx ln 1≥++在),0(+∞上恒成立,则kb的最小值是 (A)2e - (B)1e - (C)21e -(D)e -第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.已知呈线性相关的变量y x ,之间的关系如下表:由表中数据得到的回归直线方程为a x yˆ6.1ˆ+=.则当8=x 时,y ˆ的值为 . 14.函数32)(+-=x e x f 的图象在点))0(,0(f 处的切线方程为 .15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”,如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是 .16.已知点P 在椭圆22221(0)x y a b a b +=>>上,1F 是椭圆的左焦点,线段1PF 的中点在圆2222b a y x -=+上.记直线1PF 的斜率为k ,若1≥k ,则椭圆离心率的最小值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分) 2019年12月,《生活垃圾分类标志》新标准发布并正式实施,为进一步普及生活垃圾分类知识,了解居民生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的1000人的年龄进行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:各年龄段频数分布表(I)请补全各年龄段人数频率分布直方图,并求出各年龄段频数分布表中n m ,的值; (Ⅱ)现从年龄在)40,30[段中采用分层抽样的方法选取5名代表参加垃圾分类知识交流活动.应社区要求,从被选中的这5名代表中任意选2名作交流发言,求选取的2名发言者中恰有1名年龄在)40,35[段中的概率. 18.(本小题满分12分)已知函数12)(23-+++=a bx ax x x f 在1-=x 处取得极值0,其中a ,R b ∈. (I)求b a ,的值;(Ⅱ)当]1,1[-∈x 时,求)(x f 的最大值. 19.(本小题满分12分)如图①,在菱形ABCD 中,60=∠A 且2=AB ,E 为AD 的中点.将ABE ∆沿BE 折起使2=AD ,得到如图②所示的四棱锥BCDE A -. (I)求证:平面⊥ABE 平面ABC ;(Ⅱ)若P 为AC 的中点,求三棱锥ABD P -的体积.20.(本小题满分12分)在同—平面直角坐标系xOy 中,圆422=+y x 经过伸缩变换⎪⎩⎪⎨⎧==y y xx 21'':ϕ后,得到曲线C .(I)求曲线C 的方程;(Ⅱ)设曲线C 与x 轴和y 轴的正半轴分别相交于B A ,两点,P 是曲线C 位于第二象限上的一点,且直线PA 与y 轴相交于点M ,直线PB 与x 轴相交于点N .求ABM ∆与BMN ∆的面积之和.21.(本小题满分12分) 已知函数x x x f ln )1()(-=. (I)判断)(x f 的单调性;(Ⅱ)设1)1()(2+-+-=x a ax x g ,R a ∈.当],1[22e ex ∈时,讨论函数)(x f 与)(x g 图象的公共点个数. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为tt y t x (22221⎪⎪⎩⎪⎪⎨⎧=+=为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 6=. (I)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)已知点)0,1(P .若直线l 与曲线C 相交于B A ,两点,求22||1||1PB PA +的值.成都市2018级高中毕业班摸底测试数 学(文科)本试卷分选择题和非选择题两部分。
四川省成都2018届高考模拟数学文科试题(一)含答案(1)

内且与平面 ABCD 相切,则球 O2 的直径的最大值为
.
15. 已知 f (x) 是定义域为 R 的偶函数, 当 x 0时, f (x) x2 2x ,那么, 不等式 f ( x) 3
的解集是
.
16.已知函数 f x 4sin 2x
0≤ x≤ 91 ,若函数 F x
6
6
f x 3 的所有零点依
次记为 x1, x2 , x3,... xn , x1 x2 x3
2018 届高考模拟考试试题(一)
数 学(文科)
第Ⅰ卷(共 60 分)
一、选择题:本大题共 12 个小题 ,每小题 5 分 ,共 60 分 .在每小题给出的四个选项中,只有一项 是符合题目要求的 .
1.已知集合 M x x 2 x 12 0 , N y y 3x , x 1 ,则集合 x x M , 且x N 为
D 级标准的是
A . 1 班:总体平均值为 3,中位数为 4
B. 2 班:总体平均值为 1,总体方差大于 0
C. .3 班:中位数为 2,众数为 3
D. 4 班:总体平均值为 2,总体方差为 3
8.若将函数 f x 2sin 2x
的图象向右平移
3
个单位, 所得图象关于 y 轴对称, 则
的最小正值是
5
A. 0,3
B
. 4,3
C. 4,0
D
. 4,0
2. 已知向量 AB 1,1 , AC 2,3 ,则下列向量中与 BC 垂直的是
A. a 3,6
B
. b 8, 6
C. c 6,8
D
. d 6,3
3.在四面体 S ABC 中, AB BC , AB BC 2 SA SC SB 2 ,则该四面体外接
高三数学-2018【数学】四川省成都市2018届高三班摸底

⾼三数学-2018【数学】四川省成都市2018届⾼三班摸底成都市2018届⾼中毕业班摸底测试数学(理⼯农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两个部分,满分150分,完成时间为120分钟第Ⅰ卷注意事项:1.答第Ⅰ卷前,考⽣务必将⾃⼰的姓名、准考证号、考试科⽬涂写在答题卡上. 2.每⼩题选出答案后,⽤铅笔把答题卡上对应题⽬的答案标号涂⿊.如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号.不能答在试卷上.3.本试卷共1 2⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.参考公式:如果事件A 、B 互斥,那么球的表⾯积公式 P (A +B ) =P (A )+P (B ) 24S R π= 如果事件A 、B 相互独⽴,那么其中R 表⽰球的半径 P (A ·B )=P (A )·P (B ) 球的体积公式如果事件A 在⼀次试验中发⽣的概率是p ,那么 243V R π=在n 次独⽴重复试验中事件A 恰好发⽣k 次的概率其中R 表⽰球的半径n ()(1)(0,1,2,...)k kn k n P k C p p k n -=-=⼀、选择题:1.某学校共有教师200名,其中⽼年教师25名,中年教师75名,青年教师100名,若采⽤分层是抽样的⽅法从这200名教师中抽取40名教师进⾏座谈,则在青年教师中英抽取的⼈数为 (A )15⼈ (B )20⼈ (C )25⼈ (D )30⼈2. 不等式211x x --<0的解集是 (A ){x |x >12} (B ){x |x <12}(C ) {x |12<x <1} (D ){x |x >1或x <12} 3.已知直线x +y +m =0与圆x 2+y 2=4相切,则实数m 的值为(A )42 (B )±42 (C ) 22(D )±224.函数y =ln |x |+1的图象⼤致为(A ) (B ) (C ) (D )5. 若sin α+cos α=25,则sin 2α= (A )425(B )-425(C )2125(D )-21256.已知命题p :若x =y ,则x y =,那么下列叙述正确的是(A )命题p 正确,其逆命题也正确 (B )命题p 正确,其逆命题不正确 (C )命题p 不正确,其逆命题正确 (D )命题p 不正确,其逆命题也不正确7. 已知数列{a n }的前n 项和为S n ,n ∈N *,若2(S n +1)=3a n ,则2514a a a a ++=(A )9 (B )3 (C )32(D )238.安排6名演员的演出顺序时,要求演员甲不第⼀个出场,也不最后⼀个出场,则不同的安排⽅法种数是 (A )120 (B )240 (C )480 (D )7209.△ABC 中内⾓A 、B 、C 满⾜2cosAcosC +cosB =0,则此三⾓形的形状是 (A )等腰三⾓形 (B )钝⾓三⾓形 (C )直⾓三⾓形(D )锐⾓三⾓形 10.如图,正⽅体ABCD -A 1B 1C 1D 1的棱长为4,点P 、Q 在棱CC 1上,PQ =1,则三棱锥P -QBD 的体积是 (A )83(B )43(C )8 (D )与P 点位置有关11. 定义在R 上的偶函数f (x -2),当x >-2时,f (x )=e x +1-2(e 为⾃然对数的底数),若存在k ∈Z ,使⽅程f (x )=0的实数根x 0∈(k -1,k ),则k 的取值集合是(A ){0} (B ){-3}x y 0 1xy 0 11 xy0 1(C ){-4,0} (D ){-3,0}12.已知F 1、F 2分别为椭圆2222x y a b+=1(a >b >0)的左右焦点,经过椭圆上第⼆象限内任意⼀点P 的切线为l ,过原点O 作OM ∥l 交F 2P 于点M ,则|MP |与a 、b 的关系是(A )|MP |=a (B )|MP |>a (C )|MP |=b (D )|MP |<b第Ⅱ卷注意事项:1.⽤钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项⽬填写清楚. 3.本卷共10⼩题,满分90分.⼆、填空题.本⼤题共4⼩题,每⼩题4分,共16分.把答案填在题中横线上. 13、(2+x )3的展开式的第三项的系数是________________.14、在半径为2,球⼼为O 的球⾯上有两点A 、B ,若∠AOB =34π,则A 、B 两点间的球⾯距离为________.15、已知实数x 、y 满⾜4353151x y x y x -≤??+≤??≥?,则2x +y 的最⼤值为__________________.16、已知圆C :x 2+y 2+2x +Ey +F =0(E 、F ∈R ),有以下命题:①E =-4,F =4是曲线C 表⽰圆的充分⾮必要条件;②若曲线C 与x 轴交于两个不同点A (x 1,0),B (x 2,0),且x 1、x 2∈[-2,1),则0≤F ≤1;③若曲线C 与x 轴交于两个不同点A (x 1,0),B (x 2,0),且x 1、x 2∈[-2,1),O 为坐标原点,则|OA OB -|的最⼤值为2;④若E =2F ,则曲线C 表⽰圆,且该圆⾯积的最⼤值为32π. 其中所有正确命题的序号是_______________________.三、解答题:本⼤题共6个⼩题,共74分,解答应写出⽂字说明、证明过程或推演步骤.(本⼩题满分12分)17、某公司购买了⼀博览会门票10张,其中甲类票4张,⼄类票6张,现从这10张票中任取3张奖励⼀名员⼯.(1)求该员⼯得到甲类票2张,⼄类票1张的概率; (2)求该员⼯得到甲类票张数多于⼄类票张数的概率, 18、(本⼩题满分12分)已知向量m =(sin 2x ,cos 2x ),n =(cos 4π,sin 4π),函数f (x )=2m n +2a (其中a 为实常数)(1)求函数f (x )的最⼩正周期; (2)若x ∈[0,]时,函数f (x )的最⼩值为-2,求a 的值.19、(本⼩题满分12分)如图,在四边形ABCD 中,AC ⊥BD ,垂⾜为O ,PO ⊥平⾯ABCD ,AO =BO =DO =1,CO =PO =2,E 是线段P A 上的点,AE ∶AP =1∶3. (1)求证:OE ∥平⾯PBC ; (2)求⼆⾯⾓D -PB -C 的⼤⼩. 20、(本⼩题满分12分)已知等差数列{a n 2}中,⾸项a 12=1,公差d =1,a n >0,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =11n na a ++,数列{b n }的前n 项和为T n ;①求T 120;②求证:当n >3时,2222n n T >+21、(本⼩题满分12分)设直线l (斜率存在)交抛物线y 2=2px (p >0,且p 是常数)于两个不同点A (x 1,y 1),B (x 2,y 2),O 为坐标原点,且满⾜OA OB =x 1x 2+2(y 1+y 2). (1)求证:直线l 过定点;(2)设(1)中的定点为P ,若点M 在射线P A 上,满⾜111||||||PM PA PB =+,求点M 的轨迹⽅程.22、(本⼩题满分14分)对函数Φ(x ),定义f k (x )=Φ(x -mk )+nk (其中x ∈(mk ,m +mk ],k ∈Z ,m >0,n >0,且m 、n 为常数)为Φ(x )的第k 阶阶梯函数,m 叫做阶宽,n 叫做阶⾼,已知阶宽为2,阶⾼为3.(1)当Φ(x )=2x 时①求f 0(x )和f k (x )的解析式;②求证:Φ(x )的各阶阶梯函数图象的最⾼点共线; (2)若Φ(x )=x 2,则是否存在正整数k ,使得不等式f k (x )<(1-3k )x +4k 2+3k -1有解?若存在,求出k 的值;若不存在,请说明理由.。
四川省成都市龙泉驿区2018届高三统一模拟考试文科数学试题(解析版)

2018年龙泉驿区高2016级统一模拟考试数学(文)试题第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是正确的.请将答案写在答题卷上..........)1.设集合,,则集合为()A. B. C. D.【答案】B【解析】由题意可得:,则集合为.本题选择B选项.2.在复平面内,复数z的对应点为(1,1),则z2=()A. B. 2i C. D. 2+2i【答案】B【解析】【分析】先写出复数z,再求z2得解.【详解】在复平面内,复数z的对应点为(1,1),所以z=1+i.所以z2=(1+i)2=2i,故选:B.【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.3.已知cosα=,α∈(0,π),则sin2α等于()A. B. C. D.【答案】D【解析】【分析】由cosα可得sinα,进而由正弦的二倍角公式可得解.【详解】由cosα=,因为α∈(0,π),所以sinα==,那么sin2α==2sinαcosα==.故选D.【点睛】本题主要考查了同角三角函数的基本关系及正弦的二倍角公式,属于基础题.4.若双曲线的一条渐近线方程为,该双曲线的离心率是()A. B. C. D.【答案】C【解析】双曲线的焦点位于轴,则双曲线的渐近线为,结合题意可得:,双曲线的离心率:,本题选择C选项.5.如图,是以正方形的边为直径的半圆,向正方形内随机投入一点,则该点落在阴影区域内的概率为()A. B. C. D.【答案】D【解析】分析:先由圆的对称性得到图中阴影部分的面积,再用几何概型的概率公式进行求解.详解:连接,由圆的对称性得阴影部分的面积等于的面积,易知,由几何概型的概率公式,得该点落在阴影区域内的概率为.故选D..点睛:本题的难点是求阴影部分的面积,本解法利用了圆和正方形的对称性,将阴影部分的面积转化为求三角形的面积.6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A. 若α⊥β,m⊥α,则m∥βB. 若m∥α,n⊂α,则m∥nC. 若α∩β=m,n∥α,n∥β,则m∥nD. 若α⊥β,且α∩β=m,点A∈α,直线AB⊥m,则AB⊥β【答案】C【解析】【分析】对每一个选项逐一判断得解.【详解】A选项不正确,因为α⊥β,m⊥β时,可能有m⊂α;B选项不正确,因m∥α,n⊂α,则m∥n或异面.C选项正确,因为α∩β=m,n∥α,n∥β,则画图如下左图:必有m∥n,D选项不正确,画图如下右图:故选:C.【点睛】本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系,熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键.7.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.【答案】B【解析】【分析】换元四棱锥的直观图即可求得体积.【详解】由三视图还原原几何体如图:该几何体为四棱锥,底面是边长为1的正方形,侧棱P A⊥底面ABCD,且P A=1.则该四棱锥的体积为.故选B.【点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.8.已知P为直线x+y﹣2=0上的点,过点P作圆O:x2+y2=1的切线,切点为M,N,若∠MPN=90°,则这样的点P有()A. 0个B. 1个C. 2个D. 无数个【答案】B【解析】【分析】先求出圆心到直线的距离为,再求出OP=,从而得到点P只有一个.【详解】圆O:x2+y2=1圆的半径为1,圆的圆心(0,0)到直线x+y﹣2=0的距离为:=,满足P为直线x+y﹣2=0上的点,过点P作圆O:x2+y2=1的切线,切点为M,N,若∠MPN=90°,所以四边形OMPN是正方形,边长为1,所以其对角线OP=,所以垂足就是P,所以P点只有一个.故选:B.【点睛】本题主要考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.9.函数,则不等式的解集为( )A. B. C. D.【答案】A【解析】分类讨论:当时,不等式为:,此时;当时,不等式为:,此时不等式无解;综上可得,不等式的解集为:,表示为区间形式即:.本题选择A选项.10.函数在区间上的图象大致为()A. B.C. D.【答案】D【解析】很明显,且,则函数在区间内由两个零点,选项A,B错误;结合,且可排除C选项.本题选择D选项.11.已知抛物线为轴负半轴上的动点,为抛物线的切线,分别为切点,则的最小值为()A. B. C. D.【答案】A【解析】设切线的方程为,代入抛物线方程得,由直线与抛物线相切得,时,根据导数的几何意义可得则同理可得,将点的坐标代入,得,故,当时,的最小值为,故选A.12.将函数的图象向右平移个单位后得到函数的图象,若对满足的,有的最小值为,则()A. B. C. D.【答案】D【解析】试题分析:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足的可知,两个函数的最大值与最小值的差为2,有,不妨,即g(x)在,取得最小值,sin(2×-2φ)=-1,此时φ=-,不合题意,,即g(x)在,取得最大值,sin(2×-2φ)=1,此时φ=,满足题意考点:函数y=Asin(ωx+φ)的图象变换第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分.请将答案写在答题卷上..........)13.已知,均为单位向量,且它们的夹角为120°,则|4+|=__________.【答案】【解析】【分析】先求,再求|4+|.【详解】因为,均为单位向量,且它们的夹角为120°,则|4+|2=16||2+||2+8||•||•cos120°=16+1﹣4=13,则|4+|=,故答案为:.【点睛】本题考查了向量的数量积和向量的模,属于基础题.14.已知实数x,y满足的最小值为___________.【答案】5【解析】由题意可得可行域为如图所示(含边界),,则在点处取得最小值.联立,解得:代入得最小值5.答案为:5.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.15.在△ABC中,a=2,b=,B=,则A=_______.【答案】或.【解析】【分析】直接由正弦定理求解.【详解】在△ABC中,因为a=2,b=,B=,所以由正弦定理可得:sin A==,所以A=或.故答案为:或.【点睛】本题主要考查正弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理能力.16.已知函数f(x)既是二次函数又是幂函数,函数g(x)是R上的奇函数,函数=+1,则h(2018)+h(2017)+h(2016)+…+h(1)+h(0)+h(﹣1)+…h(﹣2016)+h(﹣2017)+h(﹣2018)=______ _____【答案】4037【解析】【分析】由题意可得f(x)=x2,从而有f(x)+1为偶函数,又g(x)是R上的奇函数,从而得h(x)+h(﹣x)=2,从而将题中数据代入可得解.【详解】函数f(x)既是二次函数又是幂函数,所以f(x)=x2,所以f(x)+1为偶函数;函数g(x)是R上的奇函数,m(x)=为定义域R上的奇函数;函数=+1,所以h(x)+h(﹣x)=[+1]+[+1]=[+]+2=2,所以h(2018)+h(2017)+h(2016)+…+h(1)+h(0)+h(﹣1)+…h(﹣2016)+h(﹣2017)+h(﹣2018)=[h (2018)+h(﹣2018)]+[h(2017)+h(﹣2017)]+…+[h(1)+h(﹣1)]+h(0)=2+2+…+2+1=2×2018+1=4037.故答案为:4037.【点睛】本题主要考查了函数奇偶性的应用,属于中档题.三、解答题(本大题共6个小题,共70分;解答应写出文字说明、证明过程或演算步骤.请将答案写.....在答题卷上.....)17.已知等差数列的公差d>0,其前n项和为成等比数列.(1)求数列的通项公式;(2)令,求数列的前n项和.【答案】(1);(2)【解析】分析:(1)由已知列出方程,联立方程解出,,进而求得;(2)由(1)得,列项相消求和。
四川省成都市2018届高考三诊模拟考试数学试题(文)含答案
成都七中2018届高三三诊模拟试题(文科)数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}230A x x x =->,{B x y ==,则A B 为()A.[)0,3B.()1,3C.(]0,1D.∅2.已知复数z 满足1+1zz =-(i 为虚数单位),则z 的虚部为()A.iB.-1C.1D.i-3.把[]0,1内的均匀随机数x 分别转化为[]0,4和[]4,1内的均匀随机数1y ,2y ,需实施的变换分别为A.124,54y x y x =-=-B.1244,43y x y x =-=+C.124,54y x y x ==-D.124,43y x y x ==+4.已知命题:p x R ∃∈,20x ->,命题:q x R ∀∈x <,则下列说法中正确的是()A.命题p q ∨是假命题B.命题p q ∧是真命题C.命题()p q ∧⌝真命题D.命题()p q ∨⌝是假命题5.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为()A.4B.6+C.D.26.已知O 为ABC ∆内一点,且1()AO OB OC =+ ,AD t AC =,若B ,O ,D 三点共线,则t 的值为()A.14B.13C.12D.237.在约束条件4224x y x y y x +≥⎧⎪-≤⎨⎪-≤⎩下,目标函数2z x y =+的最大值为()A.26B.24C.22D.208.运行下列框图输出的结果为43,则判断框应填入的条件是()A.42z ≤B.45z ≤ C.50z ≤D.52z≤9.已知函数2,0()(),0x x x f x g x x ⎧-≥=⎨<⎩是奇函数,则((2))g f -的值为()A.0B.-1C.-2D.-410.将函数()sin f x x =图象上每一点的缩短为原来的一半(纵坐标不变),再向右平移6π个单位长度得到()y g x =的图象,则函数()y g x =的单调递增区间为()A.52,21212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦B.52,266k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦C.5,1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦D.5,66k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦11.已知双曲线222:41(0)x C y a a -=>的右顶点到其一条渐近线的距离等于34,抛物线2:2E y px =的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线1:4360l x y -+=和2:1l x =-距离之和的最小值为()A.1B.2C.3D.412.定义函数348,12,2()1(222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区间[]1,2()n N *''∈内的所有零点的和为()A.nB.2nC.3(21)4''-D.3(21)2''-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.ln133log 18log 2e -+=.14.在平面直角坐标系中,三点(0,0)O ,(2,4)A ,(6,2)B ,则三角形OAB 的外接圆方程是.15.在锐角ABC ∆中,角A 、B 、C 所对的边分别为,,a b c ,且A 、B 、C 成等差数列,b =,则ABC ∆面积的取值范围是.16.四棱锥S ABCD -中,底面ABCD 是边长为2的正方形,侧面SAD 是以SD 为斜边的等腰直角三角形,若四棱锥S ABCD -的体积取值范围为8,33⎡⎤⎢⎥⎣⎦,则该四棱锥外接球表面积的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知公差不为零的等差数列{}n a 中,37a =,且1a ,4a ,13a 成等比数列.(1)求数列{}n a 的通项公式;(2)记数列{}2n n a ⋅的前n 项和n S ,求n S .18.某县共有90间农村淘宝服务站,随机抽取5间,统计元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)若网购金额(单位:万元)不小于18的服务站定义为优秀服务站,其余为非优秀服务站.根据茎叶图推断90间服务站中有几间优秀服务站?(3)从随机抽取的5间服务站中再任取2间作网购商品的调查,求恰有1间是优秀服务站的概率.19.在多面体ABCDEF 中,底面ABCD 是梯形,四边形ADEF 是正方形,//AB DC ,CD AD ⊥,面ABCD ⊥面ADEF ,1AB AD ==.2CD =.(1)求证:平面EBC ⊥平面EBD ;(2)设M 为线段EC 上一点,3EM EC =,试问在线段BC 上是否存在一点T ,使得//MT 平面BDE ,若存在,试指出点T 的位置;若不存在,说明理由?(3)在(2)的条件下,求点A 到平面MBC 的距离.20.设1F 、2F 分别是椭圆222:14x y E b+=的左、右焦点.若P 是该椭圆上的一个动点,12PF PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线:1l x ky =-与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.21.已知函数1()ln f x a x x=+,其中a R ∈;(Ⅰ)若函数()f x 在1x =处取得极值,求实数a 的值,(Ⅱ)在(Ⅰ)的结论下,若关于x 的不等式22(2)2(1)()32x t x t f x t N x x *+++++>∈++,当1x ≥时恒成立,求t 的值.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,2sin ,x y αα⎧=⎪⎨=⎪⎩(α为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系屮,曲线22:4cos 2sin 40C ρρθρθ+-+=.(Ⅰ)写出曲线1C ,2C 的普通方程;(Ⅱ)过曲线1C 的左焦点且倾斜角为4π的直线l 交曲线2C 于,A B 两点,求AB .23.选修4-5:不等式选讲已知x R ∃∈,使不等式12x x t ---≥成立.(1)求满足条件的实数t 的集合T ;(2)若1m >,1n >,对t T ∀∈,不等式33log log m n t ⋅≥恒成立,求22m n +的最小值.试卷答案一、选择题1-5:CCCCB 6-10:BAACC 11、12:BD二、填空题13.314.22620x y x y +--=15.,24⎛ ⎝⎦16.28,203S ππ⎡⎤∈⎢⎥⎣⎦三、解答题17.(1)∴21n a n =+(2)12(12)2n n +--⨯18.解:(1)样本均值46121820125X ++++==(2)样本中优秀服务站为2间,频率为25,由此估计90间服务站中有290365⨯=间优秀服务站;(3)由于样本中优秀服务站为2间,记为12,a a ,非优秀服务站为3间,记为123,,b b b ,从随机抽取的5间服务站中任取2间的可能性有12111213212223(,),(,),(,),(,),(,),(,),(,),a a ab a b a b a b a b a b 121323(,),(,),(,)a b b b b b 共10种情况,其中恰有1间是优秀服务站的情况为111213212223(,),(,),(,),(,),(,),(,)a a a b a b a b a b a b 6种情况,故所求概率为35p =.19.解:(1)因为面ABCD ⊥面ADEF ,面ABCD ⋂面ADEF AD =,ED AD ⊥,所以ED ⊥面ABCD ,ED BC ⊥.在梯形ABCD 中,过点作B 作BH CD ⊥于H ,故四边形ABHD 是正方形,所以45ADB ∠=︒.在BCH ∆中,1BH CH ==,∴45BCH ∠=︒.2BC =,∴45BDC ∠=︒,∴90DBC ∠=︒∴BC BD ⊥.因为BD ED D = ,BD ⊂平面EBD ,ED ⊂平面EBD .∴BC ⊥平面EBD ,BC ⊂平面EBC ,∴平面EBC ⊥平面EBD .(2)在线段BC 上存在点T ,使得//MT 平面BDE在线段BC 上取点T ,使得3BT BE =,连接MT .在EBC ∆中,因为13BT EM BC EC ==,所以CMT ∆与CEB ∆相似,所以//MT EB 又MT ⊄平面BDE ,EB ⊂平面BDE ,所以//MT 平面BDE .(3)6620.解:(1)易知2a =,4c b =-,24b <所以()14,0F b -,)24,0F b -,设(),P x y ,则()124,PF PF b x y⋅=--,)2222222224,44(1)444b x b b x y x y b x b b x b b ---=++-=+--=-+-+因为[]2,2x ∈-,故当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1,即221(1)44b b b =-⨯+-+,解得1b =故所求的椭圆方程为2214x y +=(2)设()11,A x y ,()22,B x y ,由22114x ky x y =-⎧⎪⎨+=⎪⎩得22(4)230k y ky +--=,故12224k y y k +=+,12234y y k -⋅=+.222(2)12(4)16480k k k ∆=++=+>又AOB ∠为锐角cos 00AOB OA OB ⇔∠>⇔⋅>,∴12120OA OB x x y y ⋅=+>又212121212(1)(1)()1x x ky ky k y y k y y =--=-++∴()2221212121222321()1(1)144k x x y y k y y k y y k k k-+=+-++=+⋅-+++222222332414044k k k k k k ---++-==>++,∴214k <-,解得1122k -<<∴k 的取值范围是11(,)22-.21.解:(Ⅰ)2211()a ax f x x x x-'=-+=当1x =时,()0f x '=,解得1a =经验证1a =满足条件,(Ⅱ)当1a =时,22(2)21(1)3221x t x t x t f x x x x x ++++++>=+++++整理得(2)ln(1)t x x x <++-令()(2)ln(1)h x x x x =++-,则21()ln(1)1ln(1)011x h x x x x x +'=++-=++>++,(1)x ≥所以min ()3ln 21h x =-,即3ln 21(0,2)t <-∈∴1t =22.解:(Ⅰ)2222()cos sin 12sin y x y αααα⎧=⎪⇒+=+=⎨=⎪⎩即曲线1C 的普通方程为221204x y +=∵222x y ρ=+,cos x ρθ=,siny ρ=曲线2C 的方程可化为224240x y x y ++-+=即222:(2)(1)1C x y ++-=.(Ⅱ)曲线1C 左焦点为(4,0)-直线l 的倾斜角为4πα=,sin cos 2αα==所以直线l的参数方程为422x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 参数)将其代入曲线2C整理可得240t -+=,设,A B对应的参数分别为12,t t则所以12t t +=,124t t =.所以12AB t t =-=.23.解:(1)令1,1()1223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩,则1()1f x -≤≤,由于x R ∃∈使不等式12x x t ---≥成立,有{}1t T t t ∈=≤.(2)由(1)知,33log log 1m n ⋅≥,根据基本不等式33log log 2m n +≥,从而23mn ≥,当且仅当3m n ==时取等号,再根据基本不等式6m n +≥≥,当且仅当3m n ==时取等号.所以m n +的最小值为18.。
2018-2019年四川省成都市二模:成都市2018届高三第二次模拟考试数学(文)试题-附答案精品
四川省成都市2018届第二次模拟考试
文科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}|8U x x =≤,集合{}
2|80A x x x =-≤,则U C A =( ) A .(),8-∞ B .(],0-∞ C .(),0-∞ D .∅
2.下列命题正确的是( )
A .命题“若αβ=,则sin sin αβ=”的逆否命题为真命题
B .命题“若a b <,则22
ac bc ≤”的逆命题为真命题
C .命题“0,50x x ∀>>”的否定是“000,50x x ∃≤≤”
D .“1x <-”是“()ln 20x +<”的充分不必要条件 3.已知tan 3α=,则
sin 21cos 2αα
=+( ) A .-3 B .13- C .13 D .3 4.已知向量b 在向量a 方向上的投影为2,且1a = ,则a b = ( ) A .-2 B .-1 C. 1 D .2
5.若点P 为圆22
1x y +=上的一个动点,点()()1,0,1,0A B -为两个定点,则PA PB +的最大值是 ( )
A .2
B .22 C. 4 D .42
6.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是 ( )。
四川省成都市2018届高中毕业班第三次诊断性检测数学(文科)试题(含答案)
成都市2015级高中毕业班第三次诊断性检测数学(文科)本试卷分选择题和非选择题两部分。
第Ⅰ卷(选择题,第Ⅱ卷(非选择题),满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项符合题目要求. 1.设全集{}=0123U ,,,,集合()(){}130A x x x =∈--≤N ,则集合U A ð中元素的个数是( ) A .1 B .2 C .3 D .4 【答案】 A【解析】由题意得{}1,2,3A =,所以{}0U A =ð,故选A. 考点:集合的基本运算. 2.若复数i1ia z +=-(i 是虚数单位)为纯虚数,则实数a 的值为( ) A .2- B .1- C .1 D .2【答案】 C 【解析】因为()()()i 1i 11ii 1i 22a a a a z ++-+++===-是纯虚数,所以10a -=,即1a =,故选C. 考点:1、复数的运算,2、纯虚数的概念.3.命题“()1,x ∀∈+∞,1ln x x -≥”的否定是( )A .()1,x ∀∈+∞,1ln x x -≤B .()1,x ∀∈+∞,1ln x x -<C .()01,x ∃∈+∞,001ln x x -≥D .()01,x ∃∈+∞,001ln x x -< 【答案】 D【解析】“()1,x ∀∈+∞,1ln x x -≥”的否定是“()01,x ∃∈+∞,001ln x x -<”,故选D. 考点:含一个量词的命题否定.4.定义符号函数1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩则函数()sin sgn f x x x =⋅的图象大致是( )【答案】 B【解析】用排除法,易知()f x 是偶函数,故排除A 选项;当0x <<π时,()0f x >,故排除D 选项;当2x π<<π时,()0f x <,故排除C 选项.故选B. 考点:函数的图象. 5.已知实数ln 22a =,22ln 2b =+,()2ln 2c =,则,,a b c 的大小关系是( )A .c a b <<B .c b a <<C .b a c <<D .a c b << 【答案】A 【解析】易知ln2122<<,22ln22+>,()20ln 21<<,所以c a b <<.故选A.考点:指数与对数运算及单调性. 6.当,2απ⎛⎫∈π⎪⎝⎭时,若()()2sin cos 3ααπ--π+=sin cos αα-的值为( )A .3 B .23- C .43 D .43-【答案】C【解析】由诱导公式得()()2sin cos sin cos ααααπ--π+=+=,所以72s i n c o s9αα=-,()()2216sin cos sin cos 4sin cos 9αααααα-=+-=,又,2απ⎛⎫∈π ⎪⎝⎭,所以s i n c o s αα->所以4s i n c o s 3αα-=.故选C.考点:1、诱导公式;2、同角基本关系求值.7.已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中出1个球放入乙袋中,再从乙袋中随机取出1个球,则从乙袋中取出红球的概率为( ) A .13 B .12 C .59 D .29【解析】先从甲袋中取出1个球放入乙袋,再从乙袋出1个球的总数为112510C C =,取出红球的总数为111113125C C C C +=,所以乙袋中取出红球的概率为51102P ==.故选B. 考点:古典概型.8.某企业可生产,A B 两种产品.投资生产A 产品时,每生产100吨需要资金200万元,场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,场地100平方米.若该企业现可使用资金1400万元,场地900平方米投资生产,A B 两种产品,则两种产品的量之和的最大值是( )A .467吨B .450吨C .575吨D .600吨 【答案】C【解析】设生产,A B 产品的产量分别为,x y (单位:100吨),由题意得约束条件2003001400,200100900,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩求目标函数z x y =+的最大值.由约束条件得可行区域(如图),其中()4.5,0A ,()3.25,2.5B ,140,3C ⎛⎫⎪⎝⎭.由可行区域可得目标函数z x y =+经过()3.25,2.5B 时,z 取最大值,故max 5.75z =(100吨). 故选C. 考点:线性规划问题.9.在正三棱柱111ABC A B C - (底面是正三角形,侧棱垂直于底面的棱柱)中,所有棱长之和为定值a .若正三棱柱111ABC A B C -的顶点都在球O 的表面上,则当正三棱柱侧面积取得最大值24时,该球的表面积为( )A. B .323π C .12π D .643π【答案】D【解析】设正三棱柱111ABC A B C -底面边长为x ,侧棱为y ,则63x y a +=,三棱柱111ABC A B C -侧面积3S xy =.所以3S xy =≤632a x y ==,即,126a a x y ==时,等号成立,所以24a =,2x =,4y =.所以正三棱柱111ABC A B C -的外接球的球心O 到顶点A的距离为4=,所以该球的表面积为643π.故选D. 考点:1、简单几何体;2、基本不等式.10.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为()1,0F c -,()2,0F c .双曲线C 上存在一点P ,使得1221sin sin PF F aPF F c∠=∠,则双曲线C 的离心率的取值范围是( )A .(1,12B .(1,13C .(2D .(3【答案】A【解析】不妨设点P 在双曲线右支上, 在12PF F △中,由正弦定理得122112sin sin PF PF PF F PF F =∠∠,所以212211sin sin PF PF F a PF F PF c ∠==∠,所以212PF aPF PF c a=--,所以22PF a a c a =-, 所以222a PF c a =-,又2PF c a >-,所以22a c a c a>--,所以2220c ac a --<,所以2210e e --<,解得11e <<.故选A.考点:1双曲线的性质.11.已知P 为ABC △所在平面内一点,AB PB PC ++=0,2PC PB AB ===,则PBC △的面积等于() A . B .3 C 3 D .43 【答案】C【解析】分别取边BC ,AC 的中点,D E ,则2PB PC PD +=,2AB ED =, 因为AB PB PC ++=0,所以ED PD =-,所以,,E D P 三点共线,且1ED PD ==. 又2PC PB ==,所以PD BC ⊥,所以23BC =,所以PBC △的面积123132S =⨯=故选C. 考点:平面向量线性运算.12.在关于x 的不等式2e e 0xxx ax a --> (其中e 2.71828=为自然对数的底数)的解集中,有且仅有两个正整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤⎥⎝⎦ B .391,4e 2e ⎡⎫⎪⎢⎣⎭ C .42164,5e 3e ⎛⎤ ⎥⎝⎦ D .3294,4e 3e ⎡⎫⎪⎢⎣⎭【答案】D【解析】易得不等式2e e 0xxx ax a -->⇔()21e x x a x >+.设()2f x x =,()()1e x g x a x =+,则原不等式等价与()()f x g x >.若0a ≤,则当0x >时,()0f x >,()0g x <,所以原不等式的解集中有无数个正整数,所以0a >. 因为()00f =,()00g a =>,所以()()00f g <. 当()()11f g ≤,即12ea ≥时,设()()()()2h x f x g x x =-≥, 则()()()2e 22e22ex xx h x x a x x +'=-+≤-.设()()()2e 222ex x x x x ϕ+=-≥,则()()()3e 2102ex x x ϕϕ+''=-≤=, 所以()x ϕ在[)2,+∞上为减函数,所以()()()222e 0x ϕϕ≤=-<, 所以当2x ≥时,()0h x '<,所以()h x 在[)2,+∞上为减函数, 所以()()23e243e 402h x h a ≤=-≤-<, 所以当2x ≥时,不等式()()f x g x <恒成立,所以原不等式的解集中没有正整数.所以要使原不等式的解集中有且仅有两个正整数,则()()()()()()11,22,33,f g f g f g >⎧⎪>⎨⎪≤⎩所以2312e,43e ,94e ,a a a >⎧⎪>⎨⎪≤⎩解得32944e 3ea ≤<.故选D.考点:利用导数研究函数的性质解决不等式成立问题.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在题后横线上.13.已知2弧度的圆心角所对的弦长为1,那么这个圆心角所对的弧长是 . 【答案】1sin1【解析】设半径为R ,则12sin1R=,所以12sin1R =,弧长12sin1l R R α===.考点:弧度制的概念.14.在ABC △中,内角,,A B C 所对的边分别为,,a b c ,已知33a =,3b =,3A π=,则角C 的大小为 .【答案】2π 【解析】由正弦定理sin sin a b A B =得1sin 2B =,又b a <,所以6B π=,所以2C π=. 考点:弧度制的概念.15.如图,在正方体1111ABCD A B C D -中,E 是棱1DD 的中点,则异面直线AE 与1BD 所成角的余弦值为 .【解析】如图,连接BD ,取BD 的中点为F ,连接,EF AF ,则EF ∥1BD . 所以AEF ∠(或AEF ∠的补角)是异面直线AE 与1BD 所成角. 设正方体1111ABCD A B C D -棱长为2,则5AE =,2AF =,3EF =由余弦定理得22215cos 2AE EF AF AEF AE EF +-∠==⋅.所以异面直线AE 与1BD 15.考点:异面直线所成角.16.设二次函数()2f x ax bx c =++(,,a b c 为实常数)的导函数为()f x ',若对任意x ∈R 不等式()()f x f x '≤恒成立,则222b a c+的最大值为 .【答案】2【解析】由题意得()2f x ax b '=+,所以()()()220f x f x ax b a x c b '≤⇔+-+-≤, 所以二次不等式()220ax b a x c b +-+-≤在R 上恒成立,所以()()20,240,a b a a c b <⎧⎪⎨∆=---≤⎪⎩即220,44.a b ac a <⎧⎨≤-⎩ 所以222222241441c b ac a a a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭, 设c t a =,因为()0,40,a a c a <⎧⎪⎨-≥⎪⎩所以c a ≤,所以1t ≥. 当1t =时,()24101t t -=+; 当1t >时,所以()()241422221222121t t t t -=≤=++-++-,当且仅当21t =,即)21c a =时,()2411t t -+取最大值,故当22b =,)21c a =时,222b a c+取最大值为222.考点:1、二次不等式;2、基本不等式.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知n S 为等比数列{}n a 的前n 项和,243,,S S S 成等差数列,且23438a a a ++=-. (I )求数列{}n a 的通项公式;(Ⅱ)设n n b n a =,求数列{}n b 的前n 项和n T .【答案】(I)112n n a -⎛⎫=- ⎪⎝⎭;(Ⅱ)1242n n n T -+=-.考点:1、等比数列;2、错位相减法. 18.(本小题满分12分)某企业统计自2011年到2017年的产品研发费x 和销售额y 的数据如下表:根据上表中的数据作出散点图,得知产品研发费的自然对数值z (精确到小数点后第二位)和销售额y 具有线性相关关系.(I )求销售额y 关于产品研发费x 的回归方程ˆˆˆln yb x a =+ (ˆˆ,a b 的计算结果精确到小数点后第二位); (Ⅱ)根据(I )的结果预则:若2018年的销售额要达到70万元,则产品研发费大约需要多少万元?【答案】(I)ˆ11.99ln 21.86y x =+;(Ⅱ)55.5.考点:1、用线性回归方程系数公式求线性方程;2、用样本估计总体解决简单实际问题. 19.(本小题满分12分)如图①,在等腰梯形ABCD 中,已知AB ∥CD ,60ABC ∠=,2CD =,4AB =,点E 为AB 的中点;现将三角形BEC 沿线段EC 折起,形成直二面角P EC A --,如图②,连接,PA PD 得四棱锥P AECD -,如图③.(I )求证:PD EC ⊥;(Ⅱ)求四棱锥P AECD -的体积. 【答案】(I)见解析;(Ⅱ)2. 【解析】考点:1、点线面间的垂直关系;2、简单几何体的体积. 20.(本小题满分12分)在平面直角坐标系xOy 中,已知点()1,0A -,()1,0B ,动点M 满足4MA MB +=.记动点M 的轨迹方程为曲线C ,直线l :2y kx =+与曲线C 相交于不同的两点,P Q .(I )求曲线C 的方程;(Ⅱ)若曲线C 上存在点N ,使得()OP OQ ON λλ+=∈R ,求λ的取值范围.【答案】(I)22143x y +=;(Ⅱ)()()2,00,2-.【解析】考点:1、椭圆的方程;2、直线与椭圆的位置关系.21.(本小题满分12分)已知函数()ln f x x =,()1g x x =+.若函数()f x 图象上任意一点P 关于直线y x =的对称点Q 恰好在函数()h x 的图象上.(I )证明:()()g x h x ≤;(Ⅱ)若函数()()()1f x F x g x =+在[)()*,k k +∞∈N 上存在极值,求k 的最大值. 【答案】(I)见解析;(Ⅱ)()()2,00,2-.【解析】考点:导数在研究函数的极值的应用.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:极坐标与参数方程在极坐标系中,曲线C 的极坐标方程是4cos ρθ=,直线l sin 14θπ⎛⎫+= ⎪⎝⎭,点,2Q ρπ⎛⎫ ⎪⎝⎭在直线l 上.以极点为坐标原点O ,极轴为x 轴的正半轴,建立平面直角坐标系xOy ,且两坐标系取相同的单位长度.(I )求曲线C 及直线l 的直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于不同的两点,A B ,求QA QB +的值.【答案】(I)()2224x y -+=,10x y +-=;(Ⅱ)32【解析】考点:1、极坐标和直角坐标的互化;2、参数的意义.23.(本小题满分10分)选修4-5:不等式选讲已知函数()21f x x x a =++-,a ∈R .(I )当2a =时,解不等式()4f x ≤;(Ⅱ)若不等式()1f x <的解集为非空集合,求a 的取值范围.【答案】(I)[]1,1-;(Ⅱ)31,22⎛⎫-⎪⎝⎭. 【解析】考点:解含绝对值的不等式.。
高考最新-成都市2018届高中毕业班摸底测试数学(文) 精
成都市2018届高中毕业班摸底测试数学(文科)参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中恰好发生k 次的概率:P n (k )=C n k P k (1-P )n -k球的表面积公式:S =4πR 2(其中R 表示球的半径) 球的体积公式:V 球=43πR 3(其中R 表示球的半径)一、选择题:本大题共计14小题,每小题5分,共70分1. 已知集合M ={x ||x |>2},N ={x |x <3},则下列结论中正确的是A .M ∪N =MB .M ∩N ={x |2<x <3}C .M ∪N =RD .M ∩N ={x |x <-2}2. 已知2x 2-3x ≤0,则函数y =x 2+x +1A .有最小值34,但无最大值B .有最小值34和最大值1C .有最小值1和最大值194D .无最小值,也无最大值3. 已知点P 1(-2,4),P 2(5,3),点P 在P 1P 2上,且|P 1P |=2|P 2P |,则点P 的坐标为A .(12,2)B .(2,12)C .(103,83)D .(83,103)4. 条件p :|x |=x ,条件q :x 2≥-x ,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 函数y =x 2+2x (x <-1)的反函数是A .y =x +1-1(x <-1)B .y =x +1-1(x >-1)C .y =-x +1-1(x <-1)D .y =-x +1-1(x >-1) 6. 如果向量a →和b →满足|a →|=1,|b →|=2,且a →⊥(a →-b →),那么a →和b →的夹角大小为A .30ºB .45ºC .75ºD .135º7. 将椭圆9x 2+16y 2-18x -64y -71=0按向量a →平移,使中心与原点重合,则a →的坐标为A .(1,2)B .(-1,-2)C .(-1,2)D .(1,-2)8. 若θ是第三象限的角,且sin 4θ+cos 4θ=59,那么sin 2θ的值为A .23B .-23C .223D .-2239. 与函数y =2+2x-2的图象关于直线y =x 对称的曲线经过点 A .(2,3)B .(2,2)C .(3,2)D .(3,3)10.在同一个坐标系中,为了得到y =3sin (2x +π4)的图象,只需将y =3cos 2x 的图象A .向左平移π4B .向右平移π4C .向左平移π8D .向右平移π811.已知M (2,-3),N (-3,-2),直线l 过点A (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是 A .k ≥34或k ≤-4B .-4≤k ≤34C .34≤k ≤4 D .-34≤k ≤412.如图,A 是平面BCD 外一点,E 、F 、G 分别是BD 、DC 、CA的中点,设过这三点的平面为α,则在图中的6条直线AB 、AC 、AD 、BC 、CD 、DB 中,与平面α平行的直线有 A .0条 B .1条 C .2条D .3条13.甲乙丙三个单位分别需要招聘工作人员2人、1人、1人,现从10名应聘人员中招聘4人到甲乙丙三个单位,那么不同的招聘方法共有 A .1260种B .2185种C .2520种D .5180种14.(x 3+1x2)n 的展开式中,第6项系数最大,则不含x 的项为A .210B .10C .462D .252二、填空题:本大题共4个小题,每小题5分,共计20分15.若数列{a n }满足a n +1=4a n +14且a 1=4,则a 85=_____________.16.给出下列四个命题:①若两条直线垂直,则其斜率的乘积必为-1;②过点(-1,2)且在x 、y 轴上截距相等的直线方程是x +y -1=0;③过点M (-1,2)且与直线l :Ax +By +C =0(AB ≠0)垂直的直线方程是B (x +1)+A (y -2)=0;④点P (-1,2)到直线ax +y +a 2+a =0的距离不小于2.以上命题中,正确命题的序号是_____________(把你认为正确的命题的序号都填上) 17.考察下列命题:ABC DEF G . . .①若n ∈N +,点(n ,a n )在同一直线上,则{a n }是等差数列; ②若数列{a n }的通项可写成关于n 的一次式,则{a n }是等差数列; ③若数列{a n }的前n 项和可写成关于n 的二次式,则{a n }是等差数列;④若m 、n ∈N +,且n <m ,总有a n +a m -n =a 1+a m ,则项数为m 的数列是等差数列. 其中正确的命题的序号是_____________(把你认为正确的命题的序号都填上)18.已知集合P ={θ|cos θ<sin θ,0≤θ≤2π},Q ={θ|tan θ<sin θ},则P ∩Q =___________________.三、解答题:本大题共5个小题,共计60分.19.某产品检验员检查每一件产品时,将正品错误地鉴定为次品的概率为0.1,将次品错误地鉴定为正品的概率为0.2,若这名检验员要鉴定4件产品,这4件产品中有3件是正品,1件是次品,试求检验员鉴定出正品与次品分别是2件的概率.(12分)20.如图,在单位正方体ABCD -A 1B 1C 1D 1中,M 是A 1B 上的点,A 1M =13A 1B ,N 是B 1D 1上的点,B 1N =13B 1D 1.(12分)(1)求证:MN 是异面直线A 1B 与B 1D 1的公垂线; (2)求线段MN 的长.21.设数列{a n }的前n 项和为S n ,已知S n +1=4a n +2(n ∈N *),a 1=1,b n =a n +1-2a n .(12分) (1)求b n ;(2)若d n =a n2n ,求证:数列{d n }是等差数列.22.已知双曲线过点A (-2,4)和B (4,4),它的一个焦点是抛物线y 2=4x 的焦点,求它的另一个焦点的轨迹方程.(13分)23.设函数f (x )=a -22x +1(x ∈R )是奇函数.(13分)(1)求a 的值; (2)判断f (x )的增减性; (3)解不等式:0<f (log 4x )≤13.A 1成都市2018届高中毕业班摸底测试数学(理科)参考答案一、CCAAD BBCCD ACCA二、15.25 16.④ 17.①② 18.(π2,π)三、19.检验员将3件正品、1件次品鉴定为2件正品、2件次品有两种情况……1分第一种情况:将1件次品鉴定为次品,将1件正品错误地鉴定为次品,其概率为 P 1=0.8×C 32×0.92×0.1=0.1944 ……5分 第二种情况:将1件次品错误地鉴定为正品,将3件正品中的2件错误地鉴定为次品,其概率为P 2=0.2×C 31×0.9×0.12=0.0184……9分 故所求概率为P =P 1+P 2=0.1944+0.0184=0.1998 ……10分 20.(1)证明:建立如图所示空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),B (1,0,0)∵A 1M =13A 1B ,B 1N =13B 1D 1,∴M (13,0,23),N (23,13,1)∴A 1B →=(1,0,-1),B 1D 1→=(-1,1,0),MN →=(13,13,13) MN →·A 1B →=1×13+0×13+(-1)×13=0 MN →·B 1D 1→=-1×13+1×13+0×13=0 ∴MN ⊥A 1B ,MN ⊥B 1D 1,又MN 与A 1B 和B 1D 1都相交 故MN 是异面直线A 1B 与B 1D 1的公垂线. ……10分(2)|MN |=(13)2+(13)2+(13)2=33 ∴MN 的长为33……12分21.(1)a 1=1,S n +1=4a n +2(n ∈N *)z∴S n +2=4a n +1+2∴a n +2=S n +2-S n +1=4a n +1-4a n ∴a n +2-2a n +1=2(a n +1-2a n ) ……4分 又b n =a n +1-2a n ,∴b n +1=2b n . ∴数列{b n }是以2为公比的等比数列.……6分而b 1=a 2-2a 1,a 1=1,S 2=a 1+a 2=4a 1+2=6 ⇒ a 2=5 ∴b 1=3 故b n =3·2n -1.……8分(2)∵d n =a n2n ,∴d n +1-d n =a n +12n +1+a n 2n =a n +1-2a n 2n +1=b n 2n +1=3·2n -12n +1=34(常数) 所以,{d n }是等差数列.……12分 22.抛物线y 2=4x 的焦点为F 1(4,0)……2分 设另一个焦点为F 2(x ,y )由双曲线定义,有||AF 1|-|AF 2||=||BF 1|-|BF 2|| ……4分 而|AF 1|=5,|BF 1|=5∴|BF 2|=|AF 2|或|AF 2|+|BF 2|=10……10分∴F 2(x ,y )的轨迹是线段AB 的中垂线,或是以A 、B 为焦点且长轴长为1的椭圆.∴F 2(x ,y )的轨迹方程是x =1,或(x -1)225+(y -4)216=1……13分23.(1)因为f (x )是奇函数,∴f (x )+f (-x )=0 即(a -22x+1)+(a -22-x +1)=0 ∴2a -2(2x +1)2x +1=0 ⇒ a =1……4分(2)设-∞<x 1<x 2<+∞,则 f (x 2)-f (x 1)=2(2x 2-2x 1)(2x 1+1)(2x 2+1)∵y =2x 是增函数,且2x >0 ∴2x 2-2x 1>0,(2x 1+1)(2x 2+1)>0 ∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1) 故f (x )是R 上的增函数. ……9分(3)由(1),有f (x )=1-22x +1∴f (0)=0,f (1)=13从而原不等式为f (0)<f (log 4x )≤f (1) 由(2),f (x )是R 上的增函数,∴0<log 4x ≤1 解得:1<x ≤4 ……13分限于篇幅,其它解法不再一一列出,请评卷老师根据考生答题情况酌情给分.。