数学高一函数知识点总结

合集下载

高中数学必修一函数的概念知识点总结

高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念二、函数知识点8:函数的概念以及区间 1》函数概念设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域.2》区间和无穷大①设a 、b 是两个实数,且a<b ,则:{x|a ≤x ≤b}=[a,b] 叫闭区间; ②{x|a<x<b}=(a,b) 叫开区间;③{x|a ≤x<b}=[,)a b , {x|a<x ≤b}=(,]a b ,都叫半开半闭区间.④符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.典例分析题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( )A 、x y x f 21)(=→ B 、x y x f 31)(=→ C 、x y x f 32)(=→ D 、x y x f =→)(例2:下列对应关系是否是从A 到B 的函数:①}{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方;③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳1. 函数的奇偶性1若fx是偶函数,那么fx=f-x ;2若fx是奇函数,0在其定义域内,则 f0=0可用于求参数;3判断函数奇偶性可用定义的等价形式:fx±f-x=0或fx≠0;4若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;5奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题1复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[gx]的定义域由不等式a≤gx≤b解出即可;若已知f[gx]的定义域为[a,b],求 fx的定义域,相当于x∈[a,b]时,求gx的值域即 fx的定义域;研究函数的问题一定要注意定义域优先的原则。

2复合函数的单调性由“同增异减”判定;3.函数图像或方程曲线的对称性1证明函数图像的对称性,即证明图像上任意点关于对称中心对称轴的对称点仍在图像上;2证明图像C1与C2的对称性,即证明C1上任意点关于对称中心对称轴的对称点仍在C2上,反之亦然;3曲线C1:fx,y=0,关于y=x+ay=-x+a的对称曲线C2的方程为fy-a,x+a=0或f-y+a,-x+a=0;4曲线;5若函数y=fx对x∈R时,fa+x=fa-x恒成立,则y=fx图像关于直线x=a对称;6函数y=fx-a与y=fb-x的图像关于直线x= 对称;4.函数的周期性1y=fx对x∈R时,fx +a=fx-a 或fx-2a =fx a>0恒成立,则y=fx是周期为2a的周期函数;2若y=fx是偶函数,其图像又关于直线x=a对称,则fx是周期为2︱a︱的周期函数;3若y=fx奇函数,其图像又关于直线x=a对称,则fx是周期为4︱a︱的周期函数;4若y=fx关于点a,0,b,0对称,则fx是周期为2 的周期函数;5y=fx的图象关于直线x=a,x=ba≠b对称,则函数y=fx是周期为2 的周期函数;6y=fx对x∈R时,fx+a=-fx或fx+a= ,则y=fx是周期为2 的周期函数;5.方程k=fx有解k∈DD为fx的值域;6.a≥fx 恒成立a≥[fx]max,; a≤fx 恒成立a≤[fx]min;7.1 a>0,a≠1,b>0,n∈R+; 2 l og a N= a>0,a≠1,b>0,b≠1;3 l og a b的符号由口诀“同正异负”记忆;4 a log a N= N a>0,a≠1,N>0 ;8. 判断对应是否为映射时,抓住两点:1A中元素必须都有象且唯一;2B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

数学函数知识点归纳(高一)知识点总结

数学函数知识点归纳(高一)知识点总结

数学函数知识点归纳(高一)知识点总结数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+≦)都有定义并且图象都过点(1,1); (2)0时,幂函数的图象通过原点,并且在区间) ,0[上是增函数.特别地,当1时,幂函数的图象下凸;当10时,幂函数的图象上凸; (3)0时,幂函数的图象在区间),0(上是减函数.在第一象限内,当_从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当_趋于时,图象在_轴上方无限地逼近_轴正半轴方程的根与函数的零点1、函数零点的概念:对于函数))((D__fy,把使0)(_f成立的实数_叫做函数))((D__fy的零点。

2、函数零点的意义:函数)(_fy的零点就是方程0)(_f实数根,亦即函数)(_fy的图象与_轴交点的横坐标。

即:方程0)(_f有实数根函数)(_fy的图象与_轴有交点函数)(_fy有零点.3、函数零点的求法:○ 1 (代数法)求方程0)(_f的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数)(_fy的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数)0(2acb_a_y. (1)△0,方程02cb_a_有两不等实根,二次函数的图象与_轴有两个交点,二次函数有两个零点. (2)△=0,方程02cb_a_有两相等实根,二次函数的图象与_轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△0,方程02cb_a_无实根,二次函数的图象与_轴无交点,二次函数无零点. 三、平面向量向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量向量的运算加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

高一函数知识点总结

高一函数知识点总结

高一函数知识点总结高一函数知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的'被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇某奇=偶偶某偶=偶奇某偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一数学函数知识点总结(5篇)

高一数学函数知识点总结(5篇)

高一数学函数知识点总结函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高一函数第一节知识点总结

高一函数第一节知识点总结

高一函数第一节知识点总结一、函数的概念函数是一种数学关系,它是一个可以对每一个自变量值求出唯一对应的因变量值的规律。

在数学上通常用字母y表示函数的值,x表示自变量。

函数通常用f(x)表示,其中f表示函数的名称,x表示自变量的取值。

例如,f(x) = 2x + 3,表示一个函数,当自变量x取值为任意实数时,函数的值为2x+3。

函数的图像通常表示为曲线或抛物线等。

二、函数的定义域和值域1. 函数的定义域函数的定义域是指自变量的取值范围,即函数能够接受的自变量的取值范围。

通常表示为D(f) = {x | x满足某种条件}。

2. 函数的值域函数的值域是指因变量的取值范围,即函数能够得到的因变量的取值范围。

通常表示为R(f) = {y | y满足某种条件}。

三、函数的表示方法1. 字母表示法函数通常用字母表示,例如f(x) = 2x + 3,其中f表示函数的名称,x表示自变量。

2. 表达式表示法函数可以用带有自变量的表达式来表示,例如f(x) = x^2 - 1,表示一个以x为自变量的二次函数。

3. 图像表示法函数的图像可以用曲线或抛物线等来表示,函数的图像可以直观地反映函数的变化规律。

四、常见函数的类型和特点1. 线性函数线性函数的表示形式为f(x) = kx + b,其中k和b为常数,k为斜率,b为截距。

线性函数的图像为直线,斜率表示函数的变化速度,截距表示函数与y轴的交点。

2. 二次函数二次函数的表示形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,a不为0。

二次函数的图像为抛物线,开口方向由a的正负决定,抛物线在y轴上的截距是c。

3. 指数函数指数函数的表示形式为f(x) = a^x,其中a为底数,x为指数。

指数函数的图像为曲线,底数a>1时,图像递增并有上界;底数0<a<1时,图像递减并有下界。

4. 对数函数对数函数的表示形式为f(x) = loga(x),其中a为底数,x为真数。

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结一、函数的基本概念函数的定义:对于两个非空数集A和B,如果存在某种对应关系f,使得A中的每一个元素x都能在B中找到唯一的元素y与之对应,则称f是从A到B的函数,记作y=f(x),其中x是自变量,y是因变量。

函数的定义域:函数y=f(x)中,自变量x的取值范围称为函数的定义域。

函数的值域:函数y=f(x)在定义域内所有函数值的集合称为函数的值域。

二、函数的性质单调性:如果对于定义域内的任意两个数x1和x2(x1<x2),都有f(x1)≤f(x2)或f(x1)≥f(x2),则称函数f(x)在定义域内单调递增或单调递减。

奇偶性:如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数;如果对于定义域内的任意x(且x≠0),都有f(-x)=-f(x),则称函数f(x)为奇函数。

周期性:如果存在一个正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则称函数f(x)具有周期性,T为函数的周期。

三、基本初等函数幂函数:形如y=x^a(a为实数)的函数称为幂函数。

指数函数:形如y=a^x(a>0且a≠1)的函数称为指数函数。

对数函数:如果a^x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log_aN。

函数y=log_ax(a>0,且a≠1)叫做对数函数。

三角函数:包括正弦函数、余弦函数、正切函数等,它们与角度和弧度有关。

四、函数的应用函数模型的应用:通过建立函数模型来解决实际问题,如最优化问题、增长率问题等。

函数图像的应用:通过观察和分析函数的图像来理解函数的性质和行为,从而解决相关问题。

以上是高一数学函数的主要知识点总结。

在学习过程中,应注重理解和掌握这些基本概念和性质,并通过练习和应用来加深对知识点的理解和记忆。

高一数学函数知识点归纳总结大全

高一数学函数知识点归纳总结大全函数是数学中非常重要的概念之一,在高一阶段的数学学习中,我们会接触到许多有关函数的知识点。

本文将对高一数学函数知识点进行归纳总结,旨在帮助同学们系统地理解和掌握这些内容。

一、函数的定义和表示方法函数是一个将一个集合中的元素(称为自变量)映射到另一个集合中的元素(称为因变量)的规则。

函数可以用各种方式来表示,常见的有解析式、图像和表格。

1. 解析式表示法:函数可以用解析式来表示,通常采用f(x)或y的形式表示。

例如:f(x) = 2x + 1,y = sin(x)。

2. 图像表示法:函数的图像是用直角坐标系上的点表示的,其中自变量通常对应横坐标,因变量对应纵坐标。

3. 表格表示法:函数可以用表格形式来表示,其中列出自变量的取值和对应的因变量的取值。

二、函数的性质了解函数的性质有助于我们更好地理解函数的特点和行为。

1. 定义域和值域:函数的定义域是指所有使得函数有意义的自变量的取值范围,而值域则是函数的所有可能的因变量的取值范围。

2. 奇偶性:如果对于函数的定义域中的任意x值,都有f(-x) =f(x)成立,则函数是偶函数;如果对于函数的定义域中的任意x值,都有f(-x) = -f(x)成立,则函数是奇函数;否则函数既不是偶函数也不是奇函数。

3. 单调性:如果函数的自变量增加时,其对应的因变量是单调递增或单调递减的,我们称这个函数是单调函数。

4. 周期性:如果函数的某个正数T满足对于函数的所有x值都有f(x+T) = f(x)成立,则称函数具有周期性,T是函数的一个周期。

三、常见函数的类型在高一阶段,我们会学习到以下几类常见的函数。

1. 一次函数:一次函数的解析式为f(x) = ax + b,其中a和b是常数,且a≠0。

一次函数的图像是一条斜率为a的直线。

2. 二次函数:二次函数的解析式为f(x) = ax^2 + bx + c,其中a、b和c是常数,且a≠0。

二次函数的图像通常是一个开口向上或向下的抛物线。

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

高一上数学函数知识点总结

高一上数学函数知识点总结一、函数的定义与性质函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。

函数可以用来描述事物之间的依赖关系。

函数的性质包括定义域、值域、单调性、奇偶性、周期性等。

1.1 定义域和值域- 定义域是函数中自变量的取值范围- 值域是函数中因变量的所有可能取值构成的集合1.2 单调性- 递增:在定义域上,函数值随自变量增大而增大- 递减:在定义域上,函数值随自变量增大而减小1.3 奇偶性- 奇函数:满足f(-x) = -f(x),函数图像关于原点对称- 偶函数:满足f(-x) = f(x),函数图像关于y轴对称1.4 周期性函数的周期性指的是函数在一个固定的区间内,以相同的规律进行重复二、常见的函数类型2.1一次函数一次函数的定义形式为f(x) = ax + b,其中a和b为常数,a不等于0。

一次函数的图像为一条直线,斜率为a,截距为b。

2.2二次函数二次函数的定义形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不等于0。

二次函数的图像为一条抛物线。

2.3指数函数指数函数的定义形式为f(x) = a^x,其中a为常数,且a大于0且不等于1。

指数函数的图像呈现逐渐增大或逐渐减小的特点。

2.4对数函数对数函数的定义形式为f(x) = loga(x),其中a为常数,且a大于0且不等于1,x大于0。

对数函数的图像为一条平滑的曲线。

2.5幂函数幂函数的定义形式为f(x) = x^a,其中a为常数。

幂函数的图像形状与指数函数相似,但变化较缓和。

三、函数的运算函数之间可以进行加减乘除的运算,得到的结果仍然是一个函数。

3.1和函数两个函数f(x)和g(x)的和函数是指h(x) = f(x) + g(x)3.2差函数两个函数f(x)和g(x)的差函数是指h(x) = f(x) - g(x)3.3积函数两个函数f(x)和g(x)的积函数是指h(x) = f(x) * g(x)3.4商函数两个函数f(x)和g(x)的商函数是指h(x) = f(x) / g(x),其中g(x)不等于0四、函数的图像与性质函数的图像可以通过绘制函数的关系表、绘制坐标点、利用平移、对称、伸缩等变换得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学高一函数知识点总结数学高一函数知识点总结总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,为此我们要做好回顾,写好总结。

那么如何把总结写出新花样呢?以下是小编整理的数学高一函数知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学高一函数知识点总结1【(一)、映射、函数、反函数】1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.【(二)、函数的解析式与定义域】1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.【(三)、函数的值域与最值】1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.【(四)、函数的奇偶性】1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:注意如下结论的运用:(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;(3)奇偶函数的复合函数的奇偶性通常是偶函数;(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.(6)奇偶性的推广函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

【(五)、函数的单调性】1、单调函数对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设x1、x2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(x)]的单调性若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。

因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.6、证明函数的单调性的方法(1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论.(2)设函数y=f(x)在某区间内可导.如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.【(六)、函数的图象】函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.求作图象的函数表达式与f(x)的关系由f(x)的图象需经过的变换y=f(x)±b(b>0)沿y轴向平移b个单位y=f(x±a)(a>0)沿x轴向平移a个单位y=-f(x)作关于x轴的对称图形y=f(|x|)右不动、左右关于y轴对称y=|f(x)|上不动、下沿x轴翻折y=f-1(x)作关于直线y=x的对称图形y=f(ax)(a>0)横坐标缩短到原来的,纵坐标不变y=af(x)纵坐标伸长到原来的|a|倍,横坐标不变y=f(-x)作关于y轴对称的图形【例】定义在实数集上的.函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.①求证:f(0)=1;②求证:y=f(x)是偶函数;③若存在常数c,使求证对任意x∈R,有f(x+c)=-f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由.思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法.解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1.②令x=0,则有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),这说明f(x)为偶函数.③分别用(c>0)替换x、y,有f(x+c)+f(x)=所以,所以f(x+c)=-f(x).两边应用中的结论,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),所以f(x)是周期函数,2c就是它的一个周期.数学高一函数知识点总结2一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

相关文档
最新文档