二进制十进制十六进制转换表

合集下载

二进制,十进制,八进制,十六进制之间的转换

二进制,十进制,八进制,十六进制之间的转换

⼆进制,⼗进制,⼋进制,⼗六进制之间的转换计算机内部只有⼆进制,包括字符数据等int i = 15; //00000000 00000000 00000000 00001111 ==> 1字节= 8位1Byte = 8 bitint 有4个字节,即32位char c = 'a'; //00000000 01000001计算机内部使⽤的⼆进制位都是补码的形式(此处⽤1个字节表⽰)15:原码00001111 ==>补码 00001111整数的原码和补码相同-15:15的原码 ==>反码+1 ==> 补码原码00001111 ==> 反码11110000 +1 ==>补码 11110001如果⽤2个字节表⽰-15的反码原码00000000 00001111反码11111111 11110001如果⽤3个字节表⽰-15的反码原码00000000 00000000 00001111反码11111111 11111111 11110001以此类推可以⽤System.out.println(Integer.toBinaryString(a));打印验证int i=-1;//11111111 11111111 11111111 11111111int i = -2147483648(int中最⼩的负数)//100000000 00000000 00000000 00000000⼗进制是⼈类的习惯计算机在输出时候根据⼈类习惯输出10进制赋值的时候默认是赋值10进制计算机默认接受10进制,⾃动转换为⼆进制数据16进制是⼆进制的简写⽅便⼈类书写和记忆0xff -> 11111111转换int x = 020;//⼋进制 0开头⼋进制==>⼗进制020==>2*8+00120 ==> 1*8^2 + 2*8^1 + 001234 --> 1*8^3 + 2*8^2 + 3*8 +4x = 0x2E;//⼗六进制 0x开头⼗六进制 ==>⼗进制x=0x2E; ==> 2*16^1 + e =46x= 0x1234 ==> 1*16^3 + 2*16^2 + 3*16 + 4⼆进制 ==> ⼗进制0000 1111 ==> 1*2^3 + 1*2^2 + 1*2 + 1 =150100 1001 ==> 1*2^6 + 1*2^3+1 =⼗进制 ==>⼆进制1)除⼆取余28/2 14/2 7/2 3/2 1/2 00 0 1 1 1 0 ==>倒序1 110037/2 18/2 9/2 4/2 2/21 0 1 0 1 ==>倒序(如果需要则前⾯补0) 0001 01012)对应权重 (简化算法)int x =37;32 + 4 +10010 0101 // 128 64 32 16 8 4 2 10 0 1 0 0 1 0 1998998 - 512 = 486 - 256 = 230 -128 = 102 - 64 = 38 -32 =6-4 =2-2 =01111100110 //512 256 128 64 32 16 8 4 2 11 1 1 1 1 0 0 1 1 0⼋进制 ==> ⼆进制int x = 01234;⽤三个⼆进制位表⽰⼀个⼋进制位000 001 010 011 100⼗六进制 ==> ⼆进制int x = 0x1234; ⽤4个⼆进制表⽰⼀个16进制位0001 0010 0011 01000x12345678==>0001 0010 0011 0100 0101 0110 0111 1000⼆进制 ==> 16进制0000 0111 1111 1110 ==> 0x07FE;⼀般⽤16进制表⽰⼆进制例x = 0x7FE ;//0000 0111 1111 1110,直接赋值则以为是⼋进制(因为以0开头)。

计算机进制换算

计算机进制换算

表1-1 几种常用进制之间的对照关系十进制二进制八进制十六进制0 0000 0 01 0001 1 12 0010 2 23 0011 3 34 0100 4 45 0101 5 56 0110 6 67 0111 7 78 1000 10 89 1001 11 910 1010 12 A11 1011 13 B12 1100 14 C13 1101 15 D14 1110 16 E15 1111 17 F1、将(1111101100.0001101)2转换成十六进制数。

0011 1110 1100 . 0001 1010↓↓↓↓↓↓3 E C . 1 A结果为:(1111101100.0001101)2=(3EC.1A)162、(1101100.111)2=1×26+1×25+1×23+1×22+1×2-1+1×2-2 +1×2-3=64+32+8+4+0.5+0.25+0.125=(108.875)103、十进制数215用二进制数表示是A)1100001B)1101001C)0011001D)11010111【答案】D【解析】十进制向二进制的转换前面已多次提到,这一点也是大纲要求重点掌握的。

采用"除二取余"法。

4、十六进制数34B对应的十进制数是A)1234B)843C)768D)333【答案】B【解析】十六进制数转换成十进制数的方法和二进制一样,都是按权展开。

5、二进制数0111110转换成十六进制数是A)3FB)DDC)4AD)3E【答案】D【解析】二进制整数转换成十六进制整数的方法是:从个位数开始向左按每4位二进制数一组划分,不足4位的前面补0,然后各组代之以一位十六进制数字即可。

6、二进制数10100101011转换成十六进制数是A)52BB)D45DC)23CD)5E【答案】A【解析】二进制整数转换成十六进制整数的方法是:从个位数开始向左按每4位二进制数一组划分,不足4位的前面补0,然后各组代之以一位十六进制数字即可。

高中信息技巧基础进制转换。二进制,十进制,十六进制转换,转化[精彩]

高中信息技巧基础进制转换。二进制,十进制,十六进制转换,转化[精彩]

2进制数转换为10进制000000(110)2转化为十进制00000010进制整理转换成2进制000000于是,结果是余数的倒排列,即为:000000(37)10=(a5a4a3a2a1a0)2=(100101)2000000016进制转化成2进制、2进制转化成16进制0000000(二进制和十六进制的互相转换比较重要。

不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。

)00000016进制转化成2进制:每一位十六进制数对应二进制的四位,逐位展开。

000 000二进制数转为十六进制:将二进制数转换成十六进制数是将二进数的整数部分从右向左每四位一组,每一组为一位十六进制整数,不足四位时,在前面补00000000(FB)16=(1111 ,1011)2 互转0000002进制与16进制的关系:00000002进制0000 0001 0010 0011 0100 0101 0110 011116进制0 1 2 3 4 5 6 72进制1000 1001 1010 1011 1100 1101 1110 111116进制8 9 A B C D E F可以用四位数的二进制数来代表一个16进制,如3A16 转为二进制为:3为0011,A 为1010,合并起来为00111010。

可以将最左边的0去掉得1110102 右要将二进制转为16进制,只需将二进制的位数由右向左每四位一个单位分隔,将各单位对照出16进制的值即可。

000000016进制数转换为10进制数000000假设有一个十六进数 2AF5, 那么如何换算成10进制呢?0000000用竖式计算: 2AF5换算成10进制: 000000直接计算就是:0000005 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997 0000000(别忘了,在上面的计算中,A表示10,而F表示15)0000000假设有人问你,十进数 1234 为什么是一千二百三十四?0000000你尽可以给他这么一个算式: 1234 = 1 * 10^3 + 2 * 10^2 + 3 * 10^1 + 4 * 10^0000000如十进制数2039它可以表示为:2*10^3+0*10^2+3*10^1+9*10^0那么任何进制的数都一样,例如16进制数8A30E它就是8*16^4+10*16^3+3*16^2+0*16^1+14*16^0=566030,0000000算出来的值就是这个数对应的十进制数又例如k进制数abcdef(这是一个6位数)它就是a*k^5+b*k^4+c*k^3+d*k^2+e*k^1+f*k^0000000016进制数转换为10进制数000000与10进制整理转换成2进制类似,只是把除数改为160000000除16取余例如5616|57 9----3除数不够16除即停止结果39H例如33716|337 1----16|21 5---1结果151H0000000。

二进制、八进制、十进制、十六进制之间转换(含小数部分)[整理]

二进制、八进制、十进制、十六进制之间转换(含小数部分)[整理]

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

二进制,八进制,十进制,十六进制的相互转换

二进制,八进制,十进制,十六进制的相互转换

⼆进制,⼋进制,⼗进制,⼗六进制的相互转换常⽤进制数:⼆进制,⼋进制,⼗进制,⼗六进制进制理解计算机中硬件之间的信息传递是由电流确定,假如⼀个半导体允许通过的电流是5A,如果电流通过的为5A,则通过,计为1,如果通过的电流⼩于5A,则不通过,计为0。

由此,出现两种情况的判断,与或⾮。

电流的传递由0或1来完成,由此引申出⼆进制数的概念,以便底层硬件有共同的“语⾔”,即机器语⾔,相互沟通和交流。

我们⽣活中⼀般数值的运算是⼗进制。

就是满10进1,个⼗百千万,依次递进。

由此,可以类⽐。

⼆进制(Binary):0,1。

基数为2,逢⼆进⼀。

表⽰:(111)2或者(111)B⼋进制(Octal number system):0,1,2,3,4,5,6,7。

基数为8,逢⼋进⼀。

表⽰:(111)8或者(111)O⼗进制(Decimal system):0,1,2,3,4,5,6,7,8,9。

基数为10,逢⼗进⼀。

表⽰:(111)10或者(111)D⼗六进制(Hexadecimal):0,1,2,3,4,5,6,7,8,9,A(10),B(11),C(12),D(13),E(14),F(15)。

基数为16,逢⼗六进⼀。

表⽰:(111)16或者(111)Hn进制:(逢n进1)个位数:n0( 0个8)⼗位数:n1( 1个8)百位数:n2( 8个8)进制转换1.⼗进制转其他进制① 除⼆取余法(整数部分):把被转换的⼗进制整数反复除以2,直⾄商为0,所得的余数(从末位读起)就是这个数的⼆进制表⽰。

② 乘⼆取整法(⼩数部分):将⼩数部分乘以2,然后取整数部分,剩下的⼩数部分继续乘以2,然后取整数部分,剩下的⼩数部分⼜乘以2,⼀直取到⼩数部分为零为⽌。

如果永远不能为零,就同⼗进制数的四舍五⼊⼀样,按照要求保留多少位⼩数时,就根据后⾯⼀位是0还是1,取舍,如果是零,舍掉,如果是1,向⼊⼀位。

换句话说就是0舍1⼊。

读数要从前⾯的整数读到后⾯的整数。

各进制之间的转换方法及表格

各进制之间的转换方法及表格

各进制之间的转换方法及表格1. 介绍在计算机科学和数学领域中,进制是表示数字的一种方式。

常见的进制包括二进制、八进制、十进制和十六进制。

不同进制之间的转换是计算机科学和数学中非常重要的基本知识点。

本文将介绍各种进制之间的转换方法,并提供一个详细的表格以便于查阅。

2. 进制介绍2.1 二进制(Binary)二进制是计算机中最基础也最常用的一种进制,它只有两个数字:0和1。

在二进制中,每一位上的数字称为一个比特(bit)。

2.2 八进制(Octal)八进制使用0到7这8个数字来表示数值。

在八进制中,每一位上的数字相当于三个二进制位。

2.3 十进制(Decimal)十进制是我们日常生活中最常用的一种数字表示方式,它使用0到9这10个数字来表示数值。

2.4 十六进制(Hexadecimal)十六进制使用0到9这10个数字以及A到F这6个字母来表示数值。

在十六进制中,每一位上的数字相当于四个二进制位。

3. 进制转换方法3.1 二进制转换为八进制和十六进制将二进制数转换为八进制和十六进制的方法非常简单。

只需要将二进制数从右往左每三(对于八进制)或四(对于十六进制)个数字分组,并将每组转换为对应的八进制或十六进制数字即可。

示例1:将二进制数10101011转换为八进制和十六进制•八进制:10101011 = (001)(010)(101) = 125•十六进制:10101011 = (0010)(1011) = 2B3.2 八进制转换为二进制和十六进制将八进制数转换为二进制和十六进制的方法也很简单。

只需要将每一位上的数字分别转换为对应的三个(对于二进制)或四个(对于十六禁止)二级禁止即可。

示例2:将八禁止数125转换为二禁止和十禁止•二禁止:125 = (001)(010)(101) = 10101011•十禁止:125 = (2B)3.3 十禁止转换为二禁止和八禁止将十禁止数转换为二禁止和八禁止的方法也很简单。

二进制_八进制_十进制_十六 进制之间的相互转换

二进制_八进制_十进制_十六    进制之间的相互转换

二进制,八进制,十进制,十六进制之间的相互转换和相关概念二进制:计算机只认识0或1,也就是高电平和低电平.所以所有的数据格式最终会转化为2进制形式,计算机硬件才能识别。

二进制逢二进一,八进制逢八进一,十进制逢十进一,十六进制逢十六进一。

下边是各进制之间的转换公式.二进制转十进制0110 0100(2) 换算成十进制第0位 0 * 2^0 = 0第1位 0 * 2^1 = 0第2位 1 * 2^2 = 4第3位 0 * 2^3 = 0第4位 0 * 2^4 = 0第5位 1 * 2^5 = 32第6位 1 * 2^6 = 64第7位 0 * 2^7 = 0 +---------------------------100二进制转八进制可采用8421法1010011(2)首先每三位分割即: 001,010,011不足三位采用0补位.然后采用8421法: 001=1010=2011=3所以转换成8进制是123二进制转十六进制1101011010100(2)首先每四位分割即: 0001,1010,1101,0100不足四位采用0补位.然后采用8421法: 0001:11010:A1101:D0100:4所以转换成十六进制是1AD4十六进制当数字超过9后将采用A代替10,B代替11,C代替12,D代替13,E 代替14,F代替15;下边是十进制的各种转换:十进制转二进制6(10)10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

商余数6/2 3 03/2 1 11/2 0 1最后把余数从下向上排列写出110即是转换后的二进制.十进制转换八进制10进制数转换成八进制数,这是一个连续除8的过程:把要转换的数,除以8,得到商和余数,将商继续除以8,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

120(10)商余数120/8 15 015/8 1 71/8 0 1最后把余数从下向上排列写出170即是转换后的八进制.十进制转换十六进制10进制数转换成十六进制数,这是一个连续除16的过程:把要转换的数,除以16,得到商和余数,将商继续除以16,直到商为0。

二进制、八进制、十进制、十六进制之间的转换

二进制、八进制、十进制、十六进制之间的转换

1.首先我们从二进制转到八进制,这里以1010111为例。

2将二进制数从右到左每3位数分成一组,即“1 010 111”3将每组数从右到左分别乘以1,2,4,再相加,即1 2 7。

所求八进制即为127 现在我们将八进制转为二进制如1 2 7转为二进制5将每位数字拆为124与0,1的乘积组合,即1=0x4+0x2+1x1, 2=0x4+1x2+0x1,7=4x1+2x1+1x16将上述数字从左往右排列即可即1001111二进制、八进制、十进制、十六进制之间的转换进制也就是进制位,对于接触过电脑的人来说应该都不陌生,我们常用的进制包括:二进制、八进制、十进制与十六进制,它们之间区别在于数运算时是逢几进一位。

比如二进制是逢2进一位,十进制也就是我们常用的0-9是逢10进一位。

具体的用法小编今天不着重解释,主要针对他们之间的转换加以讨论(今天只讲整数)。

二进制与十进制之间的转换十进制转二进制方法为:十进制数除2取余法,即十进制数除2,余数为权位上的数,得到的商值继续除2,依此步骤继续向下运算直到商为0为止。

(具体用法如下图)二进制转十进制方法为:把二进制数按权展开、相加即得十进制数。

(具体用法如下图)二进制与八进制之间的转换二进制转八进制方法为:3位二进制数按权展开相加得到1位八进制数。

(注意事项,3位二进制转成八进制是从右到左开始转换,不足时补0)。

(具体用法如下图)八进制转成二进制方法为:八进制数通过除2取余法,得到二进制数,对每个八进制为3个二进制,不足时在最左边补零。

(具体用法如下图)二进制与十六进制之间的转换二进制转十六进制方法为:与二进制转八进制方法近似,八进制是取三合一,十六进制是取四合一。

(注意事项,4位二进制转成十六进制是从右到左开始转换,不足时补0)。

(具体用法如下图)十六进制转二进制方法为:十六进制数通过除2取余法,得到二进制数,对每个十六进制为4个二进制,不足时在最左边补零。

(具体用法如下图)十进制与八进制与十六进制之间的转换1.十进制转八进制或者十六进制有两种方法第一:间接法—把十进制转成二进制,然后再由二进制转成八进制或者十六进制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二进制十进制八进制十六进制的对应表如下图所示
二进制数是逢2进位的进位制,0、1是基本算符;计算机运算基础采用二进制。

电脑的基础是二进制。

在早期设计的常用的进制主要是十进制(因为我们有十个手指,所以十进制是比较合理的选择,用手指可以表示十个数字,0的概念直到很久以后才出现,所以是1-10而不是0-9)。

电子计算机出现以后,使用电子管来表示十种状态过于复杂,所以所有的电子计算机中只有两种基本的状态,开和关。

也就是说,电子管的两种状态决定了以电子管为基础的电子计算机采用二进制来表示数字和数据。

常用的进制还有8进制和16进制,在电脑科学中,经常会用到16进制,而十进制的使用非常少,这是因为16进制和二进制有天然的联系:4个二进制位可以表示从0到15的数字,这刚好是1个16进制位可以表示的数据,也就是说,将二进制转换成16进制只要每4位进行转换就可以了。

二进制的“00101000”直接可以转换成16进制的“28”。

字节是电脑中的基本存储单位,根据计算机字长的不同,字具有不同的位数,现代电脑的字长一般是32位的,也就是说,一个字的位数是32。

字节是8位的数据单元,一个字节可以表示0-255的十进制数据。

对于32位字长的现代电脑,一个字等于4个字节,对于早期的16位的电脑,一个字等于2个字节。

扩展资料
采用二进制数的原因
容易表示
二进制数只有“0”和“1”两个基本符号,易于用两种对立的物理状态表示。

运算简单
二进制数的算术运算特别简单,加法和乘法仅各有3条运算规则(0+0=0,0+1=1,1+1=10和0×0=0,0×1=0,1×1=1 ),运算时不易出错。

此外,二进制数的“1”和“0”正好可与逻辑值“真”和“假”相对应,这样就为计算机进行逻辑运算提供了方便。

算术运算和逻辑运算是计算机的基本运算,采用二进制可以简单方便地进行这两类运算。

相关文档
最新文档