2012-2013年高中数学常见题型解决方法归纳 反馈训练及详细解析 专题53 圆锥曲线常见题型解法

2012-2013年高中数学常见题型解决方法归纳 反馈训练及详细解析 专题53 圆锥曲线常见题型解法
2012-2013年高中数学常见题型解决方法归纳 反馈训练及详细解析 专题53 圆锥曲线常见题型解法

第53讲:圆锥曲线常见题型解法

【考纲要求】 (1)圆锥曲线

① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用 ② 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质

③ 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质 ④ 了解圆锥曲线的简单应用 ⑤ 理解数形结合的思想 (2)曲线与方程

了解方程的曲线与曲线的方程的对应关系

【方法点评】求圆锥曲线的方程,一般利用待定系数法,先定位,后定量。

【变式演练1】 双曲线的中心在坐标原点O ,焦点在x 轴上,过双曲线右焦点且斜率为的直

例2 已知椭圆221(0,0)x y a b a b

+=>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个

端点,F 为椭圆的一个焦点.若AB ⊥BF ,则该椭圆的离心率为( )

A.5+12

B.5-12

C.5+14

D.5-14

解: 因为AB ⊥BF ,所以k AB ·k BF =-1,即b a ·? ??

??-b c =-1,即b 2=ac ,所以a 2-c 2

=ac ,两

边同除以a 2,得e 2

+e -1=0,所以e =-1±52

(舍负),故选B.

【方法点评】求值一般利用方程的思想解答,所以本题的关键就是找到关于e 的方程。

【变式演练2】已知椭圆22122:1(0)x y C a b a b +=>>与双曲线22

2:14

y C x -

=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于A ,B 两点.若1C 恰好将线段AB 三

等分,则( )

A .2a =132

B .2a =13

C .2b =12

D .2

b =2

例3 已知2

x +4(y-1)2=4,求:(1)2

x +y 2的最大值与最小值;(2)x+y 的最大值与最小值.

(2)分析:显然采用(1)中方法行不通.如果令u=x+y ,则将此代入2

x +4(y-1)2=4中得关

于y 的一元二次方程,借助于判别式可求得最值.

令x+y=u , 则有x=u-y,代入2

x +4(y-1)2=4得:52

y -(2u+8)y+2

u =0. 又∵0≤y ≤2,(由(1)可知) ∴[-(2u+8)]2-4×5×2

u ≥0. ∴5151+≤≤-u

(Ⅰ)求椭圆C 的方程;

(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为2

3

,求△AOB 面积的最大值。

例4 已知椭圆)0(122

22>>=+b a b

y a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M

向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量与OM 是共线向量。(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;

【方法点评】由于共线向量与解析几何中平行线、三点共线等具有异曲同工的作用,因此,解析几何中与平行线、三点共线等相关的问题均可在向量共线的新情景下设计问题。求解此类问题的关键是:正确理解向量共线与解析几何中平行、三点共线等的关系,把有关向量的问题转化为解析几何问题.

【变式演练4】设1F 、2F 分别是椭圆14

22

=+y x 的左、右焦点。 (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;

(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O

例5已知双曲线12

2

2

=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。

故直线)1(21:-=-x y AB

由?????=--=-12)1(2122y x x y 消去y ,得03422=+-x x

08324)4(2<-=??--=?

这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。

在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。

例6

已知曲线()12

:2

21

=-+

a y x C 及1:22+=x y C 有公共点,求实数a 的取值范围.

可得:2y =2(1-a)y+2

a -4=0.

∵ △=4(1-a)2-4(a 2-4)≥0, ∴2

5

≤a .

如图2-47,可知:

椭圆中心()a ,0,半轴长2='a ,抛物线顶点为()1,0,所以当圆锥曲线在下方相切或相交

时,21-≥a . 综上所述,当2

5

21≤

≤-a 时, 曲线1C 与2C 相交

.

【变式演练6】设椭圆22

122:1(0)x y C a b a b +=>>,抛物线22

2:C x by b +=。

(1) 若2C 经过1C 的两个焦点,求1C 的离心率;

(2) 设A (0,b ),54Q ?? ???

,,又M 、N 为1C 与2C 不在y 轴上的两个交点,若△AMN 的

垂心为34B b ?? ???

0,,且△QMN 的重心在2C 上,求椭圆1C 和抛物线2C 的方程。

例7

在直角坐标系xOy 中,点M 到点)0,3(),0,3(21F F -的距离之和是4,点M 的

轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线b kx y l +=:与轨迹C 交于不同的两点P 和Q.

(I )求轨迹C 的方程;

(II )当0=?时,求k 与b 的关系,并证明直线l 过定点. 解:(1))0,3(),0,3(-到点M 的距离之和是4,

M ∴的轨迹C 是长轴为4,焦点在x 轴上焦中为32的椭圆,

其方程为.14

22

=+y x …………3分 (2)将b kx y +=,代入曲线C 的方程,

整理得0428)41(2

2=+++kx x k

…………5分

因为直线l 与曲线C 交于不同的两点P 和Q ,

所以.0)14(16)44)(41(4642

2

2

2

2

2

>+-=-+-=?b k b k b k ① 设),,(),,(2211y x Q y x P ,则

2

21221414

,4128k

x x k k x x +=+-

=+ ② …………7分

即,5

6

2k b k b =

=或经检验,都符合条件① 当b=2k 时,直线l 的方程为.2k kx y += 显然,此时直线l 经过定点(-2,0)点. 即直线l 经过点A ,与题意不符.

当k b 56=

时,直线l 的方程为).6

5(56+=+=x k k kx y 显然,此时直线l 经过定点)0,56

(-点,且不过点A.

综上,k 与b 的关系是:,5

6

k b =

且直线l 经过定点)0,5

6

(-点

【方法点评】证明曲线过定点,一般先求曲线的方程,再证明它过定点。

【变式演练7】在抛物线x2=4y 上有两点A(x 1,y1)和B(x2,y2)且满足|AB|=y 1+y2+2,求证:

(1)A 、B 和这抛物线的焦点三点共线;(2)

BF

AF 11+为定值

. 3233

122

1231.

122

x x x x y y y y '+-??'==????+???

'+-??'==???+?,, 又B 点在抛物线上,则2

3133122y x --??

=+ ?

??. 整理得2

121333y x ?

???-=- ? ??

???为所求轨迹方程.

【方法点评】点P 之所以在动,就是因为点B 在动,所以点P 是被动点,点B 是主动点,这

种情景,应该利用代入法求轨迹方程。

【变式演练8】 已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求

ABC △的重心G 的轨迹方程.

例9 已知中心在原点,焦点在x 轴上的椭圆C 的离心率为21,且经过点)2

3

,1(-,过点P (2,1)的直线l 与椭圆C 在第一象限相切于点M . (1)求椭圆C 的方程;

(2)求直线l 的方程以及点M 的坐标;

(3))是否存过点P 的直线1l 与椭圆C 相交于不同的两点A 、B ,满足2

=??若存在,求出直线l 1的方程;若不存在,请说明理由.

解:(Ⅰ)设椭圆C 的方程为)0(12222>>=+b a b y a x ,由题意得????

??

???+===+222222

1

1491c b a a c b a

解得3,42

2

==b a ,故椭圆C 的方程为13

42

2=+y x .……………………4分 (Ⅱ)因为过点P (2,1)的直线l 与椭圆在第一象限相切,所以l 的斜率存在,故可调直线l 的议程为.1)2(+-=x k y

由??

???+-==+1)2(,13

42

2x k y y x 得081616)12(8)43(2

22=--+--+k k x k k x k . ① 因为直线l 与椭圆相切,所以.0)81616)(43(4)]12(8[2

2

2

=--+---=?k k k k k

整理,得0)36(32>+k

解得.2

1->k [

所以直线l 方程为.22

1

1)2(21+-=+--=x x y 将21-

=k 代入①式,可以解得M 点横坐标为1,故切点M 坐标为).2

3

,1(…………9分 (Ⅲ)若存在直线l 1满足条件,的方程为1)2(1+-=x k y ,代入椭圆C 的方程得

.081616)12(8)43(12111221=--+--+k k x k k x k

因为直线l 1与椭圆C 相交于不同的两点A ,B ,设A ,B 两点的坐标分别为),,(),,(2211y x y x 所以.0)36(32)81616)(43(4)]12(8[12

2

2

>+=--+---=?k k k k k k

所以454344)1](443)12(824381616[2

1

212

1211121221=++=+++-?-+--k k k k k k k k k ,解得.211±=k 因为A ,B 为不同的两点,所以2

1

=k .

于是存在直线l 1满足条件,其方程为x y 2

1=

1.【2012高考真题浙江理8】如图,F 1,F 2分别是双曲线C :2

2

221x y a b

-=(a,b >0)的左、

右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平

分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是

A.

3 B

。2

),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b

c

a x

b

c b c y --=-,令0=y ,得

)1(22

b a

c x +=,所以c b a c 3)1(22=+,所以2222222a c b a -==,即2223c a =,所以

2

6

=

e 。故选B 2.【2012高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线

x y 162=的准线交于,A B 两点,AB =C 的实轴长为( )

()A ()B ()C 4 ()D 8

3.【2012高考真题新课标理4】设12F F 是椭圆22

22:1(0)x y E a b a b

+=>>的左、右焦点,P

为直线32a

x =上一点,12PF F ?是底角为30的等腰三角形,则E 的离心率为( )

()A 12 ()B 23 ()C 34 ()D 45

【解析】因为12PF F ?是底角为30的等腰三角形,则有P F F F 212=,,因为

02130=∠F PF ,所以0260=∠D PF ,0230=∠DPF ,所以

21222121F F PF D F ==

,即c c c a =?=-22123,所以c a 223=,即4

3=a c ,所以椭圆的离心率为43

=e ,选C.

4.【2012高考真题福建理8】已知双曲线

22

214x y b

-=的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于

C.3

D.5

【解析】由抛物线方程x y 122

=易知其焦点坐标为)0,3(,又根据双曲线的几何性质可知

2234=+b ,所以5=b ,从而可得渐进线方程为x y 2

5

±

=,即025=-±y x ,所以54

5|

0235|=+?-?±=

d ,故选A.

5.【2012高考真题全国卷理8】已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)

14 (B )35 (C)34 (D)45

【解析】双曲线的方程为12

22

2=-y x ,所以2,2===c b a ,因为|PF 1|=|2PF 2|,所以点P 在双曲线的右支上,则有|PF 1|-|PF 2|=2a=22,所以解得|PF 2|=22,|PF 1|=24,所以根据余弦定理得4

3

2

422214)24()22(cos 2221=

??-+=

PF F ,选C. 6.【2012高考真题重庆理14】过抛物线2

2y x =的焦点F 作直线交抛物线于,A B 两点,若

25

,,12

AB AF BF =

<则AF = .

7.【2012高考真题辽宁理20】(本小题满分12分)

如图,椭圆0C :22221(0x y a b a b

+=>>,a ,b 为常数),动圆222

11:C x y t +=,1b t a <<。

点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点。 (Ⅰ)求直线1AA 与直线2A B 交点M 的轨迹方程;

(Ⅱ)设动圆22222:C x y t +=与0C 相交于////

,,,A B C D 四点,其中2b t a <<,

12t t ≠。若矩形ABCD 与矩形////A B C D 的面积相等,证明:22

12t t +为定值。

(2)证明:设()22',A x y ,由矩形ABCD 与矩形''''ABCD 的面积相等,得

2222112211224=4,=x y x y x y x y ∴,因为点,'A A 均在椭圆上,所以222222121

2221-=1-x x b x b x a a ???? ? ?????

由12t t ≠,知12x x ≠,所以22212+=x x a 。从而222

12+=y y b ,因而222212+=+t t a b 为定值

8.【2012高考真题上海理22】(4+6+6=16分)在平面直角坐标系xOy 中,已知双曲线1C :

1222=-y x .

(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的

三角形的面积;

(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆12

2=+y x 相切,求证:OQ OP ⊥; (3)设椭圆2C :142

2

=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值.

由??

?=-+=1

22

2y x b x y ,得0122

2=---b bx x .

设P (x 1, y 1)、Q (x 2, y 2),则???--==+1

22

2121b x x b

x x .(lb ylfx ) 又2,所以

2

21212121)(2b x x b x x y y x x +++=+=?

022)1(2222=-=+?+--=b b b b b ,

设O 到直线MN 的距离为d ,因为2

2222||||)|||(|ON OM d ON OM =+, 所以31

33||1

||1122

22

2==+=

++k k ON OM d ,即d =3

3

.

综上,O 到直线MN 的距离是定值. ……16分 9、(2012高考真题山东理21)(本小题满分13分) 在平面直角坐标系xOy 中,F 是抛物线2:2C x py =(0)p >的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线 的距离为34

(Ⅰ)求抛物线C 的方程;

(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点?M 若存在,求出点M 的坐标;若不存在,说明理由;

(Ⅲ)若点M 直线1:4

l y kx =+与抛物线C 有两个不同的交点,A B ,l 与

圆Q 有两个不同的交点,D E ,求当122

k ≤≤时,22||||AB DE +的最小值.

又取FM 中点0(2

x N ,2

1)4x +,由垂径定理知FM QN ⊥,

所以0(FM QN x =?,201)2x -?01(4x -

,20)4

x 0

=0x ?=,所以存在

M 1). (Ⅲ)

依题M 1),

圆心Q ,1)4,圆Q

的半径||r OQ === 圆心Q 到直线14y kx =+

的距离为||

d ==

, 所以,2222222

2725272||4()43232(1)8(1)

k k DE r d k k ??+=-=-

= ?++??.

又联立222120124

x y

x kx y kx =???--=?=+??, 设1(A x ,1)y ,2(B x ,2)y ,则有,1212212

x x k

x x +=???=-??. 所以,222221212||(1)[()4](1)(42)AB k x x x x k k =++-=++. 于是,

2

22224222

22792511||||(1)(42)46(2)4828(1)

1k AB DE k k k k k k k ++=+++=+++≤≤++? 记29251

1()46(4)4

814

f x x x x x =+++≤≤+?,

225251'()866088

(1)f x x x =+->->+?,所以()f x 在1[4,4]上单增,

所以当14x =,()f x 取得最小值min 131()()42

f x f ==,

所以当12k =时,22||||AB DE +取得最小值132

.

【反馈训练】

1、求下列抛物线的方程

(1)顶点在原点,焦点在y 轴上,抛物线上点(3,a )到焦点的距离是5; (2)顶点在原点,焦点在x 轴上的抛物线截直线所得的弦长为。

3、过椭圆的焦点的直线交椭圆A,B 两点 ,求面积的最大值 。

4、椭圆14

92

2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。

5、已知椭圆13

42

2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有 不同的两点关于该直线对称。

6、如图,已知椭圆

2222

1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、

(Ⅰ)求椭圆和双曲线的标准方程;

(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·

1k k =; (Ⅲ)是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.

7、已知常数m > 0 ,向量a = (0, 1),向量b = (m, 0),经过点A(m, 0),以λa b +为方向向量的直线与经过点B(- m, 0),以λb -4a 为方向向量的直线交于点P ,其中λ∈R . (1) 求点P 的轨迹E ;

(2)

若m =F(4, 0),问是否存在实数k 使得以Q(k, 0)为圆心,|QF|为半径的圆与轨迹E 交于M 、N 两点,并且

|MF| + |NF| =.若存在求出k 的值;若不存在,试说明理由.

8、已知椭圆C 的中心在原点,一个焦点为F (0,2),且长轴长与短轴长的比是

2 (1)求椭圆C 的方程;

(2)若椭圆C 上在第一象限的一点P 的横坐标为1,过点P 作倾斜角互补的两条不同的直线PA ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率为定值; (3)在(2)的条件下,求△PAB 面积的最大值.

9 已知双曲线22

22n

y m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于

点P 、Q

(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;

(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率 【变式演练详细解析】

【变式演练1详细解析】

设所求的双曲线方程为,右焦点为F (c ,0) 由题设过F 点的直线l 方程为:

整理消去y 化为:……(※)

现分析的取值

若=0,则有这显然与已知直线l 的斜率相等而已知直线l 平行于双曲线的渐近线,则直线l 与双曲线只能交于一点与题设矛盾, ∴

因此若(※)方程两个根为 则有: 则: 其中:

【变式演练3详细解析】

解:(Ⅰ)设椭圆的半焦距为c

,依题意c a

a ?=????

1b ∴=,∴所求椭圆方程为

2

213

x y +=。 (Ⅱ)设11()A x y ,,22()B x y ,。(1)当AB x ⊥

轴时,AB =。(2)当AB 与x 轴不垂直时,

设直线AB 的方程为y kx m =+

2

23

(1)4

m k =+。 把y kx m =+代入椭圆方程,整理得2

2

2

(31)6330k x kmx m +++-=,

122

631

km

x x k -∴+=+,

21223(1)31

m x x k -=

+。

2

2

2

21(1)()AB k x x ∴=+-222

2

2223612(1)(1)(31)31k m m k k k ??-=+-

??++??

222222222

12(1)(31)3(1)(91)

(31)(31)k k m k k k k ++-++==

++242

22121212

33(0)34196123696k k k k k k

=+=+≠+=++?+++≤。 当且仅当2

2

1

9k k =

,即k =时等号成立。当0k =

时,AB =,

综上所述max 2AB =。

∴当AB 最大时,AOB △

面积取最大值max 12S AB =

?=。

222

1212

121

2121212

cos 2PF PF F F PF PF PF PF F PF PF PF PF PF +-?=??∠=??

?

((2

2

2

2221

1232x y x y x y ??=++++-=+-?

???

(以下同解法一)

(Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,

联立22

2

1

4

y kx x y =-???+=??,消去y ,整理得:22

14304k x kx ??+++= ??? ∴12122243,1

14

4

k x x x x k k +

=-

?=

+

+

由()2

2

14434304k k k ???=-+

?=-> ?

?

?

得:2k <或2k >- 又0

0090cos 000A B A B OA OB <∠??> ∴12120OA OB x x y y ?=+>

又()()()2

121212122224y y kx kx k x x k x x =++=+++2

2

223841144

k k k k -=++++

2211

4k k -+=+ ∵

2223

1

01144

k k k -++>++

,即24k < ∴22k -<<

故由①、②得22k -<<-

22

k <<

2242(21)4410k k k ?=--=-+>

即2

1

04

k <<

② 由韦达定理,得:2122

21

,k x x k -+=-121x x =。 则线段AB 的中点为22211

(,)22k k k

--

。 线段的垂直平分线方程为:

22

1112()22k y x k k k --=--

令y=0,得021122x k =

-,则211

(,0)22

E k - ABE ?为正三角形,

∴2

11

(

,0)22

E k -到直线AB 的距离d

AB 。

AB =

21k

=

+

2d k

=

2

2

12

2k k k

+=

解得

13

k =±满足②式

此时05

3

x =

。 【变式演练6详细解析】

故1,(,),(,)22424

b b x M N b =

---,得QMN ?重心坐标)4

b .

由重心在抛物线上得:22

3,=24b b b +=所以,11

(),)22

M N --,又因为M 、N 在椭圆上得:2

16

3

a =,椭圆方程为22163

14x y +=,抛物线方程为224x y +=。 【变式演练7详细解析】

(1)∵抛物线的焦点为F(0,1),准线方程为y=-1.

∴ A、B 到准线的距离分别d1=y1+1,d2=y 2+1(如图2-46所示).

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

高中数学模型解题法

高中数学模型解题法 高中数学模型解题理念 数学模型解题首先需要明确以下六大理念(原则): 理念之一——理论化原则。解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价 值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的! 理论之二——个性化原则。倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。 理论之三——能力化原则。只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力

聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔! 理论之四——示范化原则。任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。 理论之五——形式化原则。哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。 理论之六——习惯性原则。关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题“统一”模型的思考。第三个层次,主动的解题,就是对题

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

高中数学八种思维方法如何训练数学思维

高中数学八种思维方法如何训练数学思维 在数学学习中,比运算更重要的是思维方式。下面介绍几种适合大家的数学学习思维 方法以及如何训练数学思维,欢迎阅读。 如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提 高快 一、转化方法: 转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到 障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻 求最佳方法,使问题变得更简单、更清晰。 二、逻辑方法: 逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等 思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻 辑思维,在解决逻辑推理问题时使用广泛。 三、逆向方法: 逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的 一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深 入地进行探索,树立新思想,创立新形象。 四、对应方法: 对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。 五、创新方法: 创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维 的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。可 分为差异性、探索式、优化式及否定性四种。 点击查看:学好数学的核心概念与思维方法 六、系统方法: 系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一 个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种 类型,以及对应的解决方法。

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高中数学解析几何题型

解析几何题型 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22 162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =, 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-? =+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出2 211 14(2)32AB =+-?-=. 例3.如图,把椭圆22 12516 x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆22 12516 x y +=的方程知225, 5.a a =∴= ∴1234567 7277535.2 a PF P F P F P F P F P F P F a ?++++++==?=?= 考点3. 曲线的离心率

高中最全数学解题的思维策略资料全

一、《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,
昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们
下午物理上完之后再给大家补课,再给大家补 5 天的课程,
去年高考难,很多学生数学考得也很不错,,很多人可能会问补课
有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留
学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,
补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高
考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,
家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主
体还是我们学生,次要的才是老师,家长,环境,据去年那批学生
反映最后对我们 3 个教的还不错,
我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点
基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多
好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家
讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下
一些英语,语文和其他科目的技巧。


数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻
牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分
钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填
空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道

《高中最全数学解题的思维策略》

一、 《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图, 昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们 下午物理上完之后再给大家补课,再给大家补 5 天的课程, 去年高考难,很多学生数学考得也很不错, ,很多人可能会问补课 有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留 学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了, 补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高 考中分数的重要性, ,我姐是个老师,我姐经常说孩子们考好了, 家长就说, ,考不好,家长就说老师和郭师哥教的不好,实际上主 体还是我们学生,次要的才是老师,家长,环境,据去年那批学生 反映最后对我们 3 个教的还不错, 我先讲一下我补课大概基本要讲的内容, 把大家数学必修的知识点 基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多 好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家 讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下 一些英语,语文和其他科目的技巧。 导 读
数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效 的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解: 一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻 牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分 钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填空 题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道大 题都快做完了,这下就慌了,心想肯定完了,最后整个卷子全部慌了,后面计算正确率 也不高了,整个考试最后也可想而知。应该怎么办呀,先做会的,把整个卷子会做的做 完了,再去做会做的,即使有些题不会做也没关系,大题都是按步骤给分,步骤对了,

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

高中数学解析几何答题全攻略,2020高考生必看!

高中数学解析几何答题全攻略,2020高考生必看! 解析几何由于形式复杂多样,一直是难于解决的问题,很多同学对于解析几何的把握还差很多,很多同学对此知识点提出了相应的问题。对此清华附中数学老师有针对性的回答了同学们的共性问题。下面是对本次答疑情况的汇总,希望对大家学习数学尤其是解析几何部分有所帮助。 1 考试时间分配 问题1:老师我怎么这么短时间内做几道题通解一类题目呢?解析几何也有不少类型题 老师:理解的基础上去做,不要单纯的套公式,做题一定要保证真的会了,而不是只追求数量。如果感觉自己的水平没有提高,那么问问自己错题有没有好好整理,有没有盖住答案重新做过,再做的时候能不能保证很快的就有思路,之前出过的问题有没有及时得到解决?总之刷题不能埋头死刷,要有总结和反思。如果都做到了,考试还是没有好成绩,那么看看是不是考试时过于紧张,这个时候心态也很重要! 问题2:错题也有很多呀,怎么从错题那里去帮助学习数学呀?都抄几遍和看几遍吗?很多呀!该怎么办呢? 老师:对待错题,不要抄也不要只是看,当做新题重新做一遍,有时候一道题我们直接去看答案,总是发现不了问题,我建议把错题的题目直接汇编在一起,不要有答案,每隔一段时间都重新做一下,如果做题的过程很肯定,没有模糊的地方,这道题才可以过。这个过程比做新题更重要。

问题3:老师我数学只有三四十分马上高考该从哪里开始复习分数会提高呢? 老师:简单的题目模块比如复数、集合、线性规划、程序框图、三角函数与解三角形、简单的等差等比数列以及立体几何等,还有导数和圆锥曲线的第一问,找出前几年的高考题,看看都考了哪些简单模块,一个模块练几十道,绝对会有效果的,别放弃,只要努力一定能看到进步! 问题4:三视图怎么想也想不出来!有什么好的办法呀!老师!救救我 老师:平时见到三视图的题目无论问什么,都是去画他的立体图形,训练自己。如果考试时真的想不出来了,那么看看能不能判断出这个图形是什么,比如正视图和侧视图都只有一个最高顶点,那么基本可以判断这是一个椎体,如果是求体积的题目,直接底面积乘以高除以3就可以了,但是这个方法不是所有题目都适用。还有就是如果正视侧视和俯视都和正方形或者等腰直角三角形有关,那么可以画一个正方体,去找这个立体图形的可能性。 2 解析几何如何把握

高中数学解题思维提升专题08数列大题部分训练手册

专题08 数列大题部分 【训练目标】 1、 理解并会运用数列的函数特性; 2、 掌握等差数列,等比数列的通项公式,求和公式及性质; 3、 掌握根据递推公式求通项公式的方法; 4、 掌握常用的求和方法; 5、 掌握数列中简单的放缩法证明不等式。 【温馨小提示】 高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。总之,此类题目难度中等,属于必拿分题。 【名校试题荟萃】 1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和, 且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1 { }n a 的前n 项和n T ,求使得成立的n 的最小值. 【答案】(1)2n n a = (2)10 (2)由(1)可得112n n a ??= ??? ,所以 , 由 ,即21000n >,因为 ,所以10n ≥,于是使得 成立的n 的最小值为10. 2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈) 。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为1 2ln 2-,求数列 { }n n a b 的前n 项和n T . 【答案】(1) (2) (2)由 函数()f x 的图象在点22(,)a b 处的切线方程为 所以切线在x 轴上的截距为21 ln 2 a -,从而,故22a = 从而n a n =,2n n b =, 2n n n a n b = 所以 故。 3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N . (1)求1a ,2a ; (2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和.

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高中数学平面解析几何初步经典例题(供参考)

直线和圆的方程 一、知识导学 1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|. 2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以 A 为起点, B 为终点,P 为分点,则定比分点公式是???? ?? ?++=++=λ λλλ11212 1y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是??? ???? +=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系 (1)每一条直线都有倾斜角,但不一定有斜率. (2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α. 4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种 5.两条直线的夹角。当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ= 2 11 21k k k k +-, 当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的

区别. 6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断. (1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2?1k =2k ,且b1=b2 ②l 1⊥l 2?1k ·2k = -1 (2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1, B 2都不为零时,有以下结论: ①l 1∥l 2? 21A A =21B B ≠2 1C C ②l 1⊥l 2?A 1A 2+B 1B 2 = 0 ③l 1与l 2相交? 21A A ≠21B B ④l 1与l 2重合? 21A A =21B B =2 1 C C 7.点到直线的距离公式. (1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离 d = 2 2 00| |B A C By Ax +++; (2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离 d= 2 2 21||B A C C +-. 8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系 (1)圆的标准方程:222)()(r b y a x =-+-,其中(a ,b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:022=++++F Ey Dx y x (F E D 42 2-+>0),圆心坐标 为(-2D ,-2 E ),半径为r =2422 F E D -+.

相关文档
最新文档