平行垂直的判定性质定理
平行关系、垂直关系

有关垂直关系的证明方法:
2、线面垂直
(1)利用线面垂直的判定定理
(2)利用面面垂直的性质定理
(3)利用向量法
有关垂直关系的证明方法:
3、面面垂直 (1)利用面面垂直的定义
(2)利用面面垂直的判定定理
1、空间四面体ABCD中,若AB=BC, AD=CD,E为AC的中点,则有( 4 )
A E D B C
空间两条直线的位置关系有三种:
位置关系 相交直线 平行直线 共面情况 在同一平面内 在同一平面内 公共点个数 有且只有一个 没 有 没 有
异面直线 不同在任何一平面内
证明三点共线通常采用以下方法: (1)首先找出两个平面,然后证明这三点都是这两个平面 的公共点,根据基本性质2,这些点都在交线上. (2)由其中任意两点确定一条直线,再证另一点在这条直 线上.
D F G
A
B
C
E
练习
1.已知:ABCD为正方形,SD⊥平面AC,
问:图中所示的7个平面中,共有多少个平面互相垂直?
1.平面SAD⊥平面ABCD S
2.平面SBD⊥平面ABCD
3.平面SCD⊥平面ABCD 4.平面SAD⊥平面SCD 5.平面SBC⊥平面SCD 6.平面SAB⊥平面SAD
D A O
AD ⊥面BCD
AD ⊥BC DE
④
线面垂直
② ③
线线垂直
例 2、已知在正方体ABCD—A ′B ′C ′D ′中,E 为CC′中点,F为AC和BD的交点,
求证:A′F
⊥平面BED
D′ B′ D F A B P C′ E
(方法一)转化为平面几何 (方法二)三垂线定理
一. 平行直线 1. 平行直线的定义:同一平面内不相交的 两条直线叫做平行线. 2. 平行性质:过直线外一点有且只有一条 直线和这条直线平行. 3. 公理4:平行于同一直线的两条直线互相 平行,此性质又叫做空间平行线的传递性.
线面平行、线面垂直、面面平行、面面垂直的性质定理-武威第三中学-邵志光

推论:三个两两垂直的平面的交线两两垂直。
定理4:如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。(判定定理推论1的逆定理)
推论:如果两个平面互相垂直,那么分别垂直于这两个平面的两条垂线也互相垂直。(判定定理推论2的逆定理)
线面平行判定及其性质
1、直线与平面平行的判定定理:
定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
定理2:平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
2、判断直线与平面平行的方法:
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
注:线面平行通常采用构造平行四边形来求证。
3、直线与平面平行的性质定理:
定理1:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
定理2:一条直线与一个平面平行,则该直线垂直于此平面的垂线。
线面垂直判定及其性质
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
注:线面平行通常采用构造平行四边形来求证。
3、直线与平面平行的性质定理:
定理1:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
定理2:一条直线与一个平面平行,则该直线垂直于此平面的垂线。
线面垂直判定及其性质
定理3:如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。
2、面面平行的性质定理:
定理1:两个平面平行,在一个平面内的任意一条直线平行于另外一个平面。
立体几何平行垂直8个定理

立体几何平行垂直8个定理哎,说起立体几何里的平行垂直那8个定理,简直就是我学生时代的一块心病啊!那时候,每次数学课讲到这儿,我就感觉自己的大脑像是被施了魔法,完全转不过来弯儿。
不过呢,现在回想起来,那段日子也挺有意思的,毕竟,谁能说学数学不是一场奇妙的冒险呢?首先啊,咱们得说说那个“平行公理”。
你知道吗,它就像是生活中的一条隐形规则,告诉你“过直线外一点,有且只有一条直线与已知直线平行”。
听起来挺绕的,但想象一下,你站在一条笔直的路上,想要找一条和这条路既不交叉也不重合的新路走,那你就只能选择平行于这条路的那一条,别无选择。
是不是觉得,数学有时候也挺有哲理的?接下来,就是那个“平行线的性质定理”了。
这个定理就像是平行线之间的秘密约定,告诉你“两直线平行,同位角相等”。
每次做题的时候,我就想象自己变成了侦探,在两条平行线之间寻找那些隐藏的“同位角”,然后像解开谜题一样,把它们一一对应起来。
那种成就感,简直比找到宝藏还要让人兴奋!还有那个“平行于同一条直线的两直线平行”,这个定理简直就是“物以类聚,人以群分”的数学版。
你想啊,如果两条直线都愿意和同一条直线做朋友,那它们之间肯定也合得来,对吧?这种逻辑上的简单明了,让我对数学又多了几分好感。
说到垂直,那“垂直平分线的性质定理”可就不能不提了。
它就像是足球场上的裁判,公正无私地告诉你“垂直平分线上的点到线段两端点的距离相等”。
每次看到这样的题目,我就感觉自己像是在进行一场公平的较量,只要我按照规则来,就一定能找到正确答案。
还有那个“直线垂直于平面的判定定理”,它就像是建筑工人手里的锤子,坚定地告诉你“一条直线如果垂直于平面内两条相交的直线,那么这条直线与这个平面垂直”。
每次想到这个定理,我就仿佛看到了那些高楼大厦拔地而起,每一块砖石都严丝合缝,让人不得不感叹数学的神奇。
“平面与平面垂直的判定定理”也挺有意思的,它就像是两个好朋友之间的默契,告诉你“如果一个平面过另外一个平面的垂线,那么这两个平面垂直”。
平行线与垂直线知识点总结

平行线与垂直线知识点总结平行线和垂直线是几何中重要的概念。
它们之间存在一些关键性的属性和定理,了解这些知识点对于理解几何学的基础原理和解题技巧至关重要。
本文将对平行线和垂直线的定义、性质以及相关定理进行总结。
一、平行线1. 定义:平行线是在同一个平面中,永远不相交的两条直线。
用符号“//”表示两条平行线。
2. 性质:- 平行线之间存在等距离:两条平行线的任意两点之间的距离相等。
- 平行线的斜率相等:两条平行线的斜率是相等的。
- 平行线具有传递性:若直线a//b,b//c,则a//c。
3. 平行线的判定:- 垂直平分线判定法:如果两条线段的中垂线重合,则这两条线段平行。
- 角平分线判定法:如果两条角的角平分线平行,则两条角所在的直线平行。
- 逆否命题判定法:如果两条直线的对应角都不相等,则这两条直线平行。
- 同位角定理:两条平行线被一条横切线所交,所形成的同位角相等。
- 内错角定理:两条平行线被一条横切线所交,所形成的内错角互补。
- 外错角定理:两条平行线被一条横切线所交,所形成的外错角相等。
二、垂直线1. 定义:垂直线是在同一个平面中,相交时所成的角度为90度的两条直线。
2. 性质:- 垂直线之间的角度为90度。
- 垂直线的斜率乘积为-1。
- 垂直线上的任意线段之间距离相等。
3. 垂直线的判定:- 垂直平分线判定法:如果两条线段的中垂线垂直,则这两条线段垂直。
- 互相垂直的直线判定法:如果两条直线斜率的乘积为-1,则这两条直线垂直。
- 同位角定理:两条垂直线被一条直线所交,所形成的同位角相等。
- 内错角定理:两条垂直线被一条直线所交,所形成的内错角互补。
- 外错角定理:两条垂直线被一条直线所交,所形成的外错角相等。
总结:平行线和垂直线是几何学中十分重要的概念。
平行线具有等距离和相等斜率的特点,垂直线具有90度的角度和斜率乘积为-1的特点。
我们可以利用垂直线和平行线的性质来判断线段和直线的关系,以及解决各类几何题目。
平行线与垂直线的性质及判定方法

平行线与垂直线的性质及判定方法平行线和垂直线是几何学中常见的重要概念。
对于这两种线相互之间的性质以及如何准确判定它们的方法,本文将进行详细介绍。
一、平行线的性质及判定方法平行线是指在同一个平面内永远不会相交的两条直线。
关于平行线的性质和判定方法,我们可以从以下几个方面进行说明。
1. 平行线的性质1.1 不同于同一直线上的两点,同一平面上不同直线上的两点无法连线。
1.2 平行线之间的距离始终相等。
1.3 平行线对应的内角、外角相等。
1.4 平行线的斜率相等或者不存在。
2. 平行线的判定方法2.1 通过观察法判定平行线:如果两条直线的方向相同或者相互平行,它们就是平行线。
可以通过观察直线的倾斜角度或者倾斜方向来判断。
2.2 通过斜率判定平行线:计算两条直线的斜率,如果它们的斜率相等或者不存在,那么这两条直线即为平行线。
2.3 通过平行线定理判定平行线:平行线定理是指如果有一直线与两条平行线相交,那么这两条直线也是平行线。
二、垂直线的性质及判定方法垂直线是指在同一个平面上与另一条直线相交时,两条直线之间的角度为90度。
下面我们来介绍垂直线的性质和判定方法。
1. 垂直线的性质1.1 垂直线之间相交的角度为90度。
1.2 垂直线上的两条线段的长度相等。
1.3 垂直线的斜率的乘积为-1,其中一个垂直线的斜率不存在。
2. 垂直线的判定方法2.1 通过观察法判定垂直线:如果两条直线的交角为90度,它们就是垂直线。
可以通过观察直线之间的交角来判断。
2.2 通过斜率判定垂直线:计算两条直线的斜率,如果斜率的乘积为-1,其中一个直线的斜率不存在,那么这两条直线即为垂直线。
2.3 通过垂直线定理判定垂直线:垂直线定理是指如果两条直线相互垂直,则它们的斜率乘积为-1。
综上所述,平行线与垂直线在几何学中有着重要的性质和判定方法。
对于平行线来说,我们可以通过观察法、斜率以及平行线定理来判定。
而对于垂直线来说,我们可以通过观察法、斜率以及垂直线定理来判定。
立体几何基础平行与垂直的性质与判定

立体几何基础平行与垂直的性质与判定立体几何基础——平行与垂直的性质与判定立体几何是数学中的一个重要分支,它研究的对象是在三维空间内的图形和物体。
在立体几何中,平行和垂直是两个基本概念,它们在判断和解决几何问题时起着重要的作用。
本文将介绍平行与垂直的性质和判定方法,帮助读者更好地理解立体几何的基础知识。
一、平行的性质与判定平行是指在同一平面内,两条直线永不相交的性质。
在立体几何中,我们常用平行性质来推导和证明定理。
以下是一些与平行相关的性质和判定方法。
1. 平行线性质:(1)平行线上的对应角相等:如果两条平行线被一条横截线所交,那么对应的角都是相等的。
(2)平行线上的内错角互补:如果两条平行线被一条横截线所交,那么内错角互补,即相互补充的角和为180度。
(3)平行线上的同旁内角相等:如果两条平行线被一条横截线所交,那么同旁内角相等,即相邻的内角相等。
2. 判定平行线的方法:(1)两条线段平行的充要条件是斜率相等:如果两条线段的斜率相等,那么它们是平行的。
(2)两个向量平行的充要条件是比值相等:如果两个向量的坐标分量比值相等,那么它们是平行的。
(3)两条直线互相垂直的充要条件是斜率乘积为-1:如果两条直线的斜率乘积为-1,那么它们互相垂直。
二、垂直的性质与判定垂直是指两条直线或线段在交点处互相成直角的性质。
垂直的性质在几何证明中经常被用到,下面是关于垂直的一些性质和判定方法。
1. 垂直线性质:(1)垂直线上的对应角互补:如果两条垂直线被一条横截线所交,那么对应的角互补,即相互补充的角和为90度。
(2)垂直线上的内角相等:如果两条垂直线被一条横截线所交,那么内角相等,即相邻的内角相等。
2. 判定垂直线的方法:(1)两条线段垂直的充要条件是斜率乘积为-1:如果两条线段的斜率乘积为-1,那么它们是垂直的。
(2)两个向量垂直的充要条件是内积为0:如果两个向量的内积为0,那么它们是垂直的。
三、平行和垂直在实际中的应用平行和垂直的性质在日常生活和工程实践中有广泛的应用。
垂直与平行线的性质

垂直与平行线的性质垂直与平行线是几何学中的基本概念,它们之间有着一系列独特的性质和关系。
本文将详细介绍垂直与平行线的性质,包括定义、判定方法、性质特点以及在几何证明中的应用。
一、垂直线的性质垂直线是指在同一平面上,两条线段相交时,相交角度为90度(也称为直角)。
根据垂直线的定义,我们可以得出以下两个性质:1. 垂直线的判定方法判定两条线段是否垂直的方法有多种,其中最常用的方法是判断两条线段的斜率是否相乘为-1。
若两条线段的斜率(垂直或倾斜)之积等于-1,则可以确定它们是相互垂直的。
2. 垂直线的性质垂直线的性质有许多,以下是其中几个重要的性质:(1) 相交直线的垂直角度为90度;(2) 一个点到一条直线的垂直距离为两线段间的最短距离;(3) 垂直线与水平线之间无斜率关系,即水平线的斜率为0,垂直线的斜率不存在。
二、平行线的性质平行线是指在同一平面上,永不相交且始终保持等间距的两条直线。
平行线也有一系列与之相关的性质和定理。
1. 平行线的判定方法判定两条直线是否平行也有多种方法,其中常用的有以下几种:(1) 借助对应角、内错角或同位角等角度关系判断是否平行;(2) 判断两条直线的斜率是否相等或互为倒数关系;(3) 求取两条直线上两个点的坐标,并验证斜率是否相等。
2. 平行线的性质平行线的性质有:(1) 平行线之间的夹角为0度,即平行线之间没有交叉点;(2) 平行线具有等间距性,两条平行线上任意一点到另一条线的距离保持不变。
三、垂直线与平行线的关系垂直线与平行线之间存在一系列重要的关系,我们来看一下:1. 垂直线与平行线的关系(1) 垂直线与平行线不可能同时存在于同一平面上;(2) 两条平行线分别与第三条垂直线相交,则它们与垂直线的交点之间的角度相等。
2. 平行线之间的垂直线关系(1) 两条平行线与一条垂直线相交,则垂直线与平行线上的各个角度之和为180度。
(2) 平行线之间的垂直线等于从平行线上的任意一点到垂直线的距离。
平行线与垂直线的性质与判定

平行线与垂直线的性质与判定平行线和垂直线是几何学中常见的两种特殊线型。
它们具有不同的性质和判定方法,在解决几何问题和证明几何命题时起到重要作用。
本文将介绍平行线和垂直线的性质以及判定方法。
一、平行线的性质与判定1. 平行线的性质平行线是指不相交且位于同一平面内的两条直线,它们具有以下性质:(1)平行线上的任意一对对应角相等;(2)平行线与横截线之间,对应角相等;(3)平行线与平行线之间,内角和等于180度;(4)平行线的任意两条线段之间的比例相等。
2. 平行线的判定方法平行线可以通过以下几种方法进行判定:(1)同位角判定法:若两条直线被一组平行线截断,或者两条直线被一组平行线所包围,那么这两条直线就是平行线。
(2)转角判定法:若两条直线之间的内角和等于180度,则这两条直线是平行线。
(3)斜率判定法:若两条直线的斜率相等并且不相交,那么这两条直线是平行线。
(4)平行线的性质判定法:若两条直线具有平行线的性质,如对应角相等、内角和等于180度等,则这两条直线是平行线。
二、垂直线的性质与判定1. 垂直线的性质垂直线是指两条直线相交,交角等于90度的情况。
垂直线具有以下性质:(1)垂直线构成的交角等于90度;(2)垂直线的斜率之积等于-1。
2. 垂直线的判定方法垂直线可以通过以下几种方法进行判定:(1)直角判定法:若两条直线的交角等于90度,则这两条直线是垂直线。
(2)斜率判定法:若两条直线的斜率之积等于-1,则这两条直线是垂直线。
(3)垂直线的性质判定法:若两条直线具有垂直线的性质,如交角等于90度等,则这两条直线是垂直线。
三、平行线与垂直线的应用平行线和垂直线在几何学中有广泛的应用。
它们能够帮助我们解决与角度、比例和图形相似性等相关的问题。
1. 平行线的应用平行线的性质和判定方法可以应用于以下几个方面:(1)证明两幅图形相似:如果两条直线与另外一组平行线相交,并且相交处的对应角相等,那么这两幅图形是相似的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E C A B
D P
平行垂直的判定性质定理
一、线面平行
1、直线和平面平行的判定定理:
⑴平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
即 ,////a b a a b ααα⊄⊂⎫⇒⎬⎭ 1、已知四棱锥P ABCD -的底面是菱形.PB PD =,E 为PA 的中点.求证:PC ∥平面BDE ;
2、直线和平面平行的性质定理:
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
即 //l l m m β
αβ⊂⎫⇒⎬=⎭
二、两平面平行———没有公共点
1、两个平面平行的判定定理:
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
即
////a b a b P a b αββααα⊂,⊂,=⎫⇒//⎬,⎭
1、 如下图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证: 平面MNP ∥平面A 1BD .
2、两个平面平行的性质定理:
如果两个平面平行同时和第三个平面相交,那么它们交线平行。
即
//,a b a b αβαγβγ//⎫⇒⎬==⎭
推论: ①如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
即
,,,,//,//a b a b A m n m n B a m b n ααββαβ⊂,⊂=⊂⊂=⎫⇒//⎬⎭
②垂直于同一条直线的两个平面互相平行;
即 ,l l αβαβ⊥⊥⇒//;
③平行于同一平面的两个平面平行。
//αγβγαβ//,⇒//
三、线面垂直 1、线面垂直判定定理:一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面垂直。
即
,,,m n m n A l l m l n ααα⊂⊂=⎫⇒⊥⎬⊥⊥⎭
1、如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=,点D ,E 分别在棱,PB PC
上,且//DE BC .求证:BC ⊥平面PAC ;
.
2、线面性质定理:垂直于一个平面的两条直线平行。
即 a a b b αα⊥⎫⇒⊥⎬⊥⎭
四、面面垂直
1、面面垂直的判定定理: 一个平面经过另一个平面的垂线,则这两个平面互相垂直。
即
a a ααββ⊂⎫⇒⊥⎬⊥⎭
1、如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.求证:平面AEC PDB ⊥平面;
.
2、面面垂直的性质定理:
如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
即 ,,l a a a l αβαββα⊥=⎫⇒⊥⎬⊂⊥⎭。