中考试卷分类汇编:代数几何综合

合集下载

【初三数学】代数几何综合题(含答案)(共15页)

【初三数学】代数几何综合题(含答案)(共15页)

代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。

关键是搞清楚用坐标表示的数与线段的长度的关系。

练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。

(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

中考压轴题目归类总结代数几何综合板块

中考压轴题目归类总结代数几何综合板块

中考压轴题目归类总结代数几何综合板块.doc 中考压轴题目归类总结:代数几何综合板块引言介绍中考压轴题目的重要性代数几何综合板块在中考中的地位归类总结的目的和意义代数几何综合板块概述代数几何综合板块的定义该板块涵盖的主要内容代数方程几何图形函数与图形几何证明代数几何综合题目特点结合代数和几何的解题思路需要综合运用多种数学知识题目通常具有较高的难度和综合性代数几何综合题目解题策略分析题目要求,确定解题方向利用代数方法解决几何问题利用几何直观辅助代数计算综合运用函数、方程、不等式等数学工具代数几何综合板块常见题型题型一:代数方程与几何图形结合例题分析解题步骤易错点提示题型二:几何图形中的代数问题例题分析解题步骤易错点提示题型三:函数与几何图形的结合例题分析解题步骤易错点提示题型四:几何证明中的代数应用例题分析解题步骤易错点提示代数几何综合题目解题技巧转化思想:将几何问题转化为代数问题建模思想:建立数学模型解决实际问题归纳推理:通过已知条件推导未知结论逆向思维:从结论出发,逆向求解代数几何综合板块备考建议系统复习代数和几何基础知识多做综合题目,提高解题能力总结解题规律,形成自己的解题方法培养空间想象能力和逻辑推理能力经典例题解析选取几道历年中考中的代数几何综合题目分步骤解析解题过程总结解题思路和技巧结语强调代数几何综合板块在中考中的重要性鼓励学生通过不断练习提高解题能力表达对学生中考取得优异成绩的祝愿。

各省市中考数学分类汇总代数几何综合题

各省市中考数学分类汇总代数几何综合题

2016中考分类汇总(28)代几综合题(2016安徽)22.如图,二次函数bx=2的图象经过点)4,2(A与)0,6(B.axy+(1)求ba,的值;(2)点C是该二次函数图象上BA,两点之间的一动点,横坐标为)6x.写出四边形OACB的面积S关<x2(<于点C的横坐标x的函数表达式,并求S的最大值.(2016龙东)28.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上,∠OAB=90°且OA=AB,OB、OC的长分别是一元二次方程x2-11x+30=0的两个根(OB>OC).(1)求点A和点B的坐标.(2)点P是线段OB上的一个动点(点P不与点O、B重合),过点P的直线a与y轴平行,直线a交边OA或边AB于点Q,交边OC或边BC于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线a恰好过点C.当0<t<3时,求m 关于t的函数关系式.(3)当m=时,请你直接写出点P的坐标.(2016毕节)如图,已知抛物线bx x y +=2与直线42+=x y 交于A(a,8)、B 两点,点P 是抛物线上A 、B 之间的一个动点,过点P 分别作x 轴、y 轴的平行线与直线AB 交于点C 和点E.(1)求抛物线的解析式;(2)若C 为AB 中点,求PC 的长;(3)如图,以PC,PE 为边构造矩形PCDE ,设点D 的坐标为(m,n ),请求出m,n 之间的关系式。

(2016滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y 轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.二次函数(2016长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°.点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFGH.设点E 运动的时间为t秒.(1)求线段EF的长.(用含t的代数式表示)(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积为S平方单位,求S与t 之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点'O.当'OO∥AD时,t的值为______;当'OO⊥AD时,t的值为______.(第23题)(2016长春)如图,在平面直角坐标系中.有抛物线2y a x h=-.()=-+和2(3)4y a x抛物线2y a x=-+经过原点,与x轴正半轴交于点A,与其对称轴交于(3)4点是抛物线2=-+上一点,且在x轴上方.过点P作x轴的垂线交抛物y a x(3)4线2()=-于点'Q(不与点y a x h=-于点Q.过点Q作PQ的垂线交抛物线2()y a x hQ重合),连结'PQ.设点P的横坐标为m.(1)求a的值.(2)当抛物线2=-经过原点时,设△'y a x h()PQQ与△OAB重叠部分图形的周长为l.①求'PQ QQ 的值. ②求l 与m 之间的函数关系式.(3)当h 为何值时,存在点P ,使以点O 、A 、Q 、'Q 为顶点的四边形是轴对称图形?直接写出h 的值.(第24题)(2016长沙)如图,直线l :y =-x +1与x 轴,y 轴分别交于A ,B 两点,点P ,Q 是直线l 上的两个动点,且点P 在第二象限,点Q 在第四象限,∠POQ=135°.(1) 求△AOB 的周长;(2) 设AQ=t >0.试用含t 的代数式表示点P 的坐标;(3) 当动点P ,Q 在直线l 上运动到使得△AOQ 与△BPO 的周长相等时,记作∠AOQ=m ,若过点A 的二次函数y =ax 2+bx +c 同时满足以下两个条件:① 6a +3b +2c =0;② 当m ≤x ≤m +2时,函数y 的最大值等于m 2,求二次项系数a 的值.(2016成都)如图,在平面直角坐标系xOy 中,抛物线()213y a x =+-与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,83-),顶点为D ,对称轴与x 轴交于点H.过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴右侧.(1)求a 的值及点A 、B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否成为菱形?若能,求出点N 的坐标;若不能,请说明理由.(2016达州)如图,已知抛物线y=ax2+2x+6(a≠0)交x轴与A,B两点(点A 在点B左侧),将直尺WXYZ与x轴负方向成45°放置,边WZ经过抛物线上的点C(4,m),与抛物线的另一交点为点D,直尺被x轴截得的线段EF=2,且△CE F 的面积为6.(1)求该抛物线的解析式;(2)探究:在直线AC上方的抛物线上是否存在一点P,使得△ACP的面积最大?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.(3)将直尺以每秒2个单位的速度沿x轴向左平移,设平移的时间为t秒,平移后的直尺为W′X′Y′Z′,其中边X′Y′所在的直线与x轴交于点M,与抛物线的其中一个交点为点N,请直接写出当t为何值时,可使得以C、D、M、N为顶点的四边形是平行四边形.【考点】二次函数综合题;二次函数的性质;待定系数法求二次函数解析式;三角形的面积;平行四边形的性质.(2016大庆)若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ 的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.【考点】二次函数综合题.顶点坐标公式、二次函数的图象和性质、全等三角形的性质和判定、函数图象上点的坐标与函数解析式的关系,用含a的式子表示点B′的坐标(2016丹东)如图,抛物线bx=2过A(4,0),B(1,3)两点,点C、By+ax关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.(2016德州)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P 的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【点评】此题是二次函数综合题,主要考查了一元二次方程的解法,待定系数法求函数解析式,等腰直角三角形的性质和判定,解本题的关键是判定△BCD 是直角三角形.(2016广安)如图,抛物线y=x 2+bx+c 与直线y=x ﹣3交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC⊥x 轴于点C ,交AB 于点D . (1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由.(3)当点P 运动到直线AB 下方某一处时,过点P 作PM⊥AB,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标.(2016鄂州)如图在平面直角坐标系xoy 中,直线y =2x +4与y 轴交于A 点,与x 轴交于B 点,抛物线C 1:c bx x y ++-=241过A 、B 两点,与x 轴另一交点为C 。

中考数学复习专题 代数与几何综合(含答案)

中考数学复习专题 代数与几何综合(含答案)
第- 6 -页 共 8 页
5. 如图 2-5-16,在矩形 ABCD 中,AB=10。cm,BC=8cm.点 P 从 A 出发,沿 A→B→C→D 路线运动,到 D 停止;点 Q 从 D 出发,沿 D→C→B→A 路线运动,到 A 停止,若点 P、 点 Q 同时出发,点 P 的速度为 1cm/s,点 Q 的速度为 2cm/s,a s 时点 P、点 Q 同时改变 速度,点 P 的速度变为 bcm/s,点 Q 的速度变为 d cm/s,图 2-5-17 是点 P 出发 x 秒 后△APD 的面积 S1(cm2)与 x(s)的函数关系图象;图 2-5-18 是点 Q 出发 xs 后面 AQD 的面积 S2(cm2)与 x(s)的函数关系图象. ⑴ 参照图 2-5-17,求 a、b 及图中 c 的值; ⑵ 求 d 的值; ⑶ 设点 P 离开点 A 的路程为 y1(cm),点 Q 到点 A 还需走的路程为 y2(cm),请分别写出 动点 P、Q 改变速度后,y1、y2 与出发后的运动时间 x(s)的函数解析式,并求出 P、 Q 相遇时 x 的值. ⑷ 当点 Q 出发_______s 时,点 P、点 Q 在运动路线上相距的路程为 25cm.
第- 6 -页 共 8 页
答案 一、ABDCB DAACD
二、1、 3 2、 2 -1
三、1、(1)y=- 1 x2+x 2
3、 11
6
4、(-502,502)
(2)x 取最大整数为-1,∴ y=- 1 ×(-1)2-1=– 3 ∴AC= 3
2
2
2
由△BOQ∽△CAQ,可得 BO = OQ
AC AQ
C. y x
D. y 3 x 2
7.如图,反比例函数 y 4 的图象与直线 y 1 x 的

2023~2014北京十年中考数学分类汇编——代数综合(原卷版)

2023~2014北京十年中考数学分类汇编——代数综合(原卷版)

2023~2014北京十年中考数学分类汇编——代数综合1.(2023•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c (a>0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.2.(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a >0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.3.(2021•北京)在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx (a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(﹣1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.4.(2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c (a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.6.(2018•北京)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N (x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.8.(2016•北京)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.9.(2015•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y =x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a 的取值范围.10.(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B (3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.。

中考数学试卷题目分类汇总

中考数学试卷题目分类汇总

一、选择题1. 数与代数- 实数的运算- 代数式的化简- 分式的运算- 根据方程求未知数- 解不等式及不等式组- 函数的性质与应用2. 几何与图形- 直线、射线、线段的概念及性质- 角的概念及性质- 平行线、相交线、垂直线的判定- 四边形、多边形的概念及性质- 圆的概念及性质- 三角形的概念及性质,如三角形全等、相似3. 统计与概率- 数据的收集、整理、描述- 平均数、中位数、众数的计算- 概率的基本概念及计算- 事件的相互关系及概率的运算二、填空题1. 数与代数- 实数的性质及运算- 代数式的化简及求值 - 分式的化简及运算- 根据方程求未知数- 解不等式及不等式组2. 几何与图形- 几何图形的性质及判定 - 几何图形的变换- 几何问题的解决方法 - 圆的相关计算3. 统计与概率- 数据的描述及分析- 概率的计算与应用三、解答题1. 数与代数- 复杂方程的求解- 函数问题及实际应用 - 代数问题的综合应用 - 函数与几何的结合问题2. 几何与图形- 几何图形的证明- 几何问题的解决方法 - 几何图形的应用- 几何问题的综合应用3. 统计与概率- 统计数据的分析及处理- 概率的计算与应用- 统计与概率的实际问题四、实验题1. 数与代数- 使用计算器进行计算- 利用计算机软件进行数据处理2. 几何与图形- 利用计算机软件绘制几何图形- 利用计算机软件进行几何问题的探究3. 统计与概率- 利用计算机软件进行数据分析- 利用计算机软件进行概率问题的探究五、应用题1. 数与代数- 生活、生产、科技等领域的实际问题 - 经济、金融、物理等领域的实际问题2. 几何与图形- 建筑设计、城市规划等领域的实际问题 - 物理实验、天文观测等领域的实际问题3. 统计与概率- 社会调查、市场分析等领域的实际问题- 医学研究、生物统计等领域的实际问题总结:中考数学试卷题目分类汇总涵盖了数与代数、几何与图形、统计与概率三个主要模块,旨在考查学生对数学知识的掌握程度、应用能力及创新思维。

2014-2023年北京市中考真题数学试题汇编:几何综合

2014-2023年北京市中考真题数学试题汇编:几何综合

2014-2023北京中考真题数学汇编几何综合 一、解答题1.(2023·北京·统考中考真题)在ABC 中、()045B C αα∠=∠=°<<°,AM BC ⊥于点M ,D 是线段MC 上的动点(不与点M ,C 重合),将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足DF DC =,连接AE ,EF ,直接写出AEF ∠的大小,并证明.2.(2022·北京·统考中考真题)在ABC 中,90ACB ∠= ,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.3.(2021·北京·统考中考真题)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明; (2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明. 4.(2020·北京·统考中考真题)在ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,交直线BC 于点F ,连接EF .7.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.8.(2016·北京·中考真题)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有P A=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明P A=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明P A=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证P A=PM,只需证P A=CK,PM=CK.请你参考上面的想法,帮助小茹证明P A=PM(一种方法即可).9.(2015·北京·统考中考真题)在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)参考答案1.(1)见解析(2)90AEF ∠=°,证明见解析 【分析】(1)由旋转的性质得DM DE =,2MDE α∠=,利用三角形外角的性质求出C DEC α∠=∠=,可得DE DC =,等量代换得到DM DC =即可;(2)延长FE 到H 使FE EH =,连接CH ,AH ,可得DE 是FCH V 的中位线,然后求出B ACH ∠∠=,设DMDE m ==,CD n =,求出2BF m CH ==,证明()SAS ABF ACH ≅ ,得到AF AH =,再根据等腰三角形三线合一证明AE FH ⊥即可.【详解】(1)证明:由旋转的性质得:DM DE =,2MDE α∠=, ∵C α∠=, ∴D DEC M E C α∠−∠∠==, ∴C DEC ∠=∠, ∴DE DC =,∴DM DC =,即D 是MC 的中点;(2)90AEF ∠=°; 证明:如图2,延长FE 到H 使FE EH =,连接CH ,AH ,∵DF DC =,∴DE 是FCH V 的中位线,∴DE CH ∥,2CH DE =,由旋转的性质得:DM DE =,2MDE α∠=, ∴2FCH α∠=, ∵B C α∠=∠=, ∴ACH α∠=,ABC 是等腰三角形, ∴B ACH ∠∠=,AB AC =,设DMDE m ==,CD n =,则2CH m =,CM m n =+, ∴DFCD n ==, ∴FM DF DM n m =−=−, ∵AM BC ⊥,∴BM CM m n ==+,∴()2BF BM FM m n n m m =−=+−−=,∴CH BF =,在ABF △和ACH 中,AB AC B ACH BF CH = ∠=∠ =,∴()SAS ABF ACH ≅ ,∴AF AH=,∵FE EH =,∴AE FH ⊥,即90AEF ∠=°.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.2.(1)见解析(2)CD CH =;证明见解析【分析】(1)先利用已知条件证明()SAS FCE BCD ≅ ,得出CFE CBD ??,推出EF BD ∥,再由AF EF ⊥即可证明BD AF ⊥;(2)延长BC 到点M ,使CM =CB ,连接EM ,AM ,先证()SAS MEC BDC ≅ ,推出ME BD =,通过等量代换得到222AM AE ME =+,利用平行线的性质得出90BHE AEM ???,利用直角三角形斜边中线等于斜边一半即可得到CD CH =.【详解】(1)证明:在FCE △和BCD △中,CE CD FCE BCD CF CB = ∠=∠ =, ∴ ()SAS FCE BCD ≅ ,∴ CFE CBD ??,∴ EF BD ∥,∵AF EF ⊥,∴BD AF ⊥.(2)解:补全后的图形如图所示,CD CH =,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,∵90ACB ∠= ,CM =CB ,【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.5.(1)如图所示见解析;(2)见解析;(3)OP=2.证明见解析.【分析】(1)根据题意画出图形即可.(2)由旋转可得∠MPN=150°,故∠OPN=150°-∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°-30°-∠OPM=150°-∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN ≌△QDP,所以OC=QD.再设DM=CP=x,所以OC=OP+PC=2+x,MH=MD+DH=x+1,由于点M、Q关于点H对称,得出DQ=DH+HQ=1+x+1=2+x,得出OC=DQ,再利用SAS得出△OCN≌△QDP即可【详解】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN-∠OPM=150°-α∵∠AOB=30°∴∠OMP=180°-∠AOB-∠OPM=180°-30°-α=150°-α∴∠OMP=∠OPN8.(1)80°;(2)①补图见解析;②证明见解析【分析】(1)根据等腰三角形的性质得到∠APQ考点:全等三角形的判定;解直角三角形;正方形的性质;四点共圆。

【初三数学】代数几何综合题(含答案)(共15页)

【初三数学】代数几何综合题(含答案)(共15页)

代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。

关键是搞清楚用坐标表示的数与线段的长度的关系。

练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。

(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考全国100份试卷分类汇编²代数几何综合【1】如图,抛物线y=ax 2+bx+c 关于直线x=1对称,与坐标轴交于A 、B 、C 三点,且AB=4,点D (2,23)在抛物线上,直线是一次函数y=kx-2(k ≠0)的图象,点O 是坐标原点。

(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值。

(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于M 、N 两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由。

解:(1)因为抛物线关于直线x=1对称,AB=4,所以A (-1,0),B (3,0)。

由点D (2,23)在抛物线上,所以⎪⎩⎪⎨⎧=++=+-23c 2b 4a 0c b a ,所以3a+3b=23,即a+b=21。

又-2a b =1,即b=-2a ,代入上式解得a=-21,b=1,从而c=23,所以y=-21x 2+x+23。

(2)由(1)知y=-21x 2+x+23,令x=0,得C (0,23),所以CD ∥AB 。

令kx-2=23,得l 与CD 的交点F (2k 7,23)。

令kx-2=0,得l 与x 轴的交点E (k2,0)。

根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE ,即:k 2+2k 7=(3-k 2)+(2-2k 7),解得k=511。

(3)由(1)知y=-21x 2+x+23=-21(x-1)2+2,所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为y=-21x 2。

假设在y 轴上存在一点P (0,t ),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO ,所以Rt △MPM 1∽Rt △NPN 1,所以,11NN MM =11PN PM①。

不妨设M (x M ,y M )在点N (x N ,y N )的左侧,因为P 点在y 轴正半轴上,则①式变为N M x x -=NMy t y t --,又y M =kx M -2,y N =kx N -2,所以(t+2)(x M +x N )=2kx M x N ②。

把y=kx-2(k ≠0)代入y=-21x 2中,整理得x 2+2kx-4=0,所以x M +x N =-2k ,x M x N =-4,代入②得t=2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称。

考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大。

点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。

问题设计富有梯度、由易到难层层推进,既考查了知识掌握,也考查了方法的灵活应用和数学思想的形成。

【2】如图,二次函数y=ax 2+bx+c 的图象的顶点C 的坐标为(0,-2),交x 轴于A 、B 两点,其中A (-1,0),直线l :x=m (m >1)与x 轴交于D 。

(1)求二次函数的解析式和B 的坐标;(2)在直线l 上找点P (P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求点P 的坐标(用含m 的代数式表示);(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q ,使△BPQ 是以P 为直角顶点的等腰直角三角形?如果存在,请求出点Q 的坐标;如果不存在,请说明理由。

解:(1)①二次函数y=ax 2+bx+c 图象的顶点C 的坐标为(0,-2),c=-2,-2ab=0,b=0。

点A (-1,0)、点B 是二次函数y=ax 2-2的图象与x 轴的交点,a-2=0,a=2,二次函数的解析式为y=2x 2-2。

②点B 与点A (-1,0)关于直线x=0对称,点B 的坐标为(1,0)。

(2)∠BOC=∠PDB=90º,点P 在直线x=m 上,设点P 的坐标为(m ,p ),OB=1,OC=2,DB=m-1,DP=|p|。

①当△BOC ∽△PDB 时,OC OB =DB DP ,21=1m |p |-,p=21m -或p=2m 1-,点P 的坐标为(m ,21m -)或(m ,2m 1-) ②当△BOC ∽△BDP 时,OC OB =DP DB ,21=|p |1m -,p=2m-2或p=2-2m ,点P 的坐标为(m ,2m-2)或(m ,2-2m ) 综上所述点P 的坐标为(m ,21m -)、(m ,2m1-)、(m ,2m-2)或(m ,2-2m )。

(3)不存在满足条件的点Q 。

点Q 在第一象限内的抛物线y=2x 2-2上,令点Q 的坐标为(x ,2x 2-2),x >1,过点Q 作QE ⊥直线l ,垂足为E ,△BPQ 为等腰直角三角形,PB=PQ ,∠PEQ=∠PDB ,∠EPQ=∠DBP ,△PEQ ≌△BDP ,QE=PD ,PE=BD 。

①当P 的坐标为(m ,21m -)时,⎪⎩⎪⎨⎧-=----=-1m 21m 22x 21m x m 2,⎪⎩⎪⎨⎧==21x 0m ,⎩⎨⎧==1x 1m ,与x >1矛盾,此时点Q 不满足题设条件;②当P 的坐标为(m ,2m 1-)时,⎪⎩⎪⎨⎧-=----=-1m 2m 122x 2m 1m x 2,⎪⎩⎪⎨⎧-=-=65x 92m ,⎩⎨⎧==1x 1m ,与x >1矛盾,此时点Q 不满足题设条件;③当P 的坐标为(m ,2m-2)时,⎩⎨⎧-=----=-1m 2)(2m 22x 22m x m 2,⎪⎩⎪⎨⎧-==25x 29m ,⎩⎨⎧==1x 1m ,与x >1矛盾,此时点Q 不满足题设条件;④当P 的坐标为(m ,2-2m )时,⎩⎨⎧-=----=-1m 2m)(222x 22m m x 2,⎪⎩⎪⎨⎧-==67x 185m ,⎩⎨⎧==1x 1m ,与x >1矛盾,此时点Q 不满足题设条件。

综上所述,不存在满足条件的点Q 。

【3】如图,矩形OABC 在平面直角坐标系xOy 中,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC 边上,且抛物线经过O 、A 两点,直线AC 交抛物线于点D 。

(1)求抛物线的解析式; (2)求点D 的坐标;(3)若点M 在抛物线上,点N 在x 轴上,是否存在以A ,D ,M ,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由。

考点:二次函数综合题 专题:综合题分析:(1)由OA 的长度确定出A 的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a (x-2)2+3,将A 的坐标代入求出a 的值,即可确定出抛物线解析式;(2)设直线AC 解析式为y=kx+b ,将A 与C 坐标代入求出k 与b 的值,确定出直线AC 解析式,与抛物线解析式联立即可求出D 的坐标;(3)存在,分两种情况考虑:如图所示,当四边形ADMN 为平行四边形时,DM ∥AN ,DM=AN ,由对称性得到M (3,49),即DM=2,故AN=2,根据OA+AN 求出ON 的长,即可确定出N 的坐标;当四边形ADM ′N ′为平行四边形,可得三角形ADQ 全等于三角形N ′M ′P ,M ′P=DQ=49,N ′P=AQ=3,将y=-49代入得:-49=-43x 2+3x ,求出x 的值,确定出OP 的长,由OP+PN ′求出ON ′的长即可确定出N ′坐标。

解:(1)设抛物线顶点为E ,根据题意OA=4,OC=3,得:E (2,3),设抛物线解析式为y=a (x-2)2+3,将A (4,0)坐标代入得:0=4a+3,即a=-43,则抛物线解析式为y=-43(x-2)2+3=-43x 2+3x 。

(2)设直线AC 解析式为y=kx+b (k ≠0),将A (4,0)与C (0,3)代入得:⎩⎨⎧==+3b 0b 4k ,解得:⎪⎩⎪⎨⎧=-=3b 43k ,故直线AC 解析式为y=-43x+3,与抛物线解析式联立得:⎪⎩⎪⎨⎧+-=+-=3x x 43y 3x 43y 2,解得:⎪⎩⎪⎨⎧==49y 1x 或⎩⎨⎧==0y 4x ,则点D 坐标为(1,49)。

(3)存在,分两种情况考虑: ①当点M 在x 轴上方时,如图所示:四边形ADMN 为平行四边形,DM ∥AN ,DM=AN ,由对称性得到M (3,49),即DM=2,故AN=2。

∴N 1(2,0),N 2(6,0)。

②当点M 在x 轴下方时,如图所示:过点D 作DQ ⊥x 轴于点Q ,过点M 作MP ⊥x 轴于点P ,可得△ADQ ≌△NMP 。

∴MP=DQ=49,NP=AQ=3,将y M =-49代入抛物线解析式得:-49=-43x 2+3x ,解得:x M =2-7或x M =2+7。

∴x N =x M -3=-7-1或7-1∴N 3(-7-1,0),N 4(7-1,0)综上所述,满足条件的点N 有四个:N 1(2,0),N 2(6,0),N 3(-7-1,0),N 4(7-1,0)。

点评:此题考查了二次函数综合题,涉及的知识有:待定系数法确定抛物线解析式,一次函数与二次函数的交点,平行四边形的性质,以及坐标与图形性质,是一道多知识点的探究型试题。

【4】在平面直角坐标系中,一个二次函灵敏的图象经过点A (1,0)、B (3,0)两点。

(1)写出这个二次函数的对称轴;(2)设这个二次函数的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连接AD 、DE 和DB ,当△AOC 与△DEB 相似时,求这个二次函数的表达式。

提示:如果一个二次函数的图象与x 轴的交点为A (x 1,0),B (x 2,0),那么它的表达式可表示为:y=a (x-x 1)(x-x 2)。

考点:此题在陕西的中考中也较固定,第(1)问主要考查待定系数法求二次函数的解析式,二次函数与坐标轴的交点坐标,抛物线的对称性等简单问题。

第二问主要考查二次函数综合应用之点的存在性问题;包括最短距离与面积的最值等(等腰三角形,平行四边形,正方形,相似三角形,相似,全等等问题。

考查问题的综合能力要求较高,基本上都是转化为求点的坐标的过程。

解析:本题中(1)由抛物线的轴对称性可知,与x 轴的两个交点关于对称轴对称,易求出对称轴;(2)由提示中可以设出函数的解析式,将顶点D 与E 的坐标表示出来,从而将两个三角形的边长表示出来,而相似的确定过程中充分考虑到分类即可解决此题。

相关文档
最新文档