中断系统及中断优先级实验

中断系统及中断优先级实验
中断系统及中断优先级实验

中断系统及中断优先级实验

1.实验目的

1)扩展八个发光二极管

2)用2个按键模拟外部中断源

3)案件独立模拟中断

4)中断优先级控制

2.实验设备

1)Usb通讯线

2)CH340usb接口模块

3)74hc245

4)74hc138

5)排阻4.7k9脚

6)排阻4.7k5脚

7)300R色环电阻

8)1k色环电阻

9)三极管9012

10)led 二极管

11)陶瓷电容20pf

12)晶振11.059mhz

13)按键开关

14)万能板

15)stc89c51rc

16)焊锡

17)电烙铁

18)万能表

19)计算机

3.实验要求

1)画出电路原理图

2)用protues画出仿真图

3)根据硬件连接设计程序流程图

4)用keil软件编写程序

5)焊好板子输入程序调试完成中断优先级控制功能

4.实验原理

1、中断的概念

如果单片机没有中断功能,单片机对外部或是内部事件的处理只能采用程序查询方式,即CPU不断查询是否有事件发生。显然,采用程序查询方式,CPU不能再做别的事,而是在大部分时间处于等待状态。单片机都具有实时处理能力,能对外部或是内部发生的事件做出及时地处理,这是靠中断技术来实现的。

当CPU正在处理某件事情的时候,外部或内部发生的某一事件请求CPU迅速去处理,于是CPU暂时中止当前的工作,转去处理所发生的事件。中断服务处理程序处理完该事件后,再回到原理被中止的地方,继续原来的工作,这样的过程称为中断,如图所示。处理事件的过程称为CPU的中断响应过程。对事件的整个处理过程,称为中断服务或中断处理

实现这种功能的部件称为中断系统,产生中断的请求源称为中断源。中断源向CPU提出的处理请求,称为中断请求或中断申请。CPU暂时中止执行的程序,转去执行中断服务程序,除了硬件会自动把断点地址PC值压入堆栈之外,用户还得注意保护有关的工作寄存器、累加器、标志位等信息,这称为现场保护。最后执行中断返回指令,从堆栈中自动弹出断点地址到PC,继续执行被中断的程序,这称为中断返回。

2、MCS-51中断系统的结构

单片机的中断系统有5个中断请求源,具有两个中断优先级,可实现两级中断服务程序嵌套。用户可以用软件来屏蔽所有的中断请求,也可以用软件使CPU接受中断请求;每一个中断源可以用软件独立地控制为开中断或是关中断状态;每一个中断源中的中断级别均可用软件来设置。下图为中断系统结构图。

3、中断请求源

中断系统共有五个中断请求源它们是:

1)INT0 外部中断0请求,由INT0引脚输入,中断请求标志为IE0。 2)INT1 外部中断1请求,由INT1引脚输入,中断请求标志为IE1。 3)定时器/计数器T0溢出中断请求,中断请求标志为TF0。 4)定时器/计数器T1 溢出中断请求,中断请求标志为TF1。 5)串口中断

请求,中断请求标志为TI或RI。

这些中断请求源的中断请求标志位分别由特殊功能寄存器TCON和SCON的相应位锁存。 TCON为定时器/计数器的控制寄存器,字节地址为88H,可位寻址。TCON也锁存外部中断请求标志。如下图所示。

与中断系统有关的各标志位的功能如下:

IT0—选择外部中断请求INT0为跳沿触发方式或是电平触发方式的控制位。 IT0=0,为电平触发方式,引脚INT0上低电平有效

IT0=1,为跳沿触发方式,引脚INT0上的电平从高到低的负跳变有效。 IT0 位可由软件置1或清0。 IE0—外部中断0的中断请求标志位。

当IT0=0,为电平触发方式,每个机器周期的S5P2采样INT0引脚,若INT0脚为低电平,则置“1”,否则清“0”IE0

当IT0=1,即INT0为跳沿触发方式时,当第一个机器周期采样到为低电平时,则置“1”IE0。IE0=1表示外部中断0正在向CPU申请中断。当CPU响应中断,转向中断服务程序时,由硬件清“0”IE0。

IT1—选择外部中断请求INT1为跳沿触发方式或电平触发方式的控制位,其意义和IT0类似。 IE1—外部中断1的中断请求标志位,其意义和IE0类似。 TF0—MCS-51片内定时器/计数器T0溢出中断请求标志位。

当启动T0计数后,定时器/计数器T0从初始值开始加1计数,当最高位产生溢出时,由硬件置“1”TF0,向CPU申请中断,CPU响应TF0中断时,清“0”TF0,TF0也可由软件清零(查询方式)。

TF1 定时器/计数器T1的益处中断请求标志位,功能和TF0类似。

TR1、TR0这2个位与中断无关,仅与定时器/计数器T1和T0有关,它们的功能将在其它章节中介绍。

当复位后,TCON被清0,则CPU关中断,所有中断请求被禁止。

SCON为串口控制寄存器,字节地址为98H,可位寻址。SCON的低二位锁存串口的接收中断和发送中断标志,其格式如下图。

SON中各标志位的功能如下:

T1—串口的发送中断请求标志位。CPU将一个字节的数据写入发送缓冲器SBUF时,就启动一侦串行数据的发送,每发送完一侦串行数据后,硬件自动置“1”TI。但CPU响应中断时,CPU并不清楚TI,必须在中断服务程序中用软件对TI清“0”。

RI—串行扣接受中断请求标志位。在串行口允许接收时,每接收完一个串行侦,硬件自动置“1”RI。CPU在响应中断时,并不清除RI,必须在中断服务程序中用软件对RI清“0”。4、中断允许寄存器IE

CPU对中断源的开放或是屏蔽,是由片内的中断允许寄存器IE控制的。IE的字节地址为

A8H,可进行位寻址。

中断允许寄存器IE对中断的开放和关闭实现两级控制。所谓两级控制,就是有一个总的开关中断控制位EA,当EA=0时,所有的中断请求被屏蔽,CPU对任何中断请求都不接受;当EA=1时,CPU开放总中断,但五个中断源的中断请求是否允许,还要由IE中的低5位所对应的5个中断请求允许控制位的状态来决定如下图。

E中各位的功能如下:中断允许总控制位。

EA=0,CPU屏蔽所有的中断请求(也称CPU关中断)。 EA=1,CPU开放所有中断(也称CPU开中断)。串口中断允许位 ES=0,禁止串口中断; ES=1,允许串口中断。

定时器/计数器T1的溢出中断允许位 ET1=0,禁止T1中断 ET1=1,允许T1中断。外部中断1中断允许位 EX1=0,禁止外部中断1中断 EX1=1, 允许外部中断1中断定时器/计数器T0的溢出中断允许位 ET0=0,禁止T0中断 ET0=1,允许T0中断

复位以后,IE被清零,由用户程序置“1”或清“0”IE 相应得位,实现允许或禁止各中断的中断申请。若使某一个中断源允许中断,必须同时使CPU开放中断。如更新IE的内容,可由位操作指令来实现,也可用字节操作指令实现。

假设允许片内定时器/计数器中断,禁止其它中断的中断申请。的步骤为: 1、 ES=0//禁止串口中断 2、 EX1=0//禁止外部中断1 3、 EX0=0//禁止外部中断0

4、 ET1=1//允许定时器/计数器T1中断

5、5、 ET0=1//允许定时器/计数器T0中断

6、6、 EA=1// CPU开放所有中断(也称CPU开中断)。

7、以上是采用位操作的方式,还可以采用字节的方式:IE=0X8AH

8、5、中断优先级寄存器IP

9、中断请求源有两个中断优先级,对于每一个中断请求源可由软件定为高优先级中断或是低优先级中断,可实现两级中断嵌套,两级中断嵌套的过程如下图

10、

11、一个正在执行的低优先级中断程序能被高优先级的中断源所中断,但不能被另一个低优先级的中断源所中断。若CPU正在执行高优先级的中断,则不能被任何中断源所中断,

一直执行到结束,遇到中断返回指令,返回主程序后再执行一条指令后才能响应新的中断请求。可归纳为两条基本原则:

12、1.低优先级可被高优先级中断,反之则不能。

13、2.任何一种中断,一旦得到响应,不会再被它同级中断源所中断。如果某一中断源被设置为高优先级中断,在执行该中断服务程序时,则不能被任何其它的中断源所中断。单片机片内有一个中断优先级寄存器IP,其字节地址为B8H,可位寻址,只要用程序改变其内容,即可进行各中断源中断优先级的设置如下图

各位的含义如下:串口中断优先级控制位 PS=1,串口中断定义为高优先级PS=0,串口中断定义为低优先级定时器T1优先级控制位 PT1=1,T1定义为高优先级 PT0=1,T1定义为低优先级外部中断优先级控制位

PX1=1,外部中断定义为高优先级 PX1=0,外部中断定义为低优先级定时器T0优先级控制位 PT0=1,T0定义为高优先级 PT0=0,T0定义为低优先级外部中断0优先级控制为

PX0=1,外部中断0定义为高优先级 PX0=0,外部中断0定义为低优先级

中断优先级控制寄存器IP的各位都由用户程序置“1”或清“0”,可用位操作或是字节操作指令更新IP的内容。单片机复位后IP为0,各个中断源均为低优先级中断。各中断源在同一优先级的条件下,外部中断0的优先级最高,串口的优先级最低如下图:

6、中断响应

一个中断源的中断请求被响应,需要满足以下条件: 1) 该中断源发出中断请求。

2) CPU开中断,即中断总允许位EA=1。

3) 申请中断的中断源的中断允许位=1,即该中断没有被屏蔽4) 无同级或更高级中断正在被服务。

中断响应就是对中断源提出的中断请求的接受,是在中断查询之后进行的。当CPU查询到有效的中断请求时,在满足上述条件时,紧接着就进行中断响应。首先是将PC的内容压入堆栈以保护断点,再将中断入口地址装入PC,使程序转向相应得中断入口地址。各中断源服务程序的入口地址是固定的如下表所示:

4.实验内容

1)按照设计要求扩展8个led小灯,8个小灯采取共阳的链接方式如图所示

三极管在电线路中最常用的特性一个是控制应用,一个是驱动应用。这里是通过三极管来驱动八个小灯。当然如果直接把小灯的另一端直接接上单片机的io口的话坑定会电流过大肯定会烧坏单片机所以要在有小灯的支路中加上限流电阻如图所示

光光加上限流电阻还不够其实还有一些驱动IC,这些驱动IC 可以作为单片机的缓冲器,仅仅是电流驱动缓冲,不起到任何逻辑控制的效果,比如我们板子上用的74HC245 这个芯片,这个芯片在逻辑上起不到什么别的作用,就是当做电流缓冲器的,我们通过查看其数据手册,74HC245 稳定工作在70mA 电流是没有问题的,比单片机的8 个IO 口大多了,所以我们可以把他接在小灯和IO 口之间做缓冲如图所示

与单片机的链接如上图所示。

51单片机系列工作时需要外输入一个频率来启动说的通俗一点就是要有人来喊口号让他们

动起来链接方式如图所示

根据实验目的我们设计一个中断优先级控制实验,先让单片机待机状态下使得p0口输出交替闪现的的信号,此时外部中断0输入小灯向左循环,给如外部中断1输入小灯向右循环。在之前编程时候就设置了外部中断1为优先级无论外部中断0怎么请求都优先处理外部中断1中的程序。

6.实验报告

计算机组成原理 中断实验

实验五中断实验 实验地点:格致A315 实验日期:2016年12月29日 一、实验目的 学习和掌握中断产生、响应、处理等技术; 二、实验说明及内容 说明: 1.要求中断隐指令中执行关中断功能,如果用户中断服务程序允许被中断,必须在中断服务程序中执行EI开中断命令。 2.教学机的中断系统共支持三级中断,由三个无锁按键确定从右到左依次为一、二、三级中断,对应的INT2、INT1、INT0的编码分别是01、10、11,优先级也依次升高。这决定了它们的中断向量(即中断响应后,转去执行的程序地址)为XXX4、XXX8、XXXC;可以看到,每级中断实际可用的空间只有四个字节,故这个空间一般只存放一条转移指令,而真正的用户中断服务程序则存放在转移指令所指向的地址。 3.用户需扩展中断隐指令、开中断指令、关中断指令、中断返回指令及其节拍。内容: 1.扩展中断隐指令。 2.扩展开中断指令EI、关中断指令DI、中断返回指令IRET。 3.确定中断向量表地址。中断向量表是以XXX4H为首地址的一段内存区。高12位由用户通过置中断向量用的插针(在三个无锁按键下方)确定。三级中断对应的中断向量为XXX4H、XXX8H、XXXCH。当有中断请求且被响应后,将执行存放在该中断的中断向量所指向的内存区的指令。 4.填写中断向量表。在上述的XXX4H、XXX8H、XXXCH地址写入三条JR OFFSET转移指令,OFFSET分别对应三段中断服务程序的相对地址。但在本仿真终端中输入时,用户不需要计算偏移量,直接输入要转向的绝对地址即可。 5.编写中断服务程序。中断服务程序可以放在中断向量表之后,中断服务程序可实现在程序正常运行时在计算机屏幕上显示与优先级相对应的不同字符; 6.编写主程序。可编写一死循环程序,等待中断;

中断管理函数

中断管理函数 CM3内核支持256个中断,其中包含了16个内核中断和240个外部中断,并且具有256级的可编程中断设置。但STM32并没有使用CM3内核的全部东西,而是只用了它的一部分。STM32有76个中断,包括16个内核中断和60个可屏蔽中断,具有16级可编程的中断优先级。而我们常用的就是这60个可屏蔽中断,所以我们就只针对这60个可屏蔽中断进行介绍。 在MDK内,与NVIC相关的寄存器,MDK为其定义了如下的结构体: typedef struct { vu32 ISER[2]; u32 RESERVED0[30]; vu32 ICER[2]; u32 RSERVED1[30]; vu32 ISPR[2]; u32 RESERVED2[30]; vu32 ICPR[2]; u32 RESERVED3[30]; vu32 IABR[2]; u32 RESERVED4[62]; vu32 IPR[15]; } NVIC_TypeDef; STM32的中断在这些寄存器的控制下有序的执行的。了解这些中断寄存器,你才能方便的使用STM32的中断。下面重点介绍这几个寄存器: ISER[2]:ISER全称是:Interrupt Set-Enable Registers,这是一个中断使能寄存器组。上面说了STM32的可屏蔽中断只有60个,这里用了2个32位的寄存器,总共可以表示64个中断。而STM32只用了其中的前60位。ISER[0]的

bit0~bit31分别对应中断0~31。ISER[1]的bit0~27对应中断32~59;这样总共60个中断就分别对应上了。你要使能某个中断,必须设置相应的ISER位为1,使该中断被使能(这里仅仅是使能,还要配合中断分组、屏蔽、IO口映射等设置才算是一个完整的中断设置)。具体每一位对应哪个中断,请参考 stm32f10x_nvic..h里面的第36行处。 ICER[2]:全称是:Interrupt Clear-Enable Registers,是一个中断除能寄存器组。该寄存器组与ISER的作用恰好相反,是用来清除某个中断的使能的。其对应位的功能,也和ICER一样。这里要专门设置一个ICER来清除中断位,而不是向ISER写0来清除,是因为NVIC的这些寄存器都是写1有效的,写0是无效的。具体为什么这么设计,请看《CM3权威指南》第125页,NVIC概览一章。 ISPR[2]:全称是:Interrupt Set-Pending Registers,是一个中断挂起控制寄存器组。每个位对应的中断和ISER是一样的。通过置1,可以将正在进行的中断挂起,而执行同级或更高级别的中断。写0是无效的。 ICPR[2]:全称是:Interrupt Clear-Pending Registers,是一个中断解挂控制寄存器组。其作用与ISPR相反,对应位也和ISER是一样的。通过设置1,可以将挂起的中断接挂。写0无效。 IABR[2]:全称是:Active Bit Registers,是一个中断激活标志位寄存器组。对应位所代表的中断和ISER一样,如果为1,则表示该位所对应的中断正在被执行。这是一个只读寄存器,通过它可以知道当前在执行的中断是哪一个。在中断执行完了由硬件自动清零。 IPR[15]:全称是:Interrupt Priority Registers,是一个中断优先级控制的寄存器组。这个寄存器组相当重要!STM32的中断分组与这个寄存器组密切相关。IPR寄存器组由15个32bit的寄存器组成,每个可屏蔽中断占用8bit,这样总共可以表示15*4=60个可屏蔽中断。刚好和STM32的可屏蔽中断数相等。IPR[0]的[31~24],[23~16],[15~8],[7~0]分别对应中中断3~0,依次类推,总共对应60个外部中断。而每个可屏蔽中断占用的8bit并没有全部使用,而是只用了高4位。这4位,又分为抢占优先级和子优先级。抢占优先级在前,子优先级在后。而这两个优先级各占几个位又要根据SCB->AIRCR中中断分组的设置来决定。 这里简单介绍一下STM32的中断分组:STM32将中断分为5个组,组0~4。该分组的设置是由SCB->AIRCR寄存器的bit10~8来定义的。具体的分配关系如下表所示:

单片机实验报告

PIC单片机原理与应用实验报告 学校: 学院: 班级: 姓名: 学号: 指导教师:

实验一I/O端口实验 一、实验目的 (1)掌握MPLAP IDE集成开发环境的基本操作。 (2)掌握单片机的I/O端口的设计方法。 (3)掌握在线调试器的使用方法。 (4)学会查阅相关数据手册。 二、实验仪器设备 (1)PC机一台; (2)MPLAP IDE开发软件一套; (3)PICkit3在线调试器一套; (4)APP009实验板一块; 三、实验要求 (1)设计发光LED灯闪烁程序,下载调试,验证功能。 (2)设计流水灯程序,或其他花样彩灯程序,下载调试,验证功能。 (3)设计按按键加1计数程序,下载调试,验证功能。 四、实验步骤 (1)连接在线调试器PICkit3、APP009实验板和计算机; (2)打开MPLAP IDE集成开发环境软件,点击Debugger>Select Tools>PICkit 3 选择调试工具; (3)点击Debugger>Settings,在Settings窗口中点击Power栏,选择由PICkit3向实验板供电; (4)完成实现发光LED灯闪烁实验; 程序代码: #include void delay(void); int main() { while(1) { TRISEbits.TRISE0 = 0; //RE0设置为输出(1输入,0输出); https://www.360docs.net/doc/696942316.html,TE0 =1; //RE0=1输出高电平+5V,亮灯 delay(); //延时 https://www.360docs.net/doc/696942316.html,TE0 =0; //RE0=0输出低电平0V,灭灯 delay(); //延时 } } void delay(void) { long int i; for (i=0;i<65000;i++); } 实验现象:将程序下载到实验板上,运行程序,LED闪烁,通过改变延时函数改变延时时间,进而可以改变LED闪烁的频率。

单片机实验六-中断系统实验

信息工程系实验报告 课程名称:单片微型计算机与接口技术 实验项目名称:实验六 中断系统实验 实验时间:2013-12-02 班级:电信*** 姓名:*** 学号:110706 实 验 目 的: 熟悉keil 仿真软件、proteus 仿真软件的使用和单片机外部中断的使用。了解并熟悉51单片机中中断的概念,中断处理系统的工作原理。理解51单片机中断管理系统处理五种中断源,特别是对外部中断的设置与控制方法。熟悉中断处理特别是外部中断处理的过程,掌握中断处理子程序的书写格式和使用方法。 实 验 原 理: 现代的计算机都具有实时处理功能,能对外部发生的事件如人工干预、外部事件及意外故障做出及时的响应或处理,这是依靠计算机的中断系统来实现的。 51单片机内部有一个中断管理系统,它能对内部的定时器事件、串行通信的发送和接收事件及外部事件(如键盘按键动作)等进行自动的检测判断,当有某个事件产生时,中断管理系统会置位相应标志通知CPU ,请求CPU 迅速去处理。CPU 检测到某个标志时,会停止当前正在处理的程序流程,转去处理所发生的事件(针对发生的事件,调用某一特定的函数,称为该事件的中断服务函数),处理完以后,再回到原来被中断的地方,继续执行原来的程序。 外部中断 内部 定时 外部中断 内部 定时内部 T 源允 总允 允许中断寄存中断优先级 中断源 中断源 高优中断 中断 低优中断 中断T —发送 I I 查询 成 绩: 指导教师(签名):

MCS-51单片机最典型的有5个中断源(外部中断0、1,内部定时器中断0、1,串口中断),具有两个中断优先级。两个外部中断:(— INT0、— INT1)上输入的外部中断源,低电平或负跳变有效,置位TCON中的IE0和IE1中断请求标志位。通过外部中断源触发方式控制位IT可以使外部中断为电平触发方式(=0)或边沿触发方式(=1)。另外控制中断允许寄存器IE可以开放中断。 使用MCS-51的中断,要为使用到的中断源编写中断服务程序。C51为中断服务程序的编写提供了方便的方法。C51的中断服务程序是一种特殊的函数,它的说明形式为: void 函数名(void) interrupt n using m { 函数体语句 } 这里,interrupt和using是为编写C51中断服务程序而引入的关键字,interrupt表示该函数是一个中断服务函数,interrupt后的整数n表示该中断服务函数是对应哪一个中断源。 实验环境: 硬件:微机、单片机仿真器、单片机实验板、连线若干 软件:KEIL C51单片机仿真调试软件,proteus系列仿真调试软件 实验内容及过程: 一、利用外部中断INT1控制数码管显示0到9。 二、利用外部中断INT1控制两个数码管显示00到99。 1、打开Proteus,绘制电路图,如图6-1,6-2所示: 图6-1实验1整体电路图

实验四单片机中断优先级实验

实验四单片机中断优先级实验 一、实验目的 1.理解AT89C51单片机中断优先级和优先权。 2.用PROTEUS设计、仿真基于AT89C51单片机的中断优先级实验。 3.掌握中断编程。 4.掌握发光二极管的控制方法。 二、实验要求 单片机主程序控制P0口数码管循环显示0~8;外中断(INT0)、外中断(INT1)发生时分别在P2、P1口依次显示0~8;INT1为高优先级,INT0为低优先级。 三、电路设计 1.从 ① ②RES、 ③ ④CAP、CAP-ELEC:电容、电解电容; ⑤CRYSTAL:晶振; ⑥BUTTON:按钮。 2.放置元器件 3.放置电源和地 4.连线 5.元器件属性设置 6.电气检测 四、源程序设计、生成目标代码文件 1.流程图 2.源程序设计

通过菜单“source→Add/Remove Source Files…”新建源程序文件:。 通过菜单“source→”,打开PROTEUS提供的文本编辑器SRCEDIT,在其中编辑源程序。 程序编辑好后,单击按钮存入文件。 3.源程序编译汇编、生成目标代码文件 通过菜单“source→Build All”编译汇编源程序,生成目标代码文件。若编译失败,可对程序进行修改调试直至汇编成功。 五、PROTEUS仿真 1.加载目标代码文件 2.全速仿真 单击按钮,启动仿真。 (1)低优先级INT0中断主程序:当主程序运行时,单片机控制与P0口相接的数码管循环显示1~8;而P1、P2口的数码管不显示。当前主程序控制P0口显示“8”的时刻单击“低优先级输入”按钮,触发INT0如图所示,INT0服务程序控制P2口依次显示1~8,当前显示“2”。 (2)高优先级INT1中断低优先级INT0;在上一步的基础上,即主程序被INT0中断在P0口输出“8”,而在INT0服务程序在P2口输出“2”的时刻,单击“高优先级输入”按钮,触发高优先级INT1,所在INT0被中断在显示“2”,INT1服务程序控制P1口依次显示1~8。

《8259中断控制器实验》的实验报告

实验六8259中断控制器实验 6.1 实验目的 (1) 学习中断控制器8259的工作原理。 (2) 掌握可编程控制器8259的应用编程方法。 6.2 实验设备 PC微机一台、TD-PIT+实验系统一套。 6.3 实验内容 1. 单中断应用实验 (1)编写中断处理程序,利用PC机给实验系统分配的中断线,使用单次脉冲单元的KK1+按键模拟中断源,每次PC机响应中断请求,在显示器上显示一个字符。 (2)编写中断处理程序,利用PC机给实验系统分配的中断线,使用单次脉冲单元的KK1+按键模拟中断源,每次PC机响应中断请求,在显示器上显示“Hello”,中断5次后退出。 2.扩展多中断源实验 利用实验平台上8259控制器对扩展系统总线上的中断线INTR进行扩展。编写程序对8259控制器的IR0和IR1中断请求进行处理。 6.4 实验原理 1. 8259控制器的介绍 中断控制器8259A是Intel公司专为控制优先级中断而设计开发的芯片。它将中断源优先级排队、辨别中断源以及提供中断矢量的电路集于一片中,因此无需附加任何电路,只需对8259A进行编程,就可以管理8级中断,并选择优先模式和中断请求方式,即中断结构可以由用户编程来设定。同时,在不需增加其他电路的情况下,通过多片8259A的级连,能构成多达64级的矢量中断系统。它的管理功能包括:1)记录各级中断源请求,2)判别优先级,确定是否响应和响应哪一级中断,3)响应中断时,向CPU传送中断类型号。8259A的内部结构和引脚如图6-1所示。 8259A的命令共有7个,一类是初始化命令字,另一类是操作命令。8259A的编程就是根据应用需要将初始化命令字ICW1-ICW4和操作命令字OCW1-OCW3分别写入初始化命令寄存器组和操作命令寄存器组。ICW1-ICW4各命令字格式如图6-2所示,

嵌入式系统实验报告-1-外部中断

《嵌入式系统技术》 实训报告 1、实验目的 z了解S3C2440A 外部中断的工作原理。 z掌握S3C2440A 外部中断的使用方法。 2、实验设备 z PC 机、Multi-ICE 仿真器、2440A 实验箱。 3、实验内容 z通过外部K1、K2、K3、K4、K5、K7 按键触发外部中断E INT1、EINT2、EINT3、EINT4、EINT5、EINT7 4、实验原理 4.1 ARM 的异常中断类型 在嵌入式系统中外部设备的功能实现主要是靠中断机制来实现的。中断功能可以解决CPU 内部运行速度远远快于外部总线速度而产生的等待延时问题。ARM 提供的FIQ 和IRQ 异常中断用于外部设备向C PU 请求中断服务,一般情况下都是采用I RQ 中断。 七种异常中断

中断过程框图 4.2 异常中断响应过程和返回过程 异常中断的响应过程: 1).保存处理器当前状态寄存器C PSR 的值到备份程序状态寄存器S PSR 中。 2).设置但前程序状态寄存器CPSR 的值,其中包括:设置CPSR 响应位的值,使处理器进入特定的处理器模式;按要求屏蔽中断,通常应该屏蔽I RQ 中断。在F IQ 中断时屏蔽F IQ 中断。 3).设置L r 寄存器。将相应中断模式的L r 寄存器的值设为异常中断的返回地址。 4).处理程序计数器PC,将PC 值设为相应的中断向量的地址,从而实现跳转以执行中断服务程序。 异常中断的返回 当处理器执行完以上流程之后,处理器已经从中断向量进入异常处理的状态。异常中断处理完毕之后,在异常中断程序的末端,处理器进入异常中断的返回状态,其流程如下: 1).恢复状态寄存器。将保存的备份程序状态寄存器SPSR 值赋给当前程序状态寄存器CPSR。 2).将返回地址赋值到程序计数器(PC)。这样程序将返回到异常中断产生的下一条指令或出现问题的指令处执行。 需要注意的是:对于不同的异常中断,其返回地址的计算方法也是不同的,IRQ 和F IQ 异常中断产生时,程序计数器PC 已经更新,而SWI 中断和未定义指令中断时由当前指令自身产生的,程序计数器P C 尚未更新,所以要计算出下一条指令的地址来执行返回操作;指令预取指中指异常中断和数据访问中断要求,返回到出现异常的执行现场,重新执行操作。

PSOC3外部中断实验报告

一.实验名称 ●中断实验 二.实验任务 ●了解PSoC3中断的构成,特点。 ●掌握PSoC3中断函数的编写 ●按键控制LED灯亮灭。 ●利用轻触按键K3分别产生PSoC3器件I/O口下降沿触发每 触发一次中断,LED1、LED2状态翻转一次。 三.实验设备及环境 ●微型计算机(安装了Psoc creator3.1集成开发软件) ●PSoC实验平台 ●DC9V电源 ●导线若干 四.原理: ●32个中断向量,每个中断向量对于多个中断源 ●可配置的中断入口向量地址 ●灵活的中断源 ●每个中断可独立的使能和禁制 ●每个中断可以设置8级中断优先级

●8级中断嵌套 ●软中断 ●程序可清除正在响应的中断 电平触发 边沿触发 五.具体步骤 1.新建工程 ●双击打开PSoC Creator软件 ●File -> New – Project,在Design栏中使用默认选择的 Empty PSoC 3 Design

●在“Name”框中输入新工程名称Timer,在“Location”框 中输入其存放路径 ●回到创建新工程对话框,点击“OK”,完成新工程的创建 2.绘制原理图 3.设置模块参数 ●设置Pin_1模块参数 ?Name:LED1 ?去掉 HW Connection前的勾 ?General:取默认 ?Drive Mode:Strong Drive ?Initial State:Low(0)

●设置Pin_2模块参数,与上一步相同 4.代码编写 ●主程序编写 #include CY_ISR(SWPin_Control) { if(InputPin_Read() == 1u) { OutputPinSW_Write(0u); } else { OutputPinSW_Write(1u); } InputPin_ClearInterrupt(); } int main() {

实验四 定时器中断实验

实验四 定时器中断实验 一:实验目的 1.熟悉定时器初始化的步骤; 2.熟悉定时器控制寄存器(TCR )的含义和使用; 3.熟悉定时器的原理和应用。 二:实验内容 本实验要求编写一个简单的定时器中断程序,设置一定的周期控制与XF 引脚相连的LCD 指示灯。当定时器中断产生时可以观察到LCD 周期性闪烁。 三:实验原理 1.定时器 .C54xx 系列的DSP 都具有一个或两个预定标的片内定时器,这种定时器是一个倒数定时器,它可以被特定的状态位实现停止、重启动、重设置或禁止。定时器在复位后就处于运行状态,为了降低功耗可以禁止定时器工作。应用中可以用定时器来产生周期性的CPU 中断或脉冲输出。定时器的功能方框图如图9.1所示,其中有一个主计数器(TIM )和一个预定标计数器(PSC )。TIM 用于重装载周期寄存器PRD 的值,PSC 用于重装载周期寄存器TDDR 的值。 图5.1信号,是在器件复位时,DSP 向外围电路(包括定时器)发送的一个信号,此信号将在定时器上产生以下效果:寄存器TIM 和PRD 装载最大值(0FFFFH );TCR 的所有位清0;结果是分频值为0,定时器启动,TCR 的FREE 和SOFT 为0。

定时器实际上是有20bit 的周期寄存器。它对CLKOUT 信号计数,先将PSC (TCR 中的D6~D9位)减1,直至PSC 为0,然后把TDDR (TCR 中的低4位)重新装载入PSC ,同时将TIM 减1,直到TIM 减为0。这时CPU 发出TINT 中断,同时在TOUT 引脚输出一个脉冲信号,脉冲宽度与CLKOUT 一致,然后将PRD 重新装入TIM ,重复下去直到系统或定时器复位。 定时器产生中断的计算公式如下: TINT t c 为 CLKOUT 的周期) 定时器由三个寄存器组成:TIM 、PRD 、TCR 。 TIM :定时器寄存器,用于装载周期寄存器值并自减1。 PRD :周期寄存器,用于装载定时器寄存器。 TCR :定时器控制寄存器,包含定时器的控制状态位。 定时器是一个片内减计数器,用于周期地产生发,后者每个CPU 时钟周期减1,当计数器减至0周期计数器被定时周期值重新装载。 在正常操作模式下,当TIM 自减至0时,TIM 将被PRD 内的数值重装载。在硬件复位或定时器单独复位(TCR 中TRB 位置1)的情况下,主定时器模块输出的是定时器中断(TINT )信号。该中断被发送至CPU ,同时由TOUT 引脚输出。TOUT 脉冲的宽度等于CLKOUT 的时钟宽度。 预定标模块由两个类似TIM 和PRD 的单元构成。它们是预定标计数器(PSC )和定时器分频寄存器(TDDR )。PSC 、TDDR 是RCR 寄存器的字段。在正常操作时PSC 自减为0,TDDR 值装入PSC ,同样在硬件复位或定时器单独复位的情况下,TDDR 也被装入PSC 。PSC 被CPU 时钟定时,即每个CPU 时钟使PSC 自减1。PSC 可被TCR 读取,但不能直接写入。 当TSS 置位时,定时器停止工作。若不需要定时器,终止定时操作,可使芯片工作在低功耗模式,并且可以使用与定时器相关的两个寄存器(TIM 和PRD )作为通用的存储器单元,可以在任意周期对它们进行读或写操作。 TIM 的当前值可被读取,PSC 也可以通过TCR 读取。因为读取这两个存储器需要两个指令,而在两次读取之间因为自减,数值可能改变,因此,PSC 两次读的结果可能有差别,不够准确。若要准确测量时序,在读这两个寄存器值之前可先中止定时器,对TSS 置1和清0后,可重新开始定时。 通过TOUT 信号或中断,定时器可以用于产生周边设备的采样时钟,如模拟接口。对于有多个定时器的DSP ,由寄存器GPIOCR 中的第15位控制使用某一个定时器产生的TOUT 信号。 2.定时器初始化 (1)定时器初始化步骤 ●TCR 的TSS 位写1,定时器停止工作; ●装载TRD ;

STM32外部中断以及中断优先级

外部中断的初始化过程: 1.初始化IO为输入(可以设置上拉,下拉,浮空) 2.开启IO复用时钟 3.开启与该IO相对的线上(详解下) 4.配置NVIC,使能中断 5.编写中断服务函数 外部中断: Stm32中总共有19个外部中断 包括: 线0-15:IO输入中断(每条线上最多有7个IO,如GPIOA~GPIOG,但是每一条线每次只允许同时连接到一个IO)

线16:PVD 线17:RTC 线18:USB 关于优先级: CM3中内核支持256个中断(16个内核+240外部)和可编程256级中断优先级的设置

Stm32目前支持84个中断(16个内核+68个外部,注:不是指68个外部中断),16级可编程优先级(优先级设置寄存器中使用了4位)

注意:其中外部中断5-9和中断10-15向量存放在一起 优先级: 数值低的优先级要高于数值高的!!!!!! 上电复位后,系统默认使用的是组0; 一个系统只能使用一组优先级组,不可使用多个,优先级的设置不能超过组的范围,否则会产生不可预计的错误 1.高抢先级的中断可以打断低优先级的中断响应,构成中断嵌套 2.相同抢先级的中断不可以构成嵌套,系统会优先响应子优先级高的

3.当2(n)个相同抢先优先级和相同子优先级的中断出现,STM32首先响应中断通道所对应的中断向量地址低的那个中断 4.0号抢先优先级的中断,可以打断任何中断抢先优先级为非0号的中断;1号抢先优先级的中断,可以打断任何中断抢先优先级为2、3、4号的中断;……;构成中断嵌套。 5.所有外部中断通道的优先级控制字PRI_n也都是0,68个外部中断通道的抢先优先级都是0号,没有子优先级的区分。不会发生任何的中断嵌套行为,谁也不能打断当前正在执行的中断服务。当多个中断出现后,则看它们的中断向量地址:地址越低,中断级别越高,STM32优先响应

STM32实验报告分析

实验一:一个灯的闪烁 一、实验要求 1.熟悉使用STM32F103ZET6开发板 2.利用C语言程序实现一个灯闪烁 二、电路原理图 图1-1 LED灯硬件连接图 三、软件分析 1.本实验用到以下3个库函数(省略了参数):RCC_DeInit();RCC_APB2PeriphClockCmd();GPIO_Init(); 2.配置输入的时钟:SystemInit()主要对RCC寄存器进行配置,GPIOA连接在APB2上,因此RCC_APB2PeriphClockCmd()函数需要使能APB2Periph_GPIOA 3.声明GPIO结构: PF6~PF10口配置为输出 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8|GPIO_Pin_9|GPIO_Pin_10; 4.应用GPIO口:点亮LED1有五种方法 ①ODR寄存器法:GPIOA->ODR=0xffbf; ②位设置/清除寄存器法:GPIOA->BRR|=0X001; ③方法③只适用于GPIOx_BSRR寄存器 ④GPIO_WriteBit()函数法:GPIO_Write(0xffbf); ⑤置位复位库函数法:GPIO_ResetBits(GPIOF,GPIO_Pin_8); 5.主函数程序: int main(void) { RCC_Configuration(); /* 配置系统时钟 */ GPIO_Configuration(); /* 配置GPIO IO口初始化 */ for(;;) { GPIOF->ODR = 0xfeff; /* PF8=0 --> 点亮D3 */ Delay(600000); GPIOF->ODR = 0xffff; /* PF8=1 --> 熄灭D3 */ Delay(600000); } } 四、实验现象 下载程序后开发板上的LED1灯闪烁

操作系统实验一中断处理

实习一中断处理 一、实习内容 模拟中断事件的处理。 二、实习目的 现代计算机系统的硬件部分都设有中断机构,它是实现多道程序设计的基础。中断机 构能发现中断事件,且当发现中断事件后迫使正在处理器上执行的进程暂时停止执行,而让操作系统的中断处理程序占有处理器去处理出现的中断事件。对不同的中断事件,由于它们的性质不同,所以操作系统应采用不同的处理。通过实习了解中断及中断处理程序的作用。本实习模拟“时钟中断事件”的处理,对其它中断事件的模拟处理,可根据各中断事件的性质确定处理原则,制定算法,然后依照本实习,自行设计。 三、实习题目 模拟时钟中断的产生及设计一个对时钟中断事件进行处理的模拟程序。 [提示]: (1) 计算机系统工作过程中,若出现中断事件,硬件就把它记录在中断寄存器中。中 断寄存器的每一位可与一个中断事件对应,当出现某中断事件后,对应的中断寄存器的某一位就被置成―1‖。 处理器每执行一条指令后,必须查中断寄存器,当中断寄存器内容不为―0‖时,说明有中断事件发生。硬件把中断寄存器内容以及现行程序的断点存在主存的固定单元,且让操作系统的中断处理程序占用处理器来处理出现的中断事件。操作系统分析保存在主存固定单元中的中断寄存器内容就可知道出现的中断事件的性质,从而作出相应的处理。 本实习中,用从键盘读入信息来模拟中断寄存器的作用,用计数器加1 来模拟处理器 执行了一条指令。每模拟一条指令执行后,从键盘读入信息且分析,当读入信息=0 时,表示无中断事件发生,继续执行指令;当读入信息=1 时,表示发生了时钟中断事件,转时钟中断处理程序。 (2)假定计算机系统有一时钟,它按电源频率(50Hz)产生中断请求信号,即每隔20 毫秒产生一次中断请求信号,称时钟中断信号,时钟中断的间隔时间(20 毫秒)称时钟单

实验五--单片机中断优先级实验

实验五单片机中断优先级实验 一、实验目的 1.理解AT89C51单片机中断优先级和优先权。 2.用PROTEUS设计、仿真基于AT89C51单片机的中断优先级实验。 3.掌握中断编程。 4.掌握发光二极管的控制方法。 二、实验要求 单片机主程序控制P0口数码管循环显示0~8;外中断(INT0)、外中断(INT1)发生时分别在P2、P1口依次显示0~8;INT1为高优先级,INT0为低优先级。 三、电路设计 ④CAP、CAP-ELEC:电容、电解电容; ⑤CRYSTAL:晶振; ⑥BUTTON:按钮。

2.放置元器件 3.放置电源和地 4.连线 5.元器件属性设置 6.电气检测 四、源程序设计、生成目标代码文件 1.流程图 2.源程序设计 通过菜单“sourc e→Add/Remove Source Files…”新建源程序文件:DZC35.ASM。 通过菜单“sourc e→DZC35.ASM”,打开PROTEUS提供的文本编辑器SRCEDIT,在其中编辑源程序。 程序编辑好后,单击按钮存入文件DZC35.ASM。 3.源程序编译汇编、生成目标代码文件 通过菜单“sourc e→Build All”编译汇编源程序,生成目标代码文件。若编译失败,可对程序进行修改调试直至汇编成功。 五、PROTEUS仿真 1.加载目标代码文件 2.全速仿真 单击按钮,启动仿真。 (1)低优先级INT0中断主程序:当主程序运行时,单片机控制与P0

口相接的数码管循环显示1~8;而P1、P2口的数码管不显示。当前主程序控制P0口显示“8”的时刻单击“低优先级输入”按钮,触发INT0如图所示,INT0服务程序控制P2口依次显示1~8,当前显示“2”。 (2)高优先级INT1中断低优先级INT0;在上一步的基础上,即主程序被INT0中断在P0口输出“8”,而在INT0服务程序在P2口输出“2”的时刻,单击“高优先级输入”按钮,触发高优先级INT1,所在INT0被中断在显示“2”,INT1服务程序控制P1口依次显示1~8。 3.仿真调试 六、思考题: 1.说明单片机中共有哪几种中断,它们的默认优先级是什么? 2.怎样修改中断优先级?例如在本实验中要使TIMER1成为优先级最高的中断,该怎么处理?

单片机实验报告(1)

实验二、中断实验――中断优先级控制及中断保护 一、实验目的 1、掌握单片机中断机制。 2、熟悉中断的应用和编程。 二、实验设备 1、 仿真器; 2、 单片机最小系统; 3、 发光二极管阵列显示模块; 4、 独立式键盘模块。 三、实验要求 连接单片机最小系统和发光二极管阵列的电路并编写程序,学习单片机中断机制,及中断优先级和中断保护的方法: 使用独立式按键1连接0INT (P3.2),按键2连接1INT (P3.3),在平时状态下,发光二极管行以200ms 的时间间隔,依次点亮。1键按下时0INT 中断处理程序点亮P0.0对应的发光管2秒钟,其他发光管熄灭;2键按下时P0.1对应发光管点亮2秒,其他发光管熄灭。 四、实验原理 通常一个微处理器读取外围设备(如键盘等)的输入信息的方法有轮询(Polling)及中断(Interrupt)两种。轮询的方法是CPU 依照某种既定法则,依序询问每一外围设备I /O 是否需要服务,此种方法CPU 需花费一些时间来做询问服务,当I /O 设备增加时,询问服务时间也相对增加,势必浪费许多CPU 时间,降低整体运行的效率。使用中断是一个较好的解决方法。使用中断使系统对外部设备的请求响应更加灵敏,并且不需要占用CPU 的时间进行轮询。但是,当使用中断,特别是有多个中断嵌套时要特别注意内存单元的保护。 1 80C51中断结构 当中断发生后,程序将跳至对应中断入口地址去执行中断子程序,或称中断服务程序(Interrupt Service Routine),这些特殊的地址称为中断向量,例如当80C51外部中断INTl 发生时,会暂停主程序的执行,跳至地址0013H 去执行中断服务程序,直到RETI 指令后,才返回主程序继续执行。MCS-51系列的程序内存中有7个矢量地址,叙述如下: (1)00H 复位 当第9脚RESET 为高电平,CPU 会跳至地址00H 处开始执行程序,亦即程序一定要从

计算机组成原理中断实验报告

北京建筑大学 2015/2016 学年第二学期 课程设计 课程名称计算机组成原理综合实验 设计题目微程序控制器设计与实现 系别电信学院计算机系 班级计141 学生姓名艾尼瓦尔·阿布力米提 学号 完成日期二〇一六年七月八日星期五 成绩 指导教师 (签名) 计算机组成综合实验任务书

指令执行流程图; ?5、利用上端软件,把所编写的微程序控制器内容写入实验台中控制器中。 ?6、利用单拍测试控制器与编程的要求是否一致。如果有错误重新修改后再写入控制器中。 7、编写一段测试程序,测试控制器运行是否正确。 实验目的 1.融合贯通计算机组成原理课程,加深对计算机系统各模块的工作原理及相互联系(寄存器堆、运算器、存储器、控制台、微程序控制器)。 2.理解并掌握微程序控制器的设计方法和实现原理,具备初步的独立设计能力;3.掌握较复杂微程序控制器的设计、调试等基本技能;提高综合运用所学理论知识独立分析和解决问题的能力。 实验电路 1. 微指令格式与微程序控制器电路 2.微程序控制器组成 仍然使用前面的CPU组成与机器指令执行实验的电路图,但本次实验加入中断系统。这是一个简单的中断系统模型,只支持单级中断、单个中断请求,有中断屏蔽功能,旨在说明最基本的原理。

中断屏蔽控制逻辑分别集成在2片GAL22V10(TIMER1 和TIMER2)中。其ABEL语言表达式如下: INTR1 := INTR; INTR1.CLK = CLK1; IE := CLR & INTS # CLR & IE & !INTC; IE.CLK= MF; INTQ = IE & INTR1; 其中,CLK1是TIMER1产生的时钟信号,它主要是作为W1—W4的时钟脉冲,这里作为INTR1的时钟信号,INTE的时钟信号是晶振产生的MF。INTS微指令位是INTS机器指令执行过程中从控制存储器读出的,INTC微指令位是INTC机器指令执行过程中从控制存储器读出的。INTE是中断允许标志,控制台有一个指示灯IE显示其状态,它为1时,允许中断,为0 时,禁止中断。当INTS = 1时,在下一个MF的上升沿IE变1,当INTC = 1时,在下一个MF的上升沿IE变0。CLR信号实际是控制台产生的复位信号CLR#。当CLR = 0时,在下一个CLK1的上升沿IE变0。当 CLR=1 且INTS = 0 且 INTC = 0时,IE保持不变。 INTR是外部中断源,接控制台按钮INTR。按一次INTR按钮,产生一个中断请求正脉冲INTR。INTR1是INTR经时钟CLK1同步后产生的,目的是保持INTR1与实验台的时序信号同步。INTR脉冲信号的上升沿代表有外部中断请求到达中断控制器。INTQ是中断屏蔽控制逻辑传递给CPU的中断信号,接到微程序控制器上。当收到INTR脉冲信号时,若中断允许位INTE=0,则中断被屏蔽,INTQ仍然为0;若INTE =1,则INTQ =1。

STM32 中断优先级理解

CM3 内核支持256 个中断,其中包含了16 个内核中断和240 个外部中断,并且具有256级的可编程中断设置。但STM32 并没有使用CM3 内核的全部东西,而是只用了它的一部分。STM32 有84 个中断,包括16 个内核中断和68 个可屏蔽中断,具有16 级可编程的中断优先级。而我们常用的就是这68 个可屏蔽中断,但是STM32 的68 个可屏蔽中断,在STM32F103 系列上面,又只有60 个 (在107 系列才有68 个)。 在MDK 内,与NVIC 相关的寄存器,MDK 为其定义了如下的结构体: 点击(此处)折叠或打开 1.typedef struct 2.{ 3.vu32 ISER[2]; 4.u32 RESERVED0[30]; 5.vu32 ICER[2]; 6.u32 RSERVED1[30]; 7.vu32 ISPR[2]; 8.u32 RESERVED2[30]; 9.vu32 ICPR[2]; 10.u32 RESERVED3[30]; 11.vu32 IABR[2]; 12.u32 RESERVED4[62]; 13.vu32 IPR[15]; 14.} NVIC_TypeDef; STM32 的中断在这些寄存器的控制下有序的执行的。只有了解这些中断寄存器,才能了解STM32 的中断。下面简要介绍这几个寄存器: ISER[2]:I SER 全称是:Interrupt Set-Enable Registers,这是一个中断使能寄存器组。上面说了STM32F103 的可屏蔽中断只有60 个,这里用了 2 个32 位的寄存器,总共可以表示64 个中断。而STM32F103 只用了其中的前60 位。ISER[0]的bit0~bit31 分别对应中断0~31。ISER[1]的bit0~27 对应中断32~59;这样总共60 个中断就分别对应上了。你要使能某个中断,必须设置相应的ISER 位为1,使该中断被使能(这里仅仅是使能,还要配合中断分组、屏蔽、IO 口映射等设置才算是一个完整的中断设置)。具体每一位对应哪个中断,请参考stm32f10x_nvic..h 里面的第36 行处。 ICER[2]:全称是:Interrupt Clear-Enable Registers,是一个中断除能寄存器组。该寄存器组与ISER 的作用恰好相反,是用来清除某个中断的使能的。其对应位的功能,也和ICER 一样。这里要专门设置一个ICER 来清除中断位,而不是 向ISER 写0 来清除,是因为NVIC 的这些寄存器都是写 1 有效的,写0 是无效的。 ISPR[2]:全称是:Interrupt Set-Pending Registers,是一个中断挂起控制寄存器组。每个位对应的中断和ISER 是一样的。通过置1,可以将正在进行的中断挂起,而执行同级或更高级别的中断。写0 是无效的。

实验3 外部中断实验报告

实验三定时中断实验 一、实验目的 1、掌握51单片机外部中断的应用。 2、掌握中断函数的写法。 3、掌握定时器的定时方法。 4、掌握LED数码管的显示。 二、实验内容 1、用外部中断0测量负跳变信号的累计数,同时在LED数码管上显示出来。 2、用外部中断改变流水灯的方式。 3、用定时器T1的方式2控制两个LED以不同周期闪烁。 使用定时器T1的方式2来控制P0、0、P0、1引脚的两个LED分别以1s与2s的周期闪烁。 三、实验仿真硬件图 在Proteus软件中建立如下图所示仿真模型并保存。 1、用外部中断0测量负跳变信号的累计数,同时在LED数码管上显示出来(用中断方式做计数器)。 2、用外部中断改变流水灯的方式。 中断前:开始时,P0、0~P0、7的8个灯依次点亮。 外部中断0:P0、0~P0、7的左右4个灯闪烁亮8次 外部中断1: P0、0~P0、7的8个灯间隔闪烁8次 改变中断优先级与保护现场,观察运行结果 四、编程提示

外部中断0请求 ______ INT,由P3、2管脚输入,通过IT0位来决定就是低电平有效还就是下 降沿有效。一旦输入信号有效,即向CPU申请中断,并建立IE0中断标志。 以外部中断0为例,开放中断源采用以下语句: EA=1; //开放中断总允许位 EX0=1; //开放外部中断0允许位 IT0=1; //置外部中断为边沿(下边沿)触发方式中断函数结构如下: void int_0() interrupt 0 // interrupt 0表示该函数为中断类型号0的中断函数{ } 同级自然优先级: 外部中断0→定时器T0中断→外部中断1→定时器T1中断→串行口中断。 中断优先级别的设定: 实验二要求: 初始状态为P0、0~P0、7的8个LED显示灯依次循环点亮;外部中断0服务程序为8个LED灯,左4个,右4个闪烁8次,外部中断1服务程序8个LED灯,间隔闪烁8次。 ⑴设定外部中断0为高优先级,先执行外部1中断,过程中用外部0中断来将其中断,反之不行。注意保护现场。 ⑵设定外部中断1为高优先级,先执行外部0中断,过程中用外部1中断来将其中断,反之不行。注意保护现场。 实验三(调试下列程序,在错误行后面注明错误及改正方法): #include #define uchar unsigned char; sbit D0=P1^0; sbit D1=P1^1; uchar a,b;

中断实验报告报告

中断试验试验报告 班级:电信1001 姓名:张贵彬学号:201046830213 一、实验目的 1、掌握PC机中断处理系统的基本原理。 2、学会编写中断服务程序。 二、实验原理与内容 1、实验原理 PC机用户可使用的硬件中断只有可屏蔽中断,由8259中断控制器管理。中断控制器用于接收外部的中断请求信号,经过优先级判别等处理后向CPU发出可屏蔽中断请求。IBMPC、PC/XT机内有一片8259中断控制器对外可以提供8个中断源: 中断源中断类型号中断功能 IRQ0 08H 时钟 IRQ1 09H 键盘 IRQ2 0AH 保留 IRQ3 OBH 串行口2 IRQ4 0CH 串行口1 IRQ5 0DH 硬盘 IRQ6 0EH 软盘 IRQ7 0FH 并行打印机 8个中断源的中断请求信号线IRQ0~IRQ7在主机的62线ISA总线插座中可以引出,系统已设定中断请求信号为“边沿触发”,普通结束方式。对于PC/AT及286以上微机内又扩展了一片8259中断控制,IRQ2用于两片8259之间级连,对外可以提供16个中断源: 中断源中断类型号中断功能 IRQ8 070H 实时时钟 IRQ9 071H 用户中断 IRQ10 072H 保留 IRQ11 O73H 保留 IRQ12 074H 保留 IRQ13 075H 协处理器 IRQ14 076H 硬盘 IRQ15 077H 保留 TPC-USB实验板上,固定的接到了3号中断IRQ3上,即进行中断实验时,所用中断类型号为0BH。 2、实验内容 实验电路如图9-1,直接用手动产单脉冲作为中断请求信号(只需连接一根导线)。要求每按一次开关产生一次中断,在屏幕上显示一次“TPCA Interrupt!”,中断10次后程序退出。 三、实验电路图

相关文档
最新文档