电动力学习题解答3
电动力学考试题及答案3

电动力学考试题及答案3一、单项选择题(每题2分,共20分)1. 电场中某点的电场强度方向是()。
A. 正电荷在该点受力方向B. 负电荷在该点受力方向C. 正电荷在该点受力的反方向D. 负电荷在该点受力的反方向答案:A2. 电场强度的单位是()。
A. 牛顿B. 牛顿/库仑C. 伏特D. 库仑答案:B3. 电场中某点的电势为零,该点的电场强度一定为零。
()A. 正确B. 错误答案:B4. 电场线与等势面的关系是()。
A. 互相平行B. 互相垂直C. 互相重合D. 以上都不对答案:B5. 电容器的电容与()有关。
A. 电容器的两极板面积B. 电容器的两极板间距C. 电容器的两极板材料D. 以上都有关答案:D6. 电容器充电后断开电源,其电量()。
A. 增加B. 减少C. 不变D. 无法确定答案:C7. 电容器两极板间电压增大时,其电量()。
A. 增加B. 减少C. 不变D. 无法确定答案:A8. 电容器两极板间电压增大时,其电场强度()。
A. 增加B. 减少C. 不变D. 无法确定答案:A9. 电容器两极板间电压增大时,其电势差()。
A. 增加B. 减少C. 不变D. 无法确定10. 电容器两极板间电压增大时,其电势能()。
A. 增加B. 减少C. 不变D. 无法确定答案:A二、多项选择题(每题3分,共15分)11. 电场强度的物理意义包括()。
A. 描述电场的强弱B. 描述电场的方向C. 描述电场的性质D. 描述电场的作用12. 电场中某点的电势与()有关。
A. 该点的电场强度B. 参考点的选择C. 电场线的方向D. 电场线的形状答案:B13. 电容器的电容与()有关。
A. 电容器的两极板面积B. 电容器的两极板间距C. 电容器的两极板材料D. 电容器的电量答案:A|B|C14. 电容器充电后断开电源,其()。
A. 电量不变B. 电压不变C. 电场强度不变D. 电势差不变答案:A|B|C|D15. 电容器两极板间电压增大时,其()。
(完整版)电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)

电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
电动力学复习题库及答案pdf

电动力学复习题库及答案pdf1. 电场强度的定义是什么?电场强度是指在电场中某一点,单位正电荷所受的力与该电荷量的比值。
数学表达式为:\[ \vec{E} = \frac{\vec{F}}{q} \],其中\( \vec{E} \)表示电场强度,\( \vec{F} \)表示电荷所受的力,\( q \)表示电荷量。
2. 描述电势差的定义及其与电场强度的关系。
电势差是指在两点间移动单位正电荷所做的功与该电荷量的比值。
数学表达式为:\[ V = \frac{W}{q} \],其中\( V \)表示电势差,\( W \)表示所做的功,\( q \)表示电荷量。
电势差与电场强度的关系为:\[ V_{AB} = -\int_{A}^{B} \vec{E} \cdot d\vec{l} \],其中\( V_{AB} \)表示从点A到点B的电势差,\( \vec{E} \)表示电场强度,\( d\vec{l} \)表示沿电场方向的微小位移矢量。
3. 电容器的电容是如何定义的?电容器的电容定义为电容器两极板间的电势差与所带电荷量的比值。
数学表达式为:\[ C = \frac{Q}{V} \],其中\( C \)表示电容,\( Q \)表示电荷量,\( V \)表示电势差。
4. 描述电流强度的物理意义及其单位。
电流强度是指单位时间内通过导体横截面的电荷量,其物理意义是描述电流的强弱。
电流强度的单位是安培(A),定义为每秒通过导体横截面的电荷量为1库仑(C)时的电流强度。
5. 洛伦兹力定律的内容是什么?洛伦兹力定律描述了带电粒子在电磁场中所受的力。
数学表达式为:\[ \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \],其中\( \vec{F} \)表示洛伦兹力,\( q \)表示粒子的电荷量,\( \vec{E} \)表示电场强度,\( \vec{v} \)表示粒子的速度矢量,\( \vec{B} \)表示磁场强度。
郭硕鸿《电动力学》课后答案

( A A) 2 A ( A) 2( A ) A , 所以 A ( A) 1 2 ( A A) ( A ) A
2 A ( A ) 1 2 A ( A ) A 2. 设 u 是空间坐标 x, y, z 的函数,证明: df dA dA f (u ) u , A(u ) u , A(u ) u du du du
电动力学习题解答
电பைடு நூலகம்力学答案
第一章 电磁现象的普遍规律
1. 根据算符 的微分性与向量性,推导下列公式:
( A B) B ( A) ( B ) A A ( B ) ( A ) B A ( A) 1 A 2 ( A ) A 2
3.
设r
( x x' ) 2 ( y y ' ) 2 ( z z ' ) 2 为源点 x ' 到场点 x 的距离, r 的方向规定为
第 1 页
电动力学习题解答
从源点指向场点。 (1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:
r ' r r / r ; (1 / r ) ' (1 / r ) r / r 3 ; (r / r 3 ) 0 ; (r / r 3 ) '(r / r 3 ) 0 , (r 0) 。 (2)求 r , r , (a )r , (a r ) , [ E 0 sin( k r )] 及 [ E 0 sin( k r )] ,其中 a 、 k 及 E 0 均为常向量。
所以
c dV f dV [c ( f )] dV ( f c ) ( f c ) dS
电动力学 第三版_郭硕鸿_课后答案[第3章]
![电动力学 第三版_郭硕鸿_课后答案[第3章]](https://img.taocdn.com/s3/m/96c1ce326fdb6f1aff00bed5b9f3f90f77c64d45.png)
电动力学习题解答参考 第三章 静磁场1. 试用A r 表示一个沿z 方向的均匀恒定磁场0B r写出A r的两种不同表示式证明两者之差是无旋场解0B r 是沿z 方向的均匀的恒定磁场即ze B B r r =0且AB r r×∇=0在直角坐标系中zx y y z x x y z e yA x A e x A z A e z A y A A r r rr )()()(∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=×∇如果用A r 在直角坐标系中表示0B r 即=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂000y A x A x A z A z A y A xy zx yz 由此组方程可看出A r有多组解如解1)(,00x f y B A A A x Z y +−=== 即 xe xf y B A rr )]([0+−= 解2)(,00y g x B A A A Y z x +=== 即 ye y g x B A rr )]([0+=解1和解2之差为yx e y g x B e x f y B A r r r )]([)]([00+−+−=∆则zx y y z x x y z e y A xA e x A z A e z A y A A r r r r ])()([])()([])()([)(∂∆∂−∂∆∂+∂∆∂−∂∆∂+∂∆∂−∂∆∂=∆×∇这说明两者之差是无旋场2.均匀无穷长直圆柱形螺线管每单位长度线圈匝数为n电流强度为I 试用唯一性定理求管内外磁感应强度B解根据题意得右图取螺线管的中轴线为z 轴本题给定了空间中的电流分布故可由∫×='43dV r rJ B rr r πµ求解磁场分布又J r 在导线上所以∫×=34r r l Jd B r r r πµ1 螺线管内由于螺线管是无限长理想螺线管故由电磁学的有关知识知其内部磁内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场场是均匀强磁场故只须求出其中轴线上的磁感应强度即可知道管内磁场 由其无限长的特性不妨取场点为零点以柱坐标计算x y x e z e a e a r r r r r ''sin 'cos −−−=ϕϕyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−=)''sin 'cos ()'cos ''sin '(x y x y x e z e a e a e ad e ad r l d r r r r r r r −−−×⋅+⋅−=×∴ϕϕϕϕϕϕ zy x e d a e d az e d az rrr'''sin '''cos '2ϕϕϕϕϕ+−−= 取由'''dz z z +−的以小段此段上分布有电流'nIdz ∫++−−=∴232220])'([)'''sin '''cos '('4z a e d a e d az e d az nJdz B z y x rr r r ϕϕϕϕϕπµ I n az a z d nI e nI z a dz a d z 0232023222200]1)'[()'(2])'([''4µµϕπµπ=+=⋅+=∫∫∫∞+∞−∞∞−r 2)螺线管外部:由于是无限长螺线管不妨就在xoy 平面上任取一点)0.,(ϕρP 为场点)(a >ρ 222')'sin sin ()'cos cos ('z a a x x r +−+−=−=∴ϕϕρϕϕρrr )'cos(2'222ϕϕρρ−−++=a z a ('=−=x x r r r r x e a r )'cos cos ϕϕρ−zy e z e a rr ')'sin sin (−−ϕϕρyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−= zy x e d a a e d az e d az r l d r r r r r ')]'cos([''sin '''cos '2ϕϕϕρϕϕϕϕ−−+−−=×∴+−+−⋅=∴∫∫∫∫∞∞−∞∞−'''sin '''''cos ''[43203200dz e r d az d dz e r d az d nI B y x rr r ϕϕϕϕϕϕπµππ]')'cos('3220∫∫∞∞−−−+z e dz r a a d rϕϕρϕπ由于磁场分布在本题中有轴对称性而螺线管内部又是匀强磁场且螺线管又是无限长故不会有磁力线穿出螺线管上述积分为0所以0=B r内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场3. 设有无穷长的线电流I 沿z 轴流动以z<0空间充满磁导率为µ的均匀介质z>0区域为真空试用唯一性定理求磁感应强度B 然后求出磁化电流分布解本题的定解问题为×∇=×∇=<−=∇>−=∇===010020212201211)0(,)0(,z z z A A AA z J A z J A r r r rrr rr µµµµ由本题具有轴对称性可得出两个泛定方程的特解为∫∫==rl Id x A rl Id x A rr r rr r πµπµ4)(4)(201由此可推测本题的可能解是<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 验证边界条件1)(,12021=−⋅==B B n A A z r rr r r 即 题中,=⋅=θe e e n z z rr r r 且所以边界条件1满足2)(,11120102=−××∇=×∇==H H n A A z z r r rr r即µµ本题中介质分界面上无自由电流密度又θθπµπµe r I B H e rI B H r r r r r r 2222011====,012=−∴H H r r 满足边界条件0)(12=−×H H n r r r综上所述由唯一性定理可得本题有唯一解<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 在介质中MB H r r r −=0µ故在z<0的介质中22H B M r rr −=µ内部资料料料内部资料内部即θθθµππµπe r e r e r M )1(22200−=−⋅= ∴介质界面上的磁化电流密度r z M e r I e e r I n M r r r r r r )1(2)1(200−=×−=×=µµπµµπαθ总的感应电流)1()1(20200−=⋅⋅⋅−=⋅=∫∫µµϕµµππθθI e d r e r I l d M J Mr r rr 电流在z<0的空间中沿z 轴流向介质分界面4. 设x<0 半空间充满磁导率为µ的均匀介质x>0 空间为真空今有线电流I 沿z 轴流动求磁感应强度和磁化电流分布解假设本题中得磁场分布仍呈轴对称则可写作ϕπµe rI B vv 2′=其满足边界条件0)(0)(1212==−×=−⋅αvv v v v vv H H n B B n 即可得在介质中ϕµπµµe r I B H vv v 22′== 而Me r I M B H v v v v v −′=−=ϕµπµµ0022∴在x<0的介质中ϕµµµµπµe r I M vv 002−′= 则∫=ld M I Mvv 取积分路线为B A C B →→→的半圆,ϕe AB vQ ⊥ AB ∴段积分为零 002)(µµµµµ−′=I I M ϕπµe r I I B M v v 2)(0+=∴∴由ϕϕπµπµe rI B e r I I M v v v 22)(0′−==+可得02µµµµµ+=′内部资料料料内部资料内∴空间ϕπµµe rB 0+= I I M 0µµµµ+−=沿z轴5.某空间区域内有轴对称磁场在柱坐标原点附近已知)21(220ρ−−≈z C B Bz 其中B 0为常量试求该处的ρB 提示用,0=⋅∇B r 并验证所得结果满足0Hr×∇解由B v 具有轴对称性设zz e B e B B v v v +=ρρ其中 )21(220ρ−−=z c B B z 0=⋅∇B v Q 0)(1=∂∂+∂∂∴z B zB ρρρρ即02)(1=−∂∂cz B ρρρρ A cz B +=∴2ρρρ(常数) 取0=A 得ρρcz B =z e z c B e cz B vv v )]21([220ρρρ−−+=∴10,0==D j v vQ 0=×∇∴B v 即 0)(=∂∂−∂∂θρρe B z B z v2代入1式可得2式成立∴ρρcz B = c 为常数6. 两个半径为a 的同轴线圈形线圈位于L z ±=面上每个线圈上载有同方向的电流I1 求轴线上的磁感应强度2 求在中心区域产生最接近于均匀的磁场时的L 和a 的关系提示用条件022=∂∂z B z解1由毕萨定律L 处线圈在轴线上z 处产生得磁感应强度为内部资料料料内部资料内,11z z e B B = ∫∫−+==θπαπd L z a r B z 232231])([4sin 4 232220])[(121a z L Ia +−=µ同理L 处线圈在轴线上z处产生得磁感应强度为zz e B B vv 22=2322202])[(121a z L Ia B z++=µ∴轴线上得磁感应强度zz z e a z L a z L Ia e B B v v v++++−==2322232220])[(1])[(121µ 20=×∇B vQ 0)()(2=∇−⋅∇∇=×∇×∇∴B B B v v v 又0=⋅∇Bv0,0222=∂∂=∇∴z B zB v 代入1式中得62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−+−−++−+−−−+−−−62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−++−−++ ++++++−−0取z得)(12])(2)(2[)(22522212222122322=+++−+−+−L a L a L L a L a L 2225a L L +=∴内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场a L 21=∴7. 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上试解矢势A r的微分方程设导体的磁导率为0µ导体外的磁导率为µ解定解问题为×∇=×∇=∞<>=∇<−=∇外内内外内外内A A A A A a r A a r J A a a v v v vvv vv µµµ11)(,0)(,00202选取柱坐标系该问题具有轴对称性且解与z 无关令ze r A A v v )(内内=z e r A A vv )(外外代入定解问题得=∂∂∂∂−=∂∂∂∂0))(1))((10r r A r rr J r r A r r r 外内µ 得43212ln )(ln 41)(C r C r A C r C Jr r A +=++−=外内µ由∞<=0)(r r A 内 得01=C 由外内A A v v ×∇=×∇µµ110 得 232Ja C µ−=内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场由aaA A 内外v v =令0==aaA A 内外v v 得 a Ja C Ja C ln 2,4124202µµ==−=∴ra a J A r a J A ln 2)(412220v v v vµµ外内8.假设存在磁单极子其磁荷为Qm它的磁场强度为304r rQ H m r r πµ=给出它的矢势的一个可能的表示式并讨论它的奇异性解rm m e rQ r r Q H v v v 2030144πµπµ== 由rm e rQ H B A v v v v 204πµ===×∇ 得=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂0])([10)](sin 1[14])(sin [sin 12θφθπφθθθθφθφrr m A rA r r rA r A r r Q A A r (1)令,0==θA A r得rQ A m πθθθφ4sin )(sin =∂∂θθπθπθθφθφsin cos 144sin sin 0r Q A d rQ A mm −=∴=∴∫显然φA 满足1式∴磁单极子产生的矢势φθθπe r Q A m vv sin cos 14−=内部资料料料内部资料内部当2πθ→时φπe rQ A m v v 4→当πθ→时∞→A v故A v的表达式在πθ=具有奇异性A v不合理9. 将一磁导率为µ半径为R 0的球体放入均匀磁场0H r内求总磁感应强度B r 和诱导磁矩mr解根据题意以球心为原点建立球坐标取0H v 的方向为zev此球体在外界存在的磁场的影响下极化产生一个极化场并与外加均匀场相互作用最后达到平衡保持在一个静止的状态呈现球对称本题所满足的定解问题为−=∞<=∂∂=∂∂=>=∇<=∇∞==θϕϕϕµϕµϕϕϕϕcos )(,,,0,0000002221212121R H R R R R R R R R R m R m m m m m m m 由泛定方程和两个自然边界条件得∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++−=010)(cos cos 2n nn nm P R d R H θθϕ由两个边界条件有+−−=+−=∑∑∑∑∞=+∞=−∞=+∞=0200001100100000)(cos )1(cos )(cos )(cos cos )(cos n n n nn n n n n nn n n n nn P R d n H P nR a P R d R H P R a θµθµθµθθθ得内部资料料料内部资料内≠==+−=+)1(,0223000101n d a R H d n n µµµµµµ>⋅+−+−=<+−=∴00230000000,cos 2cos ,cos 2321RR H R R R H R R R H m m θµµµµθϕθµµµϕ+==+=+−+=−∇=00011000000012323sin 23cos 231H H B H e H e H H r m v v v v vv v µµµµµµµµθµµµθµµµϕθ−⋅+−+==−⋅+−+=⋅+−−−⋅+−+=−∇=])(3[2])(3[2sin ]21[cos ]221[3050300000020230503000003300003300022R H R R R H R H H B R H R R R H R H e H R R e H R R H r m v v v v v v v vv v v v vv v µµµµµµµµµµµθµµµµθµµµµϕθ >−⋅+−+<+=∴)()(3[2)(,230305030000000000R R R H R R R H R H R R H B vv v v v vv µµµµµµµµµµ当B v在R>R 0时表达式中的第二项课看作一个磁偶极子产生的场θµµµµϕcos 20230002H RR m ⋅+−∴中可看作偶极子m v产生的势即R H R R H R R R Rm v v v v ⋅⋅+−=⋅+−=⋅⋅02300002300032cos 241µµµµθµµµµπ HR m v v300024⋅+−=∴µµµµπ10. 有一个内外半径为R 1和R 2的空心球位于均匀外磁场0H r内球的磁导率为µ求空内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场腔内的场Br讨论0µµ>>时的磁屏蔽作用解根据题意以球心为原点取球坐标选取0H v的方向为z e v在外场0H v的作用下 球壳极化产生一个附加场并与外场相互作用最后达到平衡B v的分布呈现轴对称定解问题−=∞<∂∂=∂∂∂∂=∂∂==>=∇<<=∇<=∇∞======θϕϕϕµϕµϕµϕµϕϕϕϕϕϕϕcos ,,,0,0,00000322121231223121232121321R H RR R R R R R R R R R R m R m R R m m R R m m R R m m R R m m m m m 由于物理模型为轴对称再有两个自然边界条件故三个泛定方程的解的形式为∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++=01)(cos (2n n n nn n m P Rc R b θϕ∑∞=++−=010)(cos cos 3n nn nm P Rd R H θθϕ因为泛定方程的解是把产生磁场的源0H v做频谱分解而得出的分解所选取的基本函数系是其本征函数系)}(cos {θn P 在本题中源的表示是)(cos cos 100θθRP H R H −=−所以上面的解中)0(,0≠====n d c b a n n n n 故解的形式简化为θθϕθϕθϕcos cos cos )(cos 2102111321RdR H Rc R b R a mm m +−=+==内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场代入衔接条件得−=−−−=+−=++=2(22(32113210031110122120221212111111R c b R d H R c b a R d R H R c R b R c R b R a µµµµµ解方程组得3200312032000320001)2)(2()(2)(3)2(3R R R H R H a µµµµµµµµµµµµ++−−−++= 32003120320001)2)(2()(2)2(3R R R H b µµµµµµµµµ++−−+= 3200312031320001)2)(2()(2)(3R R R R H c µµµµµµµµµ++−−−= 320320031203132000620001)2)(2()(2)(3)2(3R H R R R R H R H d +++−−−++=µµµµµµµµµµµµ而 )3,2,1(,00=∇−==i H B i m i i ϕµµvv ze a B v v 101µ−=∴ 003212000321])()(2)2)(2()(11[HR R R R v µµµµµµµ−−++−−=当0µµ>>时1)(2)2)(2(2000≈−++µµµµµµ 01=∴B v 即球壳腔中无磁场类似于静电场中的静电屏障11. 设理想铁磁体的磁化规律为000,M M H B µµ+=rr 是恒定的与H r无关的量今将一个内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场理想铁磁体做成均匀磁化球0M为常值浸入磁导率为'µ的无限介质中求磁感应强度和磁化电流分布解根据题意取球心为原点做球坐标以0M v的方向为z e v本题具有球对称的磁场分布满足的定解问题为=∞<=∂∂′−∂∂=>=∇<=∇∞===0cos ,,0,021021021*******02R m R m R m m R R m m m m M R RR R R R ϕϕθµϕµϕµϕϕϕϕ ∴∑∞==0)(cos 1n n n nm P R aθϕ∑∞=+=01)(cos )(2n n n nm P R b θϕ代入衔接条件对比)(cos θn P 对应项前的系数得)1(,0≠==n b a nn µµµ+′=2001Ma 30012R M b µµµ+′=)(,cos 20001R R R M m <+′=∴θµµµϕ)(,cos 20230002R R RR M m>+′=θµµµϕ由此µµµµµµ+′′=+=<22,0000110M M H B R R v r v v ,0R R > )(3[2305030022RM R R R M R B m v r v v v −⋅+′′=∇′−=µµµµϕµ >−⋅+′′<+′′=∴)()(3[2)(,2203050300000R R R M R R R M R R R M B v r v v vv µµµµµµµµ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场又0)()(0120其中αααµv v v vv v+=−×M R B B n 代入B v的表达式得ϕθµµµαe M Mvv sin 230′′12. 将上题的永磁球置入均匀外磁场0H r中结果如何解根据题意假设均匀外场0H v 的方向与0M v的方向相同定为坐标z 轴方向定解问题为−=∞<=∂∂−∂∂=>=∇<=∇∞===θϕϕθµϕµϕµϕϕϕϕcos cos ,,0,00000002022102102121R H M R RR R R R R m R m R m m R R m m m m 解得满足自然边界条件的解是)(,cos 011R R R a m <=θϕ)(,cos cos 02102R R R d R H m >+−=θθϕ代入衔接条件0013010020100012M a R d H R d R H R a µµµµ=+++−=得到 0000123µµµµ+−=H M a 3000012)(R H M d µµµµµ+−+=)(,cos 23000001R R R H M m <+−=∴θµµµµϕ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场)(,cos 2)(cos 0230000002R R RR H M R H m>+−++−=θµµµµµθϕ]sin 23cos 23[000000000011θθµµµµθµµµµϕe H M e H M H r m v v v +−−+−−=−∇=∴ µµµµ+−−=0000023H M v v )(,22230002000001R R M H M H B <+++=+=v v v v v µµµµµµµµµ−+−+−−−=−∇=r m e R R H M H H v v )cos 22)(cos [(23000000022θµµµµµθϕ 350230000000)(3])sin 2)(sin (Rm R R R m H e R R H M H v v r r v v−⋅+=+−++−−θθµµµµµθ ])(3[3500202RmR R R m H H B v v r r v v v −⋅+==µµ030003000022H R R M m v vv µµµµµµµ+−++=13. 有一个均匀带电的薄导体壳其半径为R 0总电荷为Q今使球壳绕自身某一直径以角速度ω转动求球内外的磁场Br提示本题通过解m ϕ或A r的方程都可以解决也可以比较本题与5例2的电流分布得到结果解根据题意取球体自转轴为z 轴建立坐标系定解问题为=∞<=∂∂=∂∂−=∂∂−∂∂>=∇<=∇∞===0)(,4sin )(1,0,021211221000000202R m R m m m R R m m m m R R R R R Q R R R R R ϕϕϕµϕµπθωθϕθϕϕϕ其中4sin R Q πθωσ=是球壳表面自由面电流密度解得满足自然边界条件的解为内部资料料料内部资料内部)(,cos 0212R R Rb m >=θϕ代入衔接条件=+−=−024301102101R b a R Q R b R a πω解得 016R Q a πω−= πω12201R Q b =)(,cos 6001R R R R Q m <−=∴θπωϕ)(,cos 1202202R R R R Q m>=θπωϕ00016sin 6cos 61R Q e R Q e R Q H r m πωθπωθπωϕθv vv v =−=−∇=∴ωπµµvr v 001016R Q H B == ])(3[41sin 12cos 1223532032022Rm R R R m e R R Q e R R Q H r r m r v v v vv v −⋅=+=−∇=πθπωθπωϕ其中ωvv 320QR m =])(3[4350202RmR R R m H B r v v v v v −⋅==πµµ14. 电荷按体均匀分布的刚性小球其总电荷为Q 半径为R 0它以角速度ω绕自身某以直径转动求1 它的磁矩2 它的磁矩与自转动量矩之比设质量M 0是均匀分布的 解1磁矩∫×=dV x J x m )(21v v v v内部资料料料内部资料内又 rR x e R == )(34)(30R R v x J ×==ωπρ∫∫×=××=∴φθθπωφθθωπφd drd R e e R Q d drd R R R R Q m r 2430230sin )(4321sin )(4321v v v v r v 又 )sin cos (cos sin y x z r e e e e e e vv v v v v φφθθθφ−−+=−=×∫∫∫−−+=∴ππφθθφφθθπω20243sin )sin cos (cos [sin 83R y x z d drd R e e e R Q m vv v v ωφθθπωππv v 5sin 8320200043300QR d drd R e R Q R z ==∫∫∫2)自转动量矩∫∫∫∫××=×=×==dV R R R M dm v R P d R L d L )(43300v v v v v v v v vωπ52sin 43sin )sin cos (cos [sin 43sin )(sin 43sin )sin (43sin )(43200203430200024302230022300223000ωφθθπωφθθφφθθπωφθθθωπφθθθωπφθθωπππππθφv v vv v v v v v v v R M d drd R R M d drd R e e e R M d drd R e R R M d drd R e e R R M d drd R e e e R R M R R y x z r r z r ==−−+=−=×−=××=∫∫∫∫∫∫∫∫∫ 0200202525M Q R M QR L m ==∴ωωv v v v15. 有一块磁矩为m r的小永磁体位于一块磁导率非常大的实物的平坦界面附近的真空中求作用在小永磁体上的力F r.内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场解根据题意因为无穷大平面的µ很大则可推出在平面上所有的H v均和平面垂直类比于静电场构造磁矩m r 关于平面的镜像m ′r则外场为=⋅=∇−=2304cos 4r m R R m B m m e πθπϕϕµv v v)sin cos (4]sin cos 2[430330θθθθαπµθθπµe e r m e r e r m B rr e vv r v v +=−−−=∴m v∴受力为za r ee a m B m F v v vv )cos 1(643)(24022απµαθ+−=⋅∇⋅===内部资料料料内部资料内部。
电动力学 西南师范大学出版社 罗婉华 第三章作业答案

习题三参考答案1.试证明,在两种导电介质的分界面上, .01122=∂∂-∂∂nnϕσϕσ()21指向由n.证明:因为0=⋅⎰⎰SS d j所以,n n j j 21= 又, nE j n n ∂∂==ϕσσ即 .01122=∂∂-∂∂nnϕσϕσ2.半径为0R 的导体球,带自由电荷总量为f Q .今使导体球的一半浸在介电常数为ε的液体中,另一半露在真空中.求静电势、静电场、自由电荷和束缚电荷分布. 答案:液体的电势1ϕ,电场1E及空气中电势2ϕ,电场2E 分别为()().2,23021021RR Q E E RQ f fεεπεεπϕϕ+==+==导体球的电势0ϕ及球内电场0E分别为().0,20000=+=E R Q fεεπϕ自由电荷分布及束缚电荷分布:① 下半球面 ()()().2,220020R Q R Q fPffεεπεεσεεπεσ+-=+=② 上半球面 ().0,2200=+=PffRQ σεεπεσ③ 液体表面 .0,0==pfσσ提示 由边界条件,提出尝试解rA =ϕ ,再由唯一性定理,求出常数A.3.试论证:在没有电荷的地方,电势既不能达到极大值,也不能达到极小值.(提示:分真空和均匀介质空间,用泊松方程证明.) 证明:由02ερϕ-=∇ (1)没有电荷的地方0222222=∂∂+∂∂+∂∂zyxϕϕϕ (2)如果ϕ为极大,则022<∂∂xϕ,022<∂∂yϕ,022<∂∂zϕ,这不满足(2)式,可见没有电荷处,ϕ不能为极大。
同理可以证明ϕ不能为极小。
在均匀介质中,有ρερ⎪⎪⎭⎫⎝⎛--=r p 11,若没有自由电荷,也就没有极化电荷。
方程(2)仍然成立,证明和前面一样。
4.三个同心薄金属球壳形成一个静电系统,内球半径为1R ,中间球半径为2R ,外球半径为 3R ,球壳之间为真空,内外球壳接地,电荷Q 置于中间球壳上,试求: (1)内球壳上的感应电荷1Q 值;’ (2) 外球面上的感应电荷3Q 的值.解 在所研究场域内无电荷分布,故场域满足0=⋅∇D .因为电场具有球对称的特点,故选用球坐标,且0==φθE E ,于是0=⋅∇D )(21R r R << 或在球坐标系中0)(1122=D r dd r(1)积分得 21rA D =(2)同理得 22rB D =)(32R r R << (3)根据边界条件确定常数A 、B. 由⎰⎰=⋅-⋅Q dS D dS 1n D n 2, 得π4Q B A =+ (4)由 ⎰⎰⋅=⋅123221R R R R r r d E d E 得B R R R R R R A )()(123231--=(5)联立(4)、(5)式,得)()(4132231R R R R R R Q A --⋅=π; )()(4132123R R R R R R Q B --⋅=π因此,球壳之间电场分布为 )()(1322310124R R R R R R QE r --⋅=πε;)()(4132232021R R R R R R rQ E --=πε内球壳上感应电荷分布10101E E n εεσ-==总电荷Q R R R R R R Q )()(1322311---=外球壳内表面感应电荷分布为 20203E E n εεσ-== 总电荷QR R R R R R Q )()(1321232---= .5.(1)根据电荷守恒定律证明稳恒电流情况下的边界条件:电流密度的法向分量连续. (2)证明导体表面电位移的法向分量σ=n D (σ为面电流密度),但 D 不在导体表面的法线方向.解(1)在两种导电媒质的分界面上,作一扁圆柱体(高0→∆h ),把连续性方程⎰=⋅0S j d 用于这个圆柱面上,则0)(12=-⋅j j n 或n n 21j j =,法向单位基矢n 由媒质1指向媒质2,因此电流密度在界面法线n 上的分量连续.(2)由于介质中各点02=j ,故导电媒质与非导电媒质交界面上边界条件为01=E σ 2t1tE E =t∵ σ=-⋅)(12D D n ,σ=n D 2因为电场有切向分量,所以D 不在导体表面法线方向。
电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)

电动力学习题解答电动力学答案第一章电磁现象的普遍规律1.根据算符' 的微分性与向量性,推导下列公式:1( A B ) =B ('、A) ■ ( B ^ ) A A (I B) ' (A '、、) B A (∖ A) ∖ A -(A '、) A 2.设U是空间坐标X, y,z的函数,证明:'、f (U)dfUd U::/∙A(U)=d AU —dU ∖ A (U) =VUd Adu证明:电动力学习题解答3. 设r = (X - χ')亠(y _ y')亠(Z -z') 为源点X'到场点X 的距离,r的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:Ir= 一1 'r = r / r ;I (1 / r) _ -■• ' (1 / r) _ -r / r3;3'、(r/ r ) =0 ;∖ (r / r ) = '(r / r ) = O ,(r = 0)。
(2 )求r ,'∙∙ r,(a •''、) r ,1(a r),∖ [ E o Sin( k r)]及''、[E O Sin( k r)],其中a、k及E O均为常向量。
,应用斯托克斯(StokeS)定理证明dS = d I”^S ^L4.应用高斯定理证明 f dS f5.已知一个电荷系统的偶极矩定义为P(t) = Vj(X',t)X'dV',利用电荷守恒定律∖=0证明P的变化率为:Ctd PJ ( X',t)dVdt -V6.若m是常向量,证明除R=O点以外,向量A =( m R)/ R3 的旋度等于标量:护^m R/R3的梯度的负值,即V A --,其中R为坐标原点到场点的距离,方向由原点指向场点。
7.有一内外半径分别为r1和r2的空心介质球,介质的电容率为;,使介质球内均匀带静止自由电荷「f ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
电动力学第三版答案

电动力学第三版答案第一章:静电学1.1 静电场静电场是由电荷所产生的场,它是一种无时间变化的电磁场。
静电场的性质可以通过电场强度、电势和电荷分布来描述。
电场强度表示单位正电荷所受到的力,并且是一个向量量。
在任意一点的电场强度可以通过库仑定律计算。
电势是单位正电荷所具有的势能,它是一个标量量。
电势可以通过电势差来定义,电势差是两点之间的电势差别。
1.2 电场的高斯定律电场的高斯定律是描述电场在闭合曲面上的通量与该闭合曲面内的电荷有关系的定律。
它可以通过以下公式表示:\[ \oint \mathbf{E} \cdot \mathbf{n} \, ds =\frac{Q_{\text{enc}}}{\varepsilon_0} \]其中,\(\mathbf{E}\) 是电场强度,\(\mathbf{n}\) 是曲面上的单位法向量,\(ds\) 是曲面上的微元面积,\(Q_{\text{enc}}\) 是闭合曲面内的总电荷,\(\varepsilon_0\) 是真空电容率。
1.3 电势电势是单位正电荷所具有的势能,它是一个标量量。
它可以通过电势差来定义,电势差是两点之间的电势差别。
电势可以通过以下公式计算:\[ V = - \int \mathbf{E} \cdot d\mathbf{l} \]其中,\(V\) 是电势,\(\mathbf{E}\) 是电场强度,\(d\mathbf{l}\) 是路径上的微元长度。
1.4 静电场中的导体在静电场中,导体内部的电场强度为零。
当导体受到外部电场作用时,其表面会产生等效于外部电场的电荷分布,这种现象被称为静电感应。
静电感应可以通过以下公式来计算表面电荷密度:\[ \sigma = \mathbf{n} \cdot \mathbf{E} \]其中,\(\sigma\) 是表面电荷密度,\(\mathbf{n}\) 是表面法向量,\(\mathbf{E}\) 是外部电场强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 静磁场1. 试用A 表示一个沿z 方向的均匀恒定磁场0B ,写出A 的两种不同表示式,证明二者之差为无旋场。
解:0B 是沿 z 方向的均匀恒定磁场,即 z B e B 00=,由矢势定义B A =⨯∇得0//=∂∂-∂∂z A y A y z ;0//=∂∂-∂∂x A z A z x ;0//B y A x A x y =∂∂-∂∂三个方程组成的方程组有无数多解,如:○10==z y A A ,)(0x f y B A x +-= 即:x x f y B e A )]([0+-=; ○20==z x A A ,)(0y g x B A y += 即:y y g x B e A )]([0+= 解○1与解○2之差为y x y g x B x f y B e e A )]([)]([00+-+-=∆ 则 0)//()/()/()(=∂∂-∂∂+∂∂+∂-∂=∆⨯∇z x y y x x y y A x A z A z A e e e A 这说明两者之差是无旋场2. 均匀无穷长直圆柱形螺线管,每单位长度线圈匝数为n ,电流强度I ,试用唯一性定理求管内外磁感应强度B 。
解:根据题意,取螺线管的中轴线为 z 轴。
本题给定了空间中的电流分布,故可由⎰⨯='430dV r rJ B πμ 求解磁场分布,又 J 只分布于导线上,所以⎰⨯=304r Id r l B πμ1)螺线管内部:由于螺线管是无限长理想螺线管,所以其内部磁场是均匀强磁场,故只须求出其中轴 线上的磁感应强度,即可知道管内磁场。
由其无限长的特性,不z y x z a a e e e r ''sin 'cos ---=φφ, y x ad ad d e e l 'cos ''sin 'φφφφ+-= )''sin 'cos ()'cos ''sin '(z y x y x z a a ad ad d e e e e e r l ---⨯+-=⨯φφφφφφz y x d a d az d az e e e '''sin '''cos '2φφφφφ+--=取''~'dz z z +的一小段,此段上分布有电流'nIdz⎰++--=∴2/32220)'()'''sin '''cos '('4z a d a d az d az nIdz z y x e e e B φφφφφπμ ⎰⎰⎰+∞∞-+∞∞-=+=+=z z I n a z a z d nI nI z a dz a d e e 02/3202/3222200])/'(1[)/'(2)'(''4μμφπμπ2)螺线管外部:由于螺线管无限长,不妨就在过原点而垂直于轴线的平面上任取一点)0,,(φρP 为场点,其中a >ρ。
222')'sin sin ()'cos cos ('z a a r +-+-=-=φφρφφρx x)'cos(2'222φφρρ--++=a z az y x z a a e e e x x r ')'sin sin ()'cos cos ('+-+-=-=φφρφφρy x ad ad d e e l 'cos ''sin 'φφφφ+-=z y x d a a d az d az d e e e r l ')]'cos([''sin '''cos '2φφφρφφφφ--+--=⨯⎥⎦⎤⎢⎣⎡--+-+-=∴⎰⎰⎰⎰⎰⎰+∞∞-+∞∞-+∞∞-')'cos('''sin ''''cos ''432203203200dz r a a d dz r az d dz r az d nI z y x φφρφφφφφπμπππe e e B 0=3. 设有无限长的线电流I 沿z 轴流动,在z<0空间充满磁导率为μ的均匀介质,z>0区域为真空,试用唯一性定理求磁感应强度B ,然后求出磁化电流分布。
解:设z>0区域磁感应强度和磁场强度为1B ,1H ;z<0区域为2B ,2H ,由对称性可知1H和2H 均沿θe 方向。
由于H 的切向分量连续,所以θe H H H ==21。
由此得到021==n n B B ,满足边值关系,由唯一性定理可知,该结果为唯一正确的解。
以 z 轴上任意一点为圆心,以 r 为半径作一圆周,则圆周上各点的H 大小相等。
根据安培环路定理得:I rH =π2,即r I H π2/=,()θπe H H r I 2/21== ()θπμμe H B r I 2/0111==∴,(z >0);()θπμμe H B r I 2/222==,(z <0)。
在介质中 ()()θμμπμe H B M 1/2//0202-=-=r I 所以,介质界面上的磁化电流密度为:()()()()r z r I r I e e e n M α1/2/1/2/00-=⨯-=⨯=μμπμμπθ总的感应电流:()()()1/1/2/020-=⋅-=⋅=⎰⎰μμϕμμππθθI rd r I d I e e l M ,电流在 z<0 区域内,沿 z 轴流向介质分界面。
4. 设x<0半空间充满磁导率为μ的均匀介质,x>0空间为真空,今有线电流I 沿z 轴流动,求磁感应强度和磁化电流分布。
解:假设本题中的磁场分布仍呈轴对称,则可写作φπμe B )2/'(r I =它满足边界条件:0)(12=-⋅B B n 及0)(12==-⨯αH H n 。
由此可得介质中:φπμμμe B H )2/'(/2r I ==由 M B H -=02/μ得:在x <0 的介质中 φμμμμπμe M 02'-=r I ,则: 0020002)('02'μμμμμφφμμμμπμπππ-=+-=⋅=⎰⎰⎰I d d r r I d I M l M 再由 φφπμπμe e B )2/'(2/)(0r I r I I M =+= 可得)/(2'00μμμμμ+=,所以r I πμμμμφ)/(00+=e B ,)/()(00μμμμ+-=I I M (沿 z 轴)5. 某空间区域内有轴对称磁场。
在柱坐标原点附近已知)2/(220ρ--≈z C B B z ,其中0B 为常量。
试求该处的ρB 。
提示:用0=⋅∇B ,并验证所得结果满足0=⨯∇H 。
解:由于B 具有对称性,设z z B B e e B +=ρρ, 其中 )2/(220ρ--=z C B B z0=⋅∇B ,0)(1=∂∂+∂∂∴z B z B ρρρρ,即:02)(1=-∂∂cz B ρρρρ, a cz B +=∴2ρρρ(常数)。
当0→ρ时,ρB 为有限,所以 0=a ;ρρcz B =,即:z z c B cz e e B )]2/([220ρρρ--+= (1)因为0=J ,0=D ,所以 0=⨯∇B ,即0)//(=∂∂-∂∂θρρρe B z B (2) 直接验证可知,(1)式能使(2)式成立,所以ρρcz B =,(c 为常数)6. 两个半径为a 的同轴圆形线圈,位于L z ±=面上。
每个线圈上载有同方向的电流I 。
(1)求轴线上的磁感应强度。
(2)求在中心区域产生最接近于均匀常常时的L 和a 的关系。
提示:用条件0/22=∂∂z B z解:1) 由毕—萨定律,L 处线圈在轴线上 z 处产生的磁感应强度为z z B e B 11=,2/32222/32220301])[(121])([4sin 4a L z Ia d L z a Ia r Id B z +-=-+=⨯=⎰⎰μθπμαπμr l 同理,-L 处线圈在轴线上 z 处产生的磁感应强度为:z z B e B 22=,2/322202])[(121a L z Ia B z ++=μ。
所以,轴线上的磁感应强度:⎭⎬⎫⎩⎨⎧++++-==2/3222/32220])[(1])[(121a L z a L z Ia B z z μe B (1) 2)因为 0=⨯∇B ,所以 0)()(2=∇-⋅∇∇=⨯∇⨯∇B B B ;又因为0=⋅∇B ,所以 02=∇B ,0/22=∂∂z B z 。
代入(1)式并化简得:-+++++--+-----2/72222/5222/7222])[()(5])[(])[()(5a z L z L a z L a z L z L 0])[(2/522=++--a z L将 z=0 带入上式得:2225a L L +=, 2/a L =∴7. 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势A 的微分方程。
设导体的磁导率为0μ,导体外的磁导率为μ。
解:矢势所满足的方程为:⎪⎩⎪⎨⎧>=∇<-=∇)(,0)(,202a r a r 外内A JA μ 自然边界条件:0→r 时,内A 有限。
边值关系:ar ar ===外内A A ;a r a r ==⨯∇=⨯∇|1|1外内A A μμ选取柱坐标系,该问题具有轴对称性,且解与 z 无关。
令z r A e A )(内内=,z r A e A )(外外=, 代入微分方程得:J r r A r r r 0))((1μ-=∂∂∂∂内;0))((1=∂∂∂∂rr A r r r 外 解得:2120ln 41)(C r C Jr r A ++-=μ内;43ln )(C r C r A +=外由自然边界条件得01=C ,由 a r a r ==⨯∇=⨯∇|1|10外内A A μμ 得:232Ja C μ-=, 由 a r ar ===外内A A 并令其为零,得:20241Ja C μ=,a Ja C ln 224μ=。
)(41220r a -=∴J A μ内;raa ln 212J A μ=外8. 假设存在磁单极子,其磁荷为m Q ,它的磁场强度为304/r Q m πμr H =。
给出它的矢势的一个可能的表示式,并讨论它的奇异性。