乘法公式乘法公式练习题

合集下载

乘法公式练习题

乘法公式练习题

乘法公式练习题1. 计算下列乘法公式的结果:- (a + b)(a - b)- (a + 2b)(a - 2b)- (3a - b)(3a + b)2. 将下列表达式展开并简化:- (2x + 3y)(2x - 3y)- (x - 4)(x + 4)- (5a + 2b)(5a - 2b)3. 利用乘法公式计算下列多项式的乘积:- (x + y)(x^2 - xy + y^2)- (2x - 3)(4x^2 + 6x + 9)- (a + b + c)(a - b + c)4. 验证下列等式是否成立,并说明理由:- (a + b)^2 = a^2 + 2ab + b^2- (a - b)^2 = a^2 - 2ab + b^2- (a + b)(a - b) = a^2 - b^25. 完成下列乘法公式的填空题:- (x + y)(x - y) = x^2 - ____- (2x + 3)(2x - 3) = 4x^2 - ___- (a + b)(a^2 - ab + b^2) = a^3 + __ + b^36. 利用乘法公式解决实际问题:- 一个长方形的长是 (x + 3) 厘米,宽是 (x - 3) 厘米,求面积的表达式。

- 一个正方形的边长是 (2x + 1) 厘米,求面积的表达式。

- 一个三角形的底是 (a + b) 厘米,高是 (a - b) 厘米,求面积的表达式。

7. 推导并证明下列乘法公式:- (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc- (a - b + c)(a + b - c) = a^2 - b^2 + c^2 - 2bc8. 给出下列乘法公式的逆运算:- 如果 (a + b)(a - b) = a^2 - b^2,那么 a^2 - b^2 可以分解为两个因式的乘积是什么?- 如果 (a + 2b)(a - 2b) = a^2 - 4b^2,那么 a^2 - 4b^2 可以分解为两个因式的乘积是什么?9. 利用乘法公式解决下列问题:- 一个数的平方减去另一个数的平方等于 25,如果这两个数分别是 (x + 1) 和 (x - 1),求 x 的值。

乘法公式综合练习题

乘法公式综合练习题

乘法公式综合练习题乘法公式练习1、()()3232xy x xy x -+=2、22222233mnmn mn mn ?+- ?=3、()()3223x y x y -+=4、()()223131a a -+=5、()()1221xy xy +-=6、()()233233a b ca bc +-=7、332244x m m x -+ ??=8、()()332323ax ax ax ax ---= 9、()()22ab b ab b -+=10、()()333113m m +-=11、()()2121x x +-=12、()()11a a +-=13、()()2211a a -+--=14、33111122x x +- ???==16、()()2222a a +-=17、2232324343x y x x y x -+ ???=18、()()33a b b a +-=19、()()()2111a a a +-+=20、()()()2224x x x +-+=21、99×101= 22、198×202=23、()()()()()24811111x x x x x +-+++= 24、()()23322332m n n m -+=25、()()3333a b a b +-=26、22(2)(2)x y x y -+=27、(13)(13)x x -+=28、()()m n m n a b a b +-=29、()()332112a a x y x y +-=30、()()n n a a a a +-=31、()()3311n n a a +-=32、()()22x y x y +--+=33、()()11a b a b ++--= 34、()21a +=35、()221x +=36、()221m -=37、 ()22x y -= 38、()2333x -=39、()2331a +=40、 212a ??-=41、242、()21a--= 43、()23 23a x-= 44、()2 232x x-= 45、()22 xy-= 46、()2 32ax x-=47、23124a a+= 48、()235x y+= 49、()2 43x a-= 50、()21 x+= 51、()2 1a-= 52、()2+= 54、()23mx-= 55、()21ab-=56、2136m n+=57、()24x y-= 58、()22ma+= 59、()213n x-= 60、()223m na b+=61、()2a b c+-= 62、2992=70、()2 40.0009_____x=71、2(__ )(__ )4x x x+-=-73、()2___2___12___ a+=++74、()22223___94x y y x+=++75、()221__9______ x-=++76、()22_______1x-=++77、()()2233____b b+=-+78、()()2211___x x-=++79、()221_____9a a_______129x y x-=-+81、()234_________n m-=++82、()221__12___a+=++83、()2224___x x+=++84、()2211____x x-=++85、()22__3___12___x ax-=-+86、(b + a)(b-a) = _______________87、(x-2) (x + 2) = _________________;88、( 3 a + b) ( 3 a-b) = _______________________,89、(2x 2-3) (-2x 2-3) = ______________________; 90、222121()()_____________,(________3)(______3)493232a ab b a b +-=+-=-91、(x+ y) (-x + y) = ______________,92、 (-7m -11n) (11n -7m) = ____________________; 93____________________)2)(4)(2(___,__________)2)(2(2=++-=---a a a y x x y 94、 (x + y)2=_________,(x -y)2=___________ 95、______________________)2(_________,__________)3(22=+-=-b a b a96、41________)21(22+=-x x 97、(3x + ________)2=__________+ 12x + ____________; 98、_________________________)2(__,__________)()(222=--+-=+y x b a b a 99、、(x 2-2)2-(x 2 + 2)2 = _________________;100、)5)(5(33m n n m -+101、)2.02)(22.0(x y y x -+102、)1)(1(---xy xy 103、)23)(23(2222b a ab b a ab ++- 104、)1)(1)(1(2++-a a a 105、)132)(132(++--y x y x106、 x (9x -5)-(3x + 1) (3x -1)107、 (a + b -c) (a -b + c) 108、)49)(23)(23(22b a b a b a ++-109、 (2x -1) (2x + 1)-2(x -2) (x + 2)110、2)2332(y x -111、22)2()2(a b b a -++ 112、)1)(1)(1(2--+m m m 113、22)2()2(n m n m -+ 114、22)23()32(+-+x x 115、2)32(z y x +- 116、22)()(y x y x +-117、22)35()35(y x y x ++- 118、 ))((c b a c b a +--+ 119、 2222)2()4()2(++-t t t120、①已知6x y +=,7xy =,试求22x y +的值。

乘法公式练习含答案

乘法公式练习含答案
2x
4.
2
2 2
6.(—m n+2)(—m n—2).
2
8.(3mn—5ab).
10.(—3x2+5y)2.
12.(y—3)2—2(y+2)(y—2).
1.应用公式计算:(1)103 97;(2)1.02 0.98;
2.当x=1,y=2时,求(2x—y)(2x+y)—(x+2y)(2y—x)的值.
12 2
3.用适当方法计算:(1)(40^);⑵299.
4.若a+b=17,ab=60,求(a—b)2和a2+b2的值.
提升精练
一、填空题
a a
1
2.(—3x—5y)(—3x+5y)=.
3.在括号中填上适当的整式:
(1)(x+5)(
(3)(—1—3x)(_
)=x2—
)=
25;
(2)(m—n)(
)=n2—m2;
B、原式=(—7+a+b)[—7—(a+b)]=7+(a+b)
22
C、原式=[—(7—a—b)][—(7+a+b)]=7—(a+b)
D、原式=[—(7+a)+b][—(7+a)—b]=(7+a)2—b2
3.(a+3)(a2+9)(a—3)的计算结果是().
4444
A、a+81B、一a—81C、a—81D、81—a
乘法公式
巩固专练
一、填空题
1.直接写出结果:
(1)(x+2)(x—2)=;(2)(2x+5y)(2x—5y)=
22
(3)(x—ab)(x+ab)=;⑷(12+b )(b—12)=.

(完整版)乘法公式练习含答案

(完整版)乘法公式练习含答案

乘法公式牢固专练一、填空题1.直接写出结果:(1)(x + 2)(x - 2)= _______;(2)(2x +5y)(2x - 5y)= ______;(3)(x - ab)(x+ ab)= _______;(4)(12+ b2)(b2- 12)= ______.2.直接写出结果:(1)(x + 5)2= _______; (2)(3m +2n)2= _______;(3)(x - 3y) 2= _______; (4) (2a b)2=_______;3(5)(- x+ y)2= ______; (6)( - x- y)2= ______.3.先观察、再计算:(1)(x + y)(x - y)= ______;(2)(y + x)(x - y)=______;(3)(y - x)(y + x)= ______;(4)(x + y)(- y+ x)= ______;(5)(x - y)(- x- y)=______ ;(6)( - x-y)(- x+ y)= ______.4.若 9x2+4y2= (3x + 2y) 2+ M ,则 M = ______.二、选择题1.以下各多项式相乘,能够用平方差公式的有().①(- 2ab+ 5x)(5x + 2ab) ②(ax-y)( - ax- y)③(- ab- c)(ab- c) ④ (m +n)( - m- n)(A)4 个(B)3 个(C)2 个(D)1 个2.若 x+ y= 6,x- y= 5,则 x2- y2等于 ( ).(A)11 (B)15 (C)30 (D)60 3.以下计算正确的选项是 ( ).(A)(5 - m)(5 + m)= m2- 25 (B)(1 - 3m)(1+ 3m)= 1- 3m2(C)( - 4-3n)( -4+ 3n)=- 9n2+16 (D)(2ab - n)(2ab+ n)= 4ab2- n24.以下多项式不是完满平方式的是().(A)x 2- 4x- 4 (B) 1m 2 m 4(C)9a2+ 6ab+ b2 (D)4t 2+ 12t+ 95.以低等式能够成立的是( ).(A)(a - b)2= (- a-b) 2 (B)(x - y)2= x2- y2(C)(m - n)2= (n- m)2 (D)(x - y)(x + y)= (- x- y)(x - y) 6.以低等式不能够恒成立的(A)(3x - y)2=9x 2- 6xy + y2(C) (1m n)2 1 m2 mn n 2 2 4三、计算题1.(3a2b)(3a2b).2 23.(2m3n )( 3n 2m ).3 4 4 3(B)(a + b- c)2= (c- a- b)2(D)(x - y)(x + y)(x 2- y2)= x4- y42. (x n- 2)(x n+ 2).4.2x 3y . 3 y 2x2 3x y x y6. (- m2n+ 2)( - m2n- 2).5.( )(4 ).4 2 27.(3x 2 y) 2. 8. (3mn- 5ab)2.4 39. (5a2- b4)2.10. (- 3x2+5y) 2.11. (- 4x3- 7y2 )2.12. (y- 3)2- 2(y+ 2)(y- 2).四、解答题1.应用公式计算: (1)103 97×;(2)1.02 0×.98;1 6 (3) 10 97 72.当 x= 1, y= 2 时,求 (2x- y)(2x + y)- (x+ 2y)(2y - x)的值.3.用合适方法计算: (1) (401)2;(2)299 2.24.若 a+ b= 17,ab= 60,求 (a- b)2和 a2+ b2的值.提升精练一、填空题a a1.( 3)(3 ) =_______.2 22. (- 3x- 5y)( - 3x+ 5y)= ______.3.在括号中填上合适的整式:(1)(x+ 5)(______) = x2- 25;(2)( m- n)(______) = n2-m2;(3)( - 1- 3x)(______) =1- 9x2;(4)( a+ 2b)(______) = 4b2- a2.4. (1)x2- 10x+ ______= ( -5)2:(2)x2+ ______+ 16= (______- 4)2;(3)x2- x+ ______= (x- ______)2;(4)4x2+ ______+ 9= (______+ 3)2.5.多项式 x2- 8x+ k 是一个完满平方式,则k= ______.6.若 x2+ 2ax+ 16 是一个完满平方式,则a= ______.二、选择题1.以下各式中能使用平方差公式的是( ).A 、 (x2- y2)( y2+ x2)B、 ( 1m2 1 n3)( 1 m2 1 n3) 2 5 2 5C、 (- 2x- 3y)(2x+ 3y)D、 (4x- 3y)(- 3y+4x)2.下面计算 (- 7+a+ b)(- 7- a-b)正确的选项是 ().A 、原式= (- 7+ a+ b)[ -7- (a+ b)] =- 72- (a+ b)2B、原式= (- 7+ a+ b)[ - 7- (a+ b)] = 72+ (a+ b)2C、原式= [- (7- a- b)][ - (7+ a+ b)] = 72- (a+b)2D、原式= [- (7+ a)+ b][ - (7+ a)- b]= (7+ a)2- b23. (a+ 3)(a2+ 9)(a- 3)的计算结果是 ( ).A 、 a4+ 81 B、- a4- 81 C、a4- 81 D、 81- a4 4.以下式子不能够成立的有 ()个.①( x- y)2= (y- x)2② (a-2b)2=a2-4b2③ (a-b)3=(b-a)(a-b)2④( x+ y)(x- y)= (- x- y)( - x+y) ⑤1- (1+ x)2=- x2- 2xA 、 1 B、 2 C、3 D、 45.计算(a b)2的结果与下面计算结果相同的是().2 2A 、1(a b) 2 B 、1( a b)2 ab 2 2C、1( a b)2 ab D、1( a b)2 ab 4 4三、计算题1. ( 3a 21b2 )( 1 b2 3a 2 ). 2. (x+ 1)(x2+ 1)(x- 1)( x4+ 1).2 23. (m- 2n)(2n+ m)- (- 3m-4n)(4n- 3m) .4. (2a+ 1)2(2a- 1)2.5.( x- 2y) 2+ 2(x+2y)( x- 2y) + (x+2y)2.6. (a+ b+2c)(a+b- 2c).7. (x+ 2y- z)(x- 2y+ z).8. (a+ b+c)2.9.( x 2y 1)2.3四、解答题1.一长方形场所内要修建一个正方形花坛,预计花坛边长比场所的长少8米、宽少6米,且场所面积比花坛面积大 104 平方米,求长方形的长和宽.2.回答以下问题:(1) 填空: x2 1 ( x 1 )2 ______=( x 1 )2 ______.x2 x x(2) 若 a 1 5 ,则 a2 1 的值是多少 ?a a2(3) 若 a2- 3a+ 1= 0,则a 2 1a 2的值是多少 ?超越导练1 1 1 1 11.巧算: (1) (1 )(1 2 )(12 4 )(1 8)15;2 2 2 26(2)(3+ 1)(3 2+ 1)(34+ 1)(38+ 1) ⋯(32n+1) .2.已知: x, y 正整数,且4x2- 9y2= 31,你能求出x, y 的 ?一.3.若 x2- 2x+ 10+ y2+ 6y= 0,求 (2x-y)2的.4.若 a4+b4+a2b2=5, ab=2,求 a2+ b2的.5.若△ABC 三边 a, b, c 满足 a2+ b2+ c2= ab+bc+ ca,试问△ ABC乘法公式参照答案牢固专练一、填空题1. (1) x2-4;(2)4 x2-25y2;(3) x2- a2b2;(4) b4-144.2. (1) x +10x+25;(2)9 m+12mn+4n ;(3) x -6xy+9y ;(4) 4a22 2 2 2 2 的三边有何关系?4ab b239(5)x2-2xy+ y2;(6) x2+2xy+ y2.2222222222223. (1) x - y ; (2) x -y ; (3) y -x ; (4) x - y ; (5) y - x ;(6) x - y . 二、 选择题1. B 2 . C 3 . C 4 . A 5 .C 6 .D 三、 计算题1. 9a 4b22 .x 2n-4. 3 .46. mn - 4 7 .9 x + xy +4y .4 22216 94 m 29n 2. 4 . 2x 23 y 2 .5 . y 2 x 29 16324 168 .9 2 2- 30 + 252 2.mn mnab a b 9. 25a 4 -10a 2b 4+ b 8. 10 . 9x 4- 30x 2y + 25y 2. 11 . 16x 6+ 56x 3y 2+ 49y 4.12.- y 2- 6y + 17. 四、 解答题1. (1)9991 ;;(3)48 2.- 15.99493. (1) 1640 1; (2)89401 .4. 49;169.4提升精练一、 填空题1.a 2 9.2.9x 2-25y 2. 3.(1) x - 5. (2) - m -n . (3)3x - 1. (4)2b - a .41 1 5. 16.6.± 4.4. (1)25; x ; (2)- 8x ; x ; (3); (4)12 x ; 2x .4 2二、 选择题1. A 2 . C 3 . C 4 . B 5 .D 三、 计算题1. 1 b49a 42.x 8- 13.- 8m 2+12n 24.16a 4- 8a 2+ 15. 4x 2.46. a 2+ 2ab + b 2- 4c 2 7.x 2 -4y 2- z 2+4yz 8.a 2 +b 2 +c 2 +2ab + 2bc + 2ac9. x 24xy 4 y 22 x4 y 133 9四、 解答题1.长 12 米,宽 10 米. 2. (1)2; 2; (2)23; (3)7.超越导练1. (1)2. (2) 132n 11 2. x = 8; y = 53. 254. 3 5.相等.22。

乘法公式的认识练习题

乘法公式的认识练习题

乘法公式的认识练习题一、选择题1. 下列哪个选项不是乘法公式?A. (a+b)(a-b)=a²-b²B. (a-b)(a+b)=a²-b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²2. 计算下列表达式的结果是:(2x+3)(2x-3)A. 4x²-9B. 4x²+9C. 9-4x²D. 9+4x²3. 以下哪个表达式是正确的完全平方公式?A. (a+b)²=a²+b²B. (a-b)²=a²-b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²4. 根据平方差公式,下列哪个等式是正确的?A. (x-y)(x+y)=x²-y²B. (x+y)(x-y)=y²-x²C. (x-y)(x+y)=y²-x²D. (x+y)(x-y)=x²+y²5. 计算下列表达式的结果是:(3x-2)²A. 9x²-12x+4B. 9x²+12x+4C. 9x²-12x-4D. 9x²+6x+4二、填空题6. 根据完全平方公式,(2a+3)²的展开式是________。

7. 利用平方差公式,(x-2y)(x+2y)的结果是________。

8. 计算下列表达式:(4a-5b)²,其结果是________。

9. 如果(3m+n)²=9m²+6mn+n²,那么(3m-n)²的结果是________。

10. 根据完全平方公式,(2x-1)²的展开式是________。

乘法公式加减法练习题(打印版)

乘法公式加减法练习题(打印版)

乘法公式加减法练习题(打印版)### 乘法公式加减法练习题(打印版)#### 一、乘法公式练习题1. 计算下列乘法公式:- (a + b)²- (a - b)²- (a + b)(a - b)2. 应用乘法公式解决以下问题:- 如果 \( a = 3 \) 和 \( b = 4 \),求 \( (a + b)(a - b) \) 的值。

- 已知 \( x = 2 \) 和 \( y = 5 \),求 \( (x + y)² \) 的值。

3. 完成以下乘法公式的展开:- \( (2x + 3y)² \)- \( (3x - 2y)(2x + 3y) \)4. 判断下列表达式是否正确,并给出正确答案:- 表达式:\( (a + b)² = a² + b² \)- 表达式:\( (a - b)² = a² - 2ab + b² \)5. 利用乘法公式简化下列表达式:- \( 4x² - 9y² \)- \( 9x² - 4y² \)#### 二、加减法练习题1. 完成以下加减法运算:- \( 5 + 7 - 2 \)- \( 12 - 7 + 3 \)2. 解决以下问题:- 如果你有 15 个苹果,给了朋友 3 个,然后买了 5 个,现在你有多少个苹果?- 从图书馆借了 8 本书,还了 3 本,又借了 4 本,现在你有多少本书?3. 应用加减法解决实际问题:- 一个班级有 40 名学生,其中 15 名是男生,其余是女生。

这个班级有多少名女生?- 一个商店原来有 100 件商品,卖出了 30 件,又进了 20 件新的商品,现在商店里有多少件商品?4. 完成以下加减法混合运算:- \( 34 + (8 - 5) \)- \( 45 - (15 + 3) \)5. 判断下列加减法运算是否正确,并给出正确答案:- 运算:\( 7 + 8 - 3 = 12 \)- 运算:\( 9 - 5 + 2 = 6 \)#### 三、综合练习题1. 利用乘法公式和加减法解决以下问题:- 如果 \( a = 2 \) 和 \( b = 5 \),求 \( (a + b)² - (a - b)² \) 的值。

乘法公式精选题(含答案)

乘法公式精选题(含答案)
4、已知 中不含x3的项,求a的值。
5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。

初二上册数学乘法公式练习题

初二上册数学乘法公式练习题

初二上册数学乘法公式练习题在初二上册的数学学习中,乘法公式是一个重要的内容。

乘法公式是指将两个或多个数相乘时使用的特定公式。

通过掌握乘法公式,我们能够更快、更准确地进行乘法计算。

本文将为大家提供一些乘法公式的练习题,帮助大家巩固乘法公式的运用。

练习题一:单项乘法公式运算1. 52 * 7 = ____。

答案:364。

2. 63 * 9 = ____。

答案:567。

3. 85 * 6 = ____。

答案:510。

4. 97 * 4 = ____。

答案:388。

5. 34 * 12 = ____。

答案:408。

练习题二:多项乘法公式运算1. (6 + 9) * 4 = ____。

答案:60。

2. (5 - 3) * (8 + 2) = ____。

答案:20。

3. (7 + 2) * (6 - 3) = ____。

答案:27。

4. (8 - 4) * (10 + 2) = ____。

答案:48。

5. (9 + 3) * (7 - 2) = ____。

答案:60。

练习题三:应用乘法公式解决实际问题1. 某书店每天卖出50本书,如果连续卖出7天,共卖出多少本书?答案:350本。

2. 某超市原价为每袋4.5元的大米进行促销,打8折后售价为多少?答案:3.6元。

3. 一包纸巾共有8包,每包纸巾有36张,共有多少张纸巾?答案:288张。

4. 一直线上有10个点,每两个点之间都有一段直线连接,共有多少段直线?答案:45段。

5. 小明在一周内每天早上跑步,每天跑5公里,共跑了多少公里?答案:35公里。

通过以上练习题,我们可以巩固数学乘法公式的运用。

通过反复练习,大家可以更加熟练地应用乘法公式解决实际问题。

希望大家能善于运用乘法公式,提高数学计算的准确性和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档