第三章 离散小波变换
离散小波变换(dwt

离散小波变换(dwt
离散小波变换(Discrete Wavelet Transform,DWT)是一种数学工具,用于信号分析和处理。
它将信号分解成不同的频率子带,可以有效地提取信号的特征。
DWT在许多领域中得到广泛应用,如图像处理、音频编码和生物医学工程等。
离散小波变换使用小波函数对信号进行分解和重构。
小波函数是一种特殊的函数,可以在时域和频域之间进行变换。
DWT将信号分解成低频和高频子带,低频子带包含信号的大部分能量,而高频子带则包含信号的细节信息。
通过多级分解,可以得到不同尺度的子带,从而实现对信号的多层分析。
在DWT中,信号经过分解后,可以进行特征提取、去噪和压缩等操作。
通过对高频子带进行阈值处理,可以实现信号的去噪。
而对低频子带进行压缩,可以减少信号的冗余信息。
DWT还可以用于图像处理中的边缘检测、纹理分析和图像融合等任务。
DWT的优势在于它能够提供多分辨率分析,能够同时捕捉信号的时域和频域特征。
与傅里叶变换相比,DWT可以更好地处理非平稳信号,因为小波函数可以自适应地适应信号的局部特性。
离散小波变换是一种强大的信号分析和处理工具。
它在各个领域中都有广泛的应用,能够提取信号的特征、去除噪声和压缩数据等。
通过合理地使用DWT,可以更好地理解和处理信号,为各种应用提
供支持。
离散小波变换(dwt

离散小波变换(dwt
离散小波变换(Discrete Wavelet Transform,DWT)是一种常用的信号处理方法,可以将信号在不同尺度上进行分解和重构。
它利用一组基函数,通过对信号进行多尺度分解,提取出信号中的不同频率成分,从而实现信号的特征提取和压缩。
离散小波变换的核心思想是将信号分解为低频和高频部分。
低频部分包含信号中的趋势信息,而高频部分则包含信号中的细节信息。
通过不断进行分解,可以得到不同尺度上的低频和高频部分,从而实现信号的多尺度表示。
离散小波变换具有多尺度、局部性和良好的时频局部性等特点。
它可以有效地处理非平稳信号,对于图像压缩、噪声去除、边缘检测等应用具有重要意义。
离散小波变换的算法基于滤波和下采样操作。
首先,信号经过低通滤波器和高通滤波器,得到低频和高频部分。
然后,低频部分经过下采样操作,得到更低尺度上的低频部分。
这个过程可以迭代地进行,直到达到所需的尺度。
离散小波变换具有很多变种,如离散小波包变换、二维离散小波变换等。
它们在信号处理领域广泛应用,具有很高的实用价值。
总结一下,离散小波变换是一种有效的信号处理方法,可以实现信号的多尺度分解和重构。
它具有多种应用,能够处理非平稳信号并
提取出信号的特征信息。
离散小波变换在图像处理、音频处理、视频压缩等领域有广泛的应用前景。
离散小波变换原理

离散小波变换原理离散小波变换(Discrete Wavelet Transform,DWT)是一种信号分析方法,它将信号分解成不同尺度和频率的子信号。
离散小波变换可以应用于信号处理、图像压缩、声音压缩等领域。
1. 离散小波变换的基本原理离散小波变换是一种多分辨率分析技术,它将信号分解为多个尺度和频率的子信号。
这些子信号可以进一步进行处理或合成为原始信号。
离散小波变换的基本过程是:首先将原始信号通过低通滤波器和高通滤波器进行滤波,并对滤波后的结果进行下采样(即降采样),得到两个子信号——近似系数和细节系数。
然后,对近似系数进行相同的处理,直到得到所需的尺度和频率。
具体地说,假设有一个长度为N的原始信号x[n],我们要将其分解为J个尺度(scale)和频率(frequency)上不同的子信号。
首先,定义一个长度为L的低通滤波器h[n]和一个长度为H的高通滤波器g[n],其中L+H=N。
然后,在第j级分解中,将输入信号x[n]分别通过低通滤波器和高通滤波器进行滤波,得到近似系数Aj-1和细节系数Dj-1:Aj-1 = x[n]*h[n]Dj-1 = x[n]*g[n]其中,“*”表示卷积运算。
然后,对近似系数Aj-1进行下采样,得到长度为N/2的新信号:Vj = Aj-1[0], Aj-1[2], ..., Aj-1[N-2]同样地,对细节系数Dj-1也进行下采样,得到长度为N/2的新信号:Wj = Dj-1[0], Dj-1[2], ..., Dj-1[N-2]这样就得到了第j级分解的近似系数Vj和细节系数Wj。
然后,对Vj进行相同的处理,直到得到所需的尺度和频率。
最后,可以将所有尺度和频率上的子信号合成为原始信号x[n]。
具体地说,在第j级合成中,将长度为N/2的近似系数Vj和细节系数Wj上采样(即插值)并通过低通滤波器h[n]和高通滤波器g[n]进行卷积运算,并将结果相加即可:Aj = Vj+1*h[n] + Wj+1*g[n]其中,“+”表示上采样后的加法运算。
第三章 离散小波变换

第三章 离散小波变换3.1 尺度与位移的离散化方法减小小波变换系数冗余度的做法是将小波基函数⎪⎭⎫ ⎝⎛-=a t a t a τψψτ1)(,的τ,a 限定在一些离散点上取值。
1. 尺度离散化:一种最通常的离散方法就是将尺度按幂级数进行离散化,即取mm a a 0=(m 为整数,10≠a ,一般取20=a )。
如果采用对数坐标,则尺度a的离散取值如图3.1所示。
图3.1 尺度与位移离散方法2. 位移的离散化:当120==a 时,()τψψτ-=t t a )(,。
(1)通常对τ进行均匀离散取值,以覆盖整个时间轴。
(2)要求采样间隔τ满足Nyquist 采样定理,即采样频率大于该尺度下频率通带的2倍。
3. )(,t a τψ=?当m 增加1时,尺度增加一倍,对应的频带减小一半(见图2.2),可见采样频率可以降低一半,即采样间隔可以增大一倍。
因此,如果尺度0=m 时τ的间隔为s T ,则在尺度为m 2时,间隔可取s m T 2。
此时)(,t a τψ可表示为);(2212221,t T n t T n t n m s m m m s m m ψψψ记作⎪⎭⎫ ⎝⎛⋅-=⎪⎪⎭⎫ ⎝⎛⋅- Z n m ∈, 为简化起见,往往把t 轴用s T 归一化,这样上式就变为()n t t m m n m -=--22)(2,ψψ (3.1)4. 任意函数)(t f 的离散小波变换为⎰⋅=Rn m f dt t t f n m WT )()(),(,ψ (3.2)DWT 与CWT 不同,在尺度—位移相平面上,它对应一些如图3.1所示的离散的点,因此称之为离散小波变换。
将小波变换的连续相平面离散化,显然引出两个问题:(1)离散小波变换>=<)(),(),(,t t f n m W T n m f ψ是否完全表征函数)(t f 的全部信息,或者说,能否从函数的离散小波变换系数重建原函数)(t f 。
(2)是否任意函数)(t f 都可以表示为以)(,t n m ψ为基本单元的加权和∑∈=Zn m n m nm t Ct f ,,,)()(ψ?如果可以,系数n m C ,如何求?上述两个问题可以归结为一个。
第三章连续小波变换和离散小波变换解读

R (t t0 )2 | (t) |2dt
= [ ]
1 || ˆ || 2
R ( 0 )2 |ˆ () |2d
1 2
则 a,b (t) 的窗口中心为 ta,b=at0+b,宽度为 ta,b=a t,ˆa,b () 的
窗口中心为
a,b=
1 a
0
,宽度为 a,b
1 da
f(t)= C 0 a2 WT f (a,b) a,b (t)db
小波分析中的尺度参数的倒数类似于地图上的比例尺。 我国的地形图比例尺有八种(即八种基本比例尺):1:5000 ,1:10000,1:25000,1:50000,1:100000,1:250000 ,1:500000,1:1000000。其中比例尺大于 1:10000 的 是大比例尺(一般小于 1:500),比例尺在 1:25000 和 1:100000 之间的是中比例尺,比例尺小于 1:250000 的 是小比例尺(一般小于 1:100 万)。
则 称 ψ 为 一 个 基 本 小 波 或 小 波 母 函 数 (mother
wavelet)。以上条件称为允许性条件,常数 C 称为允许
性常数。
小波这个词中的“小”指的是该函数是有限宽度的,它 们在时域都具有紧支集或近似紧支集。原则上,任何满足允 许性条件的函数都可以作为小波母函数,但实际上常选取时 域具有紧支集或近似紧支集(具有时域局部性)的具有正则 性(具有频域局部性)的函数作为小波母函数,以使小波母 函数在时—频两域都有较好的局部性。“波”指的是该函数 是振荡的,图像具有正负交替的波动性。因为
=
1 a
。
注:作为一种数学变换,伸缩变换用于膨胀或紧缩一个信号 。大尺度因子对应于信号的膨胀,而小尺度因子对应于信号 的紧缩。
小波分析整理 第三章 小波变换ppt课件

.
a b
.
小波函数的范数不变性: a(t)b 0 2 R a(t)b 2 d tR (t)2 dt(t)0 2
此式表明: ( t ) 经过平移与伸缩以后,其模量没有 改变。
在不同的尺度a 时,ψa b (t) 终能和母函数ψ(t) 有着相同的能量 。
当a<1时, ( t ) 被拉宽且振幅被压低, ab (t) 含有表现低 频分量的特征;当a>1时, ( t ) 被压窄且振幅被拉
高, ab (t )含有表现高频分量的特征。
(2t)
(2t 3)
a2
0
1 1.5
3
6
t
a 1 a1
2
(t)
0
1
(1 t) 2
0
1
(t 3)
3
6
t
( 1 t 3) 2
R
可以反映局部频率特性,但是窗函数一经设定,没有 自适应能力,不能满足低频部分需要时窗宽、频窗窄, 高频部分需要时窗窄、频窗宽的要求。
为此,定义窗函数的一般形式为:
w ~ab(t)a1/2(a tb) ( 其 他 形 式 w ~ a b(t)a 1 /2 (t ab )
它是经过平移和放缩的结果。
.
小波函数的频域特性: ^a(b)a1/2eib/a^(a) 此式表明, ( t ) 经过平移和伸缩以后得到的新
函数 a b (t )的频域特性随参数a的变化而变化。
.
2、小波变化的回复公式推导
任何一种变换应该是可逆的。为推导小波变换的
回复公式,先得推出与Fourier变换中类似的乘积
公式。
在Fourier变换中,有公式:2 1 R F [f(t)]F _[g(t)]dRf(t)_ g(t)dt
离散小波变换

长期以来,离散小波变换(Discrete Wavelet Transform)在数字信号处理、石油勘探、地震预报、医学断层诊断、编码理论、量子物理及概率论等领域中都得到了广泛的应用。
各种快速傅氏变换(FFT)和离散小波变换(DWT)算法不断出现,成为数值代数方面最活跃的一个研究领域,而其意义远远超过了算法研究的范围,进而为诸多科技领域的研究打开了一个崭新的局面。
本章分别对FFT 和DWT 的基本算法作了简单介绍,若需在此方面做进一步研究,可参考文献[2]。
1.1 离散小波变换DWT1.1.1 离散小波变换DWT 及其串行算法先对一维小波变换作一简单介绍。
设f (x )为一维输入信号,记)2(2)(2/k x x j j jk -=--φφ,)2(2)(2/k x x j j jk -=--ψψ,这里)(x φ与)(x ψ分别称为定标函数与子波函数,)}({x jk φ与)}({x jk ψ为二个正交基函数的集合。
记P 0f =f ,在第j 级上的一维离散小波变换DWT(Discrete Wavelet Transform)通过正交投影P j f 与Q j f 将P j -1f 分解为:∑∑+=+=-kkjk j k jk j k j j j d c f Q f P f P ψφ1其中:∑=-=-+112)(p n j n k jk c n h c ,∑=-=-+112)(p n j n k j k c n g d )12,...,1,0,,...,2,1(-==j N k L j ,这里,{h (n )}与{g (n )}分别为低通与高通权系数,它们由基函数)}({x jk φ与)}({x jkψ来确定,p 为权系数的长度。
}{0n C 为信号的输入数据,N 为输入信号的长度,L 为所需的级数。
由上式可见,每级一维DWT 与一维卷积计算很相似。
所不同的是:在DWT 中,输出数据下标增加1时,权系数在输入数据的对应点下标增加2,这称为“间隔取样”。
离散小波变换

小波变换的应用领域
01
02
03
04
信号处理
小波变换在信号处理中广泛应 用于信号去噪、特征提取、信 号分类等。
图像处理
小波变换在图像处理中用于图 像压缩、图像增强、图像恢复 等。
语音识别
小波变换在语音识别中用于语 音信号的特征提取、语音分类 等。
FWT具有较高的计算效率和实 用性,广泛应用于信号处理、 图像处理等领域。
小波包算法
小波包算法是一种改进的小波变换算法,它不仅考虑了信号在不同尺度上的分解, 还考虑了不同频率分量的分组。
小波包算法通过将信号的频率分量进行分组,并选择合适的小波基函数对每组分量 进行变换,能够更精确地描述信号的时频特性。
应用
多维离散小波变换在图像处理、信号处理、数据压 缩等领域有广泛应用。
小波变换的性质
80%
冗余性
小波变换具有一定程度的冗余性 ,即在小波系数中存在一些重复 或近似值,可以通过阈值处理等 方法去除冗余。
100%
方向性
小波变换具有方向性,能够捕捉 信号在不同方向上的变化,从而 实现对信号的精细分析。
80%
离散小波变换
目
CONTENCT
录
• 引言 • 小波变换的基本原理 • 离散小波变换的算法实现 • 离散小波变换的应用实例 • 离散小波变换的优缺点 • 离散小波变换的未来发展与展望
01
引言
小波变换的定义
小波变换是一种信号处理方法,它通过将信号分解成不同频率和 时间尺度的分量,以便更好地分析信号的局部特征。
带,通过对不同频带的小波系数进行增 换被用于图像的增强和清晰化,以便更
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--
➢ 一般,取a0=2,则a=2j,τ=2jkτ0,则采样间 隔为τ=2jτ0
➢ 当a=2j时,τ的采样间隔是 2jτ0 ,此时,
a, (t) 变为:
j
22
(2 jt k0 )即 , j,k(t)j, 0 ,1 ,2 , ; k Z
--
➢ 一般,将τ0归一化,即τ0=1,于是有:
j,k(t)22j(2jtk)
--
通过框架对原函数进行重建
➢ 在紧框架情况下, f(t)1 AkZf,kk(t)
➢ 如果 AB,我们定义算子S如下:
S(tf) f,kk(t)
➢ 求逆,得:k Z
f( t) S 1 [ f,k k ( t) ] f,k S 1k
k Z
k Z
~
➢ 这时,只有 S1k k ,重构公式才成立。
--
3.2.2 小波框架
➢ 1.小波框架的定义: ➢ 如果当基本小波函数ψ(t)经伸缩和位移
引出的函数族j,k(t)22 j(2jtk),j,kZ
➢ 具有如下性质:
A f2 | f, j,k |2 B f2 ,0 A B
jk
--
➢ 我们称 j,k(t)j,kZ都成了一个框架,上式为小
--
3. 通过框架对原函数进行重建
➢ 重~ 构k 定kZ理为:其令对偶f(框t) 架H ,,则kfk( tZ)是 通H 过的 下式一 重构个 : 框
f(t) f, ~k k(t) f,k ~k(t)
k
k
➢ 如果A=B=1,这时 k 是一组正交基,所
以重建公式为:f(t) f,k k(t)
k Z
--
3.2 小波的框架理论
➢ 3.2.1 框架 ➢ 1 框架的定义
➢ 在希尔伯特空间H中有一族函数 kkZ,如
果存在0<A<B<∞,对所有的f∈H,有:
Af2 |f,k |2Bf2
k
➢ 称 k kZ 是H中的一个框架。
➢ 常数A、B的意义。
--
框架的定义
➢ 若A=B,则称为紧致框架,此时:
j,k(t)
➢ 当 AB 时,但二者比较接近时,作为一 阶逼近,可取 ~j,k(t)A 2Bj,k(t)
--
➢ 所以重建公式近似于:
f(t)A 2Bj,k Zf,j,kj,k(t)
➢ 同样,A和B越接近,误差就越小。
➢ 在紧框架情况下,
f(t)1 Aj
WxT (j,k)j,k(t)
k
--
➢
➢ 为了减小小波变换系数的冗余度,
我们将小波基函数
a,(t)
1 (t)
aa
的a、τ限定在一些离散的点上取值。
--
离散化方法
➢ (1)尺度的离散化。目前通行的做法 是对尺度进行幂数级离散化。即令a取 a a0j ,a0 0, j Z 对应的小波函数是:
j
a02[a0 j (t )], j 0,1,2
➢ 此时,对应的WTf为:
W f(T j,k)f(t) j,k(t)dt
--
离散化过程中的两个问题
➢ 一、离散小波能否完全表征函数f(t)的全部 信息。
➢ 二、是否任何函数f(t)都可以表示为以 j,k (t) 为单位的加权和。即
f(t) cj,k j,k(t) j,kZ
➢ 如果可以,系数 c j ,k 如何求?
第三章 离散小波变换
--
3.1 尺度和位移的离散化方法
➢ 对于连续小波而言,尺度a、时间 t和与时间有关的偏移量τ都是连 续的。如果利用计算机计算,就 必须对它们进行离散化处理,得 到离散小波变换。
--
本章主要内容
➢尺度和位移的离散化方法 ➢小波框架理论 ➢二进小波变换
--
3.1 尺度和位移的离散化方法
| f,k |2Af 2
k
➢ 如果A=B=1,则 | f,k |2 f 2
k
➢ 此时, k kZ 是正交框架,若 k 2 1 , 则 k kZ 是规范正交基。
--
2.对偶框架的定义
➢ 对偶函数:
➢
k
的对偶函数
~
k
也构成一个框架,其框
架的上下界是 k上下界的倒数。即:
1f2
A
|f, ~k |2B 1f2,0AB
波框架条件。
➢ 其频域表示为: |(2j)|2,0
➢
j,k (t)
的对偶函数
j Z ~
j,k
22j~(2jtk)也构
成一个框架。
1f2
Aj
k|f,~j,k |2 B 1f2 ,0 A B
--
2.小波框架的性质
➢ (1)满足框架条件的 j,k (t),其基本小波 (t) 必定满足容许性条件。
➢
因此在尺度j下,由于 (a0 jt)
的宽度是
(t)
的a
j 0
倍,因此采样间隔可扩大a
j 0
,而不会引起
信息的丢失。a, (t) 可写成:
j
a 02
[a 0 j(t k0 ja 0) ]a 0 2 j
[a 0 jt k0)]
➢ 离散小波变换的定义为:
W f( a 0 j,k T 0 ) f( t )a 0 j, k 0 ( t ) d ,j t 0 , 1 , 2 , , k Z
➢ 当 AB 的时候,如果A,B越接近,上式
的误差越小。
--
4. 框架和Riesz基
➢ Riesz基的定义:
➢ 设有kkZ满足下列要求:
(1)A ck2 ckk B ck2
kZ
kZ
kZ
(2)当 ckk 0时, kZ
➢ 便意味着 ck 0 ,也就是要求kkZ 是一组
线性独立族。
➢ 则称 k kZ 为一组Riesz基。
(
j0
,
k0
)点的WT为:W f(T j0,k0)f(t)
(t)dt
j0,k0
➢ 将f(t)代入上式有:
W f(jT 0,k0)1 Aj
K (j0,k0 ;j,k)W f(jT ,k)d t
--
离散化方法
(2)位移离散化。 ka0j0
➢ 通常对τ进行均匀离散取值,以覆盖整个时 间轴, τ满足Nyquist采样定理。在a=2j时, 沿τ轴的响应采样间隔是2j τ0,在a0=2情况 下,j增加1,则尺度a增加一倍,对应的频 率减小一半。此时采样率可降低一半而不 导致引起信息的丢失。
--
➢ (2)离散小波变换具有非收缩时移共变性。
➢
(3)离散小波框架
j,k(t)
存在冗余性。
j,kZ
--
3.离散小波变换的逆变换
➢ 如果离散小波序列 j,k j,kZ 构成一个框架,
上下界为A和B,根据上节讨论的函数框架
重建原理,当A=B时,离散小波的逆变换为:
f(t) f,
j,k
j,k ~j,k(t) 1 A j,kW f(j,T k )