2019高考数学专题等差等比数列含答案解析
专题3 等比数列概念及其求和公式的应用-2019年高考数学考点讲解与真题分析含答案

专题3 等比数列概念及其求和公式的应用【目标要求】【核心知识点】1、等比数列的判定方法: (1)根据定义,即寻求q a a nn =+1(q 为不为0的常数); (2)根据等比中项,即判断=+21n a 2+⋅n n a a 成立(0≠n a );(3)根据通项,若通项n a 能表示成=n a )0,0(≠≠q c cq n的形式,则数列}{n a 为等 比数列。
(4)据前n 项和,若1na S n =(01≠a )或)1(-=n n q a S ).1,0,0(≠≠≠q q a 的 形式,则数列}{n a 为等比数列。
2. 等比数列的基本性质(1)如果m ,n 为正整数,那么m n m n q a a -=(q 为公比)。
(2)一般地,如果l k n m ,,,为正整数,且l k n m +=+,则有l k n m a a a a ⋅=⋅,特别地,当k n m 2=+时,.2k n m a a a =⋅(3)在等比数列}{n a 中,每隔k 项(*∈N k )取出一项,按原来的顺序排列,所得的新数列仍为等比数列。
(4)如果}{n a ,}{n b 均为等比数列,且公比分别为21,q q ,那么数列}{},1{n nka a )0,(≠∈k R k ,}{n n b a ⋅,}{n n a b 仍是等比数列,且公比分别为11q ,1q ,21,q q ,.12q q(5)①如果,1,01>>q a ,那么等比数列}{n a 是递增数列; ②如果10,01<<<q a ,那么等比数列}{n a 是递增数列; ③如果10,01<<>q a ,那么等比数列}{n a 是递减数列; ④如果1,01><q a ,那么等比数列}{n a 是递减数列。
3、等比数列的计算常常用到三个公式:=a 1-n qa ,)1(1)1(1≠--=q qq a S n n ,)1(11≠--=q qq a a S nn n .这三个公式中每个公式都是含有四个基本量的等式,已知三个可以求出第四个,这一思想就是方程思想。
2019年浙江省高考数学试卷(理科)答案与解析

浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•浙江)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}【考点】交、并、补集的混合运算.【专题】集合.【分析】欲求两个集合的交集,先得求集合C U B,再求它与A的交集即可.【解答】解:对于C U B={x|x≤1},因此A∩C U B={x|0<x≤1},故选B.【点评】这是一个集合的常见题,属于基础题之列.2.(5分)(2009•浙江)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】考虑“a>0且b>0”与“a+b>0且ab>0”的互推性.【解答】解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”的充分必要条件,故选C【点评】本题考查充分性和必要性,此题考得几率比较大,但往往与其他知识结合在一起考查.3.(5分)(2009•浙江)设复数z=1+i(i是虚数单位),则+z2=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】把复数z代入表达式化简整理即可.【解答】解:对于,故选D.【点评】本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.4.(5分)(2009•浙江)在二项式的展开式中,含x4的项的系数是()A.﹣10 B.10 C.﹣5 D.5【考点】二项式定理.【专题】二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【解答】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.5.(5分)(2009•浙江)在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】本题考查的知识点是线面夹角,由已知中侧棱垂直于底面,我们过D点做BC的垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成的角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C【点评】求直线和平面所成的角时,应注意的问题是:(1)先判断直线和平面的位置关系.(2)当直线和平面斜交时,常用以下步骤:①构造﹣﹣作出或找到斜线与射影所成的角;②设定﹣﹣论证所作或找到的角为所求的角;③计算﹣﹣常用解三角形的方法求角;④结论﹣﹣点明斜线和平面所成的角的值.6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是计算满足S=≥100的最小项数【解答】解:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环S K循环前/0 0第一圈是 1 1第二圈是 3 2第三圈是11 3第四圈是2059 4第五圈否∴最终输出结果k=4故答案为A【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.7.(5分)(2009•浙江)设向量,满足:||=3,||=4,•=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.6【考点】直线与圆相交的性质;向量的模;平面向量数量积的运算.【专题】平面向量及应用.【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内切圆的半径,进而看半径为1的圆内切于三角形时有三个公共点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,进而可得出答案.【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.8.(5分)(2009•浙江)已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】函数f(x)=1+asinax的图象是一个正弦曲线型的图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数的周期为:,∵|a|>1,∴T<2π,而D不符合要求,它的振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象的对应关系,故选D.【点评】由于函数的解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题的关键.9.(5分)(2009•浙江)过双曲线﹣=1(a>0,b>0)的右顶点A作斜率为﹣1的直线,该直线与双曲线的两条渐近线的交点分别为B、C.若=,则双曲线的离心率是()A.B.C.D.【考点】直线与圆锥曲线的综合问题;双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】分别表示出直线l和两个渐近线的交点,进而表示出和,进而根据=求得a和b的关系,进而根据c2﹣a2=b2,求得a和c的关系,则离心率可得.【解答】解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),∴=(﹣,),=(,﹣),∵=,∴=,b=2a,∴c2﹣a2=4a2,∴e2==5,∴e=,故选C.【点评】本题主要考查了直线与圆锥曲线的综合问题.要求学生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.10.(5分)(2009•浙江)定义A﹣B={x|x∈A且x∉B},若P={1,2,3,4},Q={2,5},则Q﹣P=()A.P B.{5} C.{1,3,4} D.Q【考点】集合的包含关系判断及应用.【专题】集合.【分析】理解新的运算,根据新定义A﹣B知道,新的集合A﹣B是由所有属于A但不属于B的元素组成.【解答】解:Q﹣P是由所有属于Q但不属于P的元素组成,所以Q﹣P={5}.故选B.【点评】本题主要考查了集合的运算,是一道创新题,具有一定的新意.要求学生对新定义的A﹣B有充分的理解才能正确答.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2009•浙江)设等比数列{a n}的公比,前n项和为S n,则=15.【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】先通过等比数列的求和公式,表示出S4,得知a4=a1q3,进而把a1和q代入约分化简可得到答案.【解答】解:对于,∴【点评】本题主要考查了等比数列中通项公式和求和公式的应用.属基础题.12.(4分)(2009•浙江)若某个几何体的三视图(单位:cm)如图所示,则该几何体的体积是18cm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由图可知,图形由两个体积相同的长方体组成,求出其中一个体积即可.【解答】解:由图可知,底下的长方体底面长为3,宽为1,底面积为3×1=3,高为3,因此体积为3×3=9;上面的长方体底面是个正方形,边长为3,高为1,易知与下面的长方体体积相等,因此易得该几何体的体积为9×2=18.【点评】本题考查学生的空间想象能力,是基础题.13.(4分)(2009•浙江)若实数x,y满足不等式组,则2x+3y的最小值是4.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.【解答】解:如图即为满足不等式组的可行域,由图易得:当x=2,y=0时,2x+3y=4;当x=1,y=1时,2x+3y=5;当x=4,y=4时,2x+3y=20,因此,当x=2,y=0时,2x+3y有最小值4.故答案为4【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14.(4分)(2009•浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.568 50及以下的部分0.288超过50至200的部分0.598 超过50至200的部分0.318超过200的部分0.668 超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为148.4元(用数字作答)【考点】分段函数的解析式求法及其图象的作法.【专题】函数的性质及应用.【分析】先计算出高峰时间段用电的电费,和低谷时间段用电的电费,然后把这两个电费相加.【解答】解:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1 (元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3 (元),本月的总电费为118.1+30.3=148.4 (元),故答案为:148.4.【点评】本题考查分段函数的函数值的求法,体现了分类讨论的数学思想,属于中档题.15.(4分)(2009•浙江)观察下列等式:观察下列等式:C+C=23﹣2,C+C+C=27+23,C+C+C+C=211﹣25,C+C+C+C+C=215+27,…由以上等式推测到一个一般结论:对于n∈N*,C+C+C+…+C=24n﹣1+(﹣1)n22n﹣1.【考点】二项式定理的应用.【专题】二项式定理.【分析】通过观察类比推理方法结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1【解答】解:结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1,因此对于n∈N*,C4n+11+C4n+15+C4n+19+…+C4n+14n+1=24n﹣1+(﹣1)n22n﹣1.故答案为24n﹣1+(﹣1)n22n﹣1【点评】本题考查观察、类比、归纳的能力.16.(4分)(2009•浙江)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是336.【考点】排列、组合及简单计数问题.【专题】排列组合.【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【解答】解:由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.故答案为:336.【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.17.(4分)(2009•浙江)如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是(,1).【考点】平面与平面垂直的性质;棱锥的结构特征.【专题】空间位置关系与距离;空间角;立体几何.【分析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时与随着F点到C 点时,分别求出此两个位置的t值即可得到所求的答案【解答】解:此题的破解可采用二个极端位置法,即对于F位于DC的中点时,可得t=1,随着F点到C点时,当C与F无限接近,不妨令二者重合,此时有CD=2因CB⊥AB,CB⊥DK,∴CB⊥平面ADB,即有CB⊥BD,对于CD=2,BC=1,在直角三角形CBD中,得BD=,又AD=1,AB=2,再由勾股定理可得∠BDA是直角,因此有AD⊥BD再由DK⊥AB,可得三角形ADB和三角形AKD相似,可得t=,因此t的取值的范围是(,1)故答案为(,1)【点评】考查空间图形的想象能力,及根据相关的定理对图形中的位置关系进行精准判断的能力.三、解答题(共5小题,满分72分)18.(14分)(2009•浙江)在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABC的面积;(Ⅱ)若b+c=6,求a的值.【考点】二倍角的余弦;平面向量数量积的运算;余弦定理.【专题】解三角形.(Ⅰ)利用二倍角公式利用=求得cosA,进而求得sinA,进而根据【分析】求得bc的值,进而根据三角形面积公式求得答案.(Ⅱ)根据bc和b+c的值求得b和c,进而根据余弦定理求得a的值.【解答】解:(Ⅰ)因为,∴,又由,得bccosA=3,∴bc=5,∴(Ⅱ)对于bc=5,又b+c=6,∴b=5,c=1或b=1,c=5,由余弦定理得a2=b2+c2﹣2bccosA=20,∴【点评】本题主要考查了解三角形的问题.涉及了三角函数中的倍角公式、余弦定理和三角形面积公式等,综合性很强.19.(14分)(2009•浙江)在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数的概率;(Ⅱ)记ξ为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【考点】等可能事件的概率;离散型随机变量及其分布列;离散型随机变量的期望与方差;组合及组合数公式.【专题】概率与统计.【分析】(I)由题意知本题是一个古典概型,试验发生包含的所有事件是从9个数字中选3个,而满足条件的事件是3个数恰有一个是偶数,即有一个偶数和两个奇数.根据概率公式得到结果.(2)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数,结合变量对应的事件写出概率和分布列,算出期望.【解答】解:(I)由题意知本题是一个古典概型,试验发生包含的所有事件是C93,而满足条件的事件是3个数恰有一个是偶数共有C41C52记“这3个数恰有一个是偶数”为事件A,∴;(II)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数P(ξ=0)=,P(ξ=1)=,P(ξ=2)=∴ξ的分布列为ξ0 1 2p∴ξ的数学期望为.【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.20.(14分)(2009•浙江)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.(Ⅰ)设G是OC的中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.【考点】直线与平面平行的判定;点、线、面间的距离计算.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】由于PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,O为AC的中点,AC=16,PA=PC=10,所以PO、OB、OC是两两垂直的三条直线,因此可以考虑用空间向量解决:连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O﹣xyz,对于(I),只需证明向量FG与平面BOE的一个法向量垂直即可,而根据坐标,平面的一个法向量可求,从而得证;对于(II),在第一问的基础上,课设点M的坐标,利用FM⊥平面BOE求出M的坐标,而其道OA、OB的距离就是点M 横纵坐标的绝对值.【解答】证明:(I)如图,连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x 轴,y轴,z轴,建立空间直角坐标系O﹣xyz,则O(0,0,0),A(0,﹣8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,﹣4,3),F(4,0,3),(3分)由题意得,G(0,4,0),因,因此平面BOE的法向量为,)得,又直线FG不在平面BOE内,因此有FG∥平面BOE.(6分)(II)设点M的坐标为(x0,y0,0),则,因为FM⊥平面BOE,所以有,因此有,即点M的坐标为(8分)在平面直角坐标系xoy中,△AOB的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在△ABO内存在一点M,使FM⊥平面BOE,由点M的坐标得点M到OA,OB的距离为.(12分)【点评】本题考查直线与平面的平行的判定以及距离问题,建立了空间坐标系,所有问题就转化为向量的运算,使得问题简单,解决此类问题时要注意空间向量的使用.21.(15分)(2009•浙江)已知椭圆C1:(a>b>0)的右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆C1的方程;(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.【考点】圆锥曲线的综合;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(I)根据题意,求出a,b的值,然后得出椭圆的方程.(II)设出M,N,P的坐标,将直线代入椭圆,联立方程组,根据△判断最值即可.【解答】解:(I)由题意得,∴,所求的椭圆方程为,(II)不妨设M(x1,y1),N(x2,y2),P(t,t2+h),则抛物线C2在点P处的切线斜率为y'|x=t=2t,直线MN的方程为y=2tx﹣t2+h,将上式代入椭圆C1的方程中,得4x2+(2tx﹣t2+h)2﹣4=0,即4(1+t2)x2﹣4t(t2﹣h)x+(t2﹣h)2﹣4=0,因为直线MN与椭圆C1有两个不同的交点,所以有△1=16[﹣t4+2(h+2)t2﹣h2+4]>0,设线段MN的中点的横坐标是x3,则,设线段PA的中点的横坐标是x4,则,由题意得x3=x4,即有t2+(1+h)t+1=0,其中的△2=(1+h)2﹣4≥0,∴h≥1或h≤﹣3;当h≤﹣3时有h+2<0,4﹣h2<0,因此不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0不成立;因此h≥1,当h=1时代入方程t2+(1+h)t+1=0得t=﹣1,将h=1,t=﹣1代入不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0成立,因此h的最小值为1.【点评】本题考查圆锥图象的综合利用,椭圆方程的应用,通过构造一元二次方程,利用根的判别式计算,属于中档题.22.(15分)(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;(Ⅱ)设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.【考点】利用导数研究函数的单调性;函数的单调性与导数的关系.【专题】导数的综合应用.【分析】(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出,最后再利用导数求出此函数的值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.【解答】解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于中档题.。
2019届高三数学(理)一轮课件:第30讲-等比数列及其前n项和(含答案)

又���1���
-2=-13≠0,∴数列
1 ������
-2
是首项为-13,公比为13的等
课堂考点探究
[总结反思] 判定一个数列为等比数列的常见方
(1)定义法:若������������ +1=q(d
������������
是常数),则数列
������������
是等
(2)等比中项法:若������2 =anan+2(n∈N*),则数列
a1=3,a1+a3+a5=21,则 a3+a5+a7= ( )
[解
A.21
B.42
C.63
D.84
所
教学参考
ቤተ መጻሕፍቲ ባይዱ
3.[2013·全国卷Ⅱ] 等比数列{an}的前 n 项 [答
和为 Sn,已知 S3=a2+10a1,a5=9,则 a1= [解
()
A.1
B.-1
S3
教学参考
4.[2017·全国卷Ⅲ] 设等比数列{an}满足
解:(1)证 因为数列 因为 an+
a3=
.
课堂考点探究
探究点一 等比数
例 1 (1)[2017·揭阳二模] 已知等比数列 ������������ 满足 a1+a3=10,a2+a4=5,则 a5= ( )
课堂考点探究
[答案] (1)B (2)A
[解析] (1)设等比数列{an}的公比为 q,依题意有
4
11
课堂考点探究
[总结反思] (1)等比数列的通项公式与前 n 项和 个就能求另外两个(简称“知三求二”). (2)运用等比数列的前 n 项和公式时,注意对 q=
《高考真题》专题14 等差数列-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.【母题原题2】【2017年高考全国Ⅲ卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3 D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A .专题14 等差数列【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【命题意图】主要考查考生的数学运算能力和逻辑推理能力,以及考生对函数与方程思想的应用.要求: 1.熟练掌握等差的通项公式、前n 项和公式. 2.掌握与等差数列有关的数列的求和的常见方法. 3.了解等差数列与一次函数的关系.【命题规律】等差数列是高考的考查热点,主要考查等差数列的基本运算和性质,等差数列的通项公式和前n 项和公式,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题. 【答题模板】求数列的通项、求和问题时,第一步:根据题意求通项.注意等差数列通项形如关于n 的一次函数的形式. 第二步:利用函数性质研究数列的性质,例如周期、单调性等. 第三步:利用函嫩、数列的交汇性质来综合求解问题.第四步:查看关键点、易错点及解题规范,例如错位相减去的计算量较大,注意检验. 【知识总结】1.等差数列的常用性质(1)通项公式的推广:a n =a m +(n –m )d (n ,m ∈N *).(2)若{a n }是等差数列,且k+l=m+n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n ;反之,不一定成立. (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }(p ,q ∈N *)也是等差数列.(5)若{a n }是等差数列,则a k ,a k+m ,a k+2m ,…(k ,m ∈N *)组成公差为md 的等差数列. 2.与等差数列各项的和有关的性质(1)若S m =n ,S n =m ,则S m+n =–(m+n );若S m =S n ,则S m+n =0. (2)若{a n }是等差数列,则{n S n}也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12.(3)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m –S m ,S 3m –S 2m 成等差数列.(4)关于等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶–S 奇=nd ,S S 奇偶=1nn a a +; ②若项数为2n –1,则S 偶=(n –1)a n ,S 奇=na n ,S 奇–S 偶=a n ,S S 奇偶=-1nn .(5)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为2-12-1n n S T =nna b . 【方法总结】 (一)等差数列1.等差数列的判定与证明方法有以下四种:(1)定义法:a n+1–a n =d (常数)(n ∈N *)或a n –a n –1=d (n ∈N *,n ≥2)⇔{a n }为等差数列. (2)等差中项法:2a n+1=a n +a n+2(n ∈N *)⇔{a n }为等差数列. (3)通项公式法:a n =an+b (a ,b 是常数,n ∈N *)⇔{a n }为等差数列. (4)前n 项和公式法:S n =an 2+bn (a ,b 为常数)⇔{a n }为等差数列.若要判定一个数列不是等差数列,则只需找出三项a n ,a n+1,a n+2,使得这三项不满足2a n+1=a n +a n+2即可.判断一个数列是否为等差数列时,应该根据已知条件灵活选用不同的方法,一般优先考虑定义法,即先表示出a n +1–a n ,然后验证其是否为一个与n 无关的常数.也可根据已知条件求出一些项,根据求解过程寻找具体的解题思路.注意常数列{a n }的通项公式为a n =a (a 为常数),它是一个首项为a ,公差为0的等差数列.2.等差数列基本运算的常见类型及解题策略:(1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解,或利用等差中项间接求解. 3.求数列前n 项和的最值的方法:(1)通项法:①若a 1>0,d<0,则S n 必有最大值,其n 可用不等式组100n n a a +≥⎧⎨≤⎩,来确定;②若a 1<0,d>0,则S n 必有最小值,其n 可用不等式组100n n a a +≤⎧⎨≥⎩,来确定.(2)二次函数法:等差数列{a n }中,由于S n =na 1+–12n n ()d=2d n 2+(a 1–2d)n ,可用求函数最值的方法来求前n 项和的最值,这里应由n ∈N *及二次函数图象的对称性来确定n 的值. (3)不等式组法:借助S n 最大时,有–11n n nn S S S S +≥⎧⎨≥⎩,(n ≥2,n ∈N *),解此不等式组确定n 的范围,进而确定n 的值和对应S n 的值(即S n 的最值). (二)其他数列1.求数列前n 项和的常用方法 (1)分组求和法分组转化法求和的常见类型①若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.②通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论. (2)裂项相消法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求解:由∴ (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.{}n a d 111nk k k a a =+∑()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑……11111n d a a +⎛⎫=- ⎪⎝⎭相加2.数列与函数综合(1)数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(2)解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常用解法有助于该类问题的解决. 3.数列与不等式综合与数列有关的不等式的命题常用的方法有:比较法(作差作商)、放缩法、利用函数的单调性、数学归纳法证明,其中利用不等式放缩证明是一个热点,常常出现在高考的压轴题中,是历年命题的热点.利用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩. 4.以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用函数的单调性求解; 5.以数列为背景的不等式证明问题,多与数列求和有关,有时利用放缩法证明.1.【广西桂林市、崇左市2019届高三下学期二模联考数学】在数列{}n a 中,35a =,()120n n a a n ++--=∈N ,若25n S =,则n =A .3B .4C .5D .6【答案】C【解析】因为()120n n a a n ++--=∈N ,所以1=2n n a a +-=d ,所以数列{}n a 是等差数列,121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………()()()12112n n n n S a a a a a a -=++++++……所以()11145 ,1,512252a a n n n na +=⎧⎪∴==⎨-+⋅=⎪⎩.故选C . 【名师点睛】本题主要考查等差数列性质的判定,考查等差数列的通项和前n 项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.【广西桂林市2019届高三4月综合能力检测(一模)数学】等差数列{}n a 中,27a =,623a =,则4a = A .11 B .13 C .15 D .17【答案】C【解析】等差数列{}n a 中,27a =,623a =,62423744,a a d d d =+⇒=+⇒= 根据等差数列的通项公式得到42215.a a d =+=故选C .【名师点睛】这个题目考查了等差数列的概念以及通项公式的应用属于基础题. 3.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】等差数列{}n a 中,若46131520a a a a +++=,则101215a a -的值是A .4B .5C .6D .8【答案】A【解析】∵()461315415220a a a a a a +++=+=,∴41510a a +=, ∴()1012101211555a a a a -=-()891011121215a a a a a a =++++- ()89101115a a a a =+++()41525a a =+4=.故选A . 【名师点睛】本题考查等差数列中下标和性质的应用,解题的关键是进行适当的变形,以得到能运用性质的形式.本题也可转化为等差数列的首项和公差后进行求解,属于基础题.4.【广西桂林市、贺州市、崇左市2019届高三下学期3月联合调研考试数学】设n S 为等差数列{}n a 的前n 项和,若21016a a +=,714S =,则{}n a 的公差为A .1B .3C .6D .2【答案】B【解析】方法一:设等差数列{}n a 的公差为d , 因为1777()142a a S +==,得174a a +=①, 因为21016a a +=,所以11116a a +=②,②–①得,11712a a -=,即412d =,所以3d =,故选B .方法二:设等差数列{}n a 的公差为d ,因为21016a a +=,714S =,所以112101672114a d a d +=⎧⎨+=⎩,解得173a d =-⎧⎨=⎩,故选B .【名师点睛】本题主要考查了等差数列基本量求解,属于基础题.等差数列基本量求解的通法是方程组法,利用等差数列的通项公式、求和公式将条件转化为关于1a 和d 的方程组,进而求解;另外也可以运用性质法,即利用等差数列的相关性质公式以及通项公式、求和公式直接求出基本量.5.【四川省峨眉山市2019届高三高考适应性考试数学】在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A .66 B .132 C .–66 D .–132【答案】D【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-, 又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D .【名师点睛】本题考查等差数列的性质及求和公式,考查方程思想,是基础题.6.【四川省百校2019年高三模拟冲刺卷数学】已知等差数列{}n a 的前n 项和为n S ,且728S =,则4a = A .4 B .7 C .8 D .14【答案】A 【解析】()177477282a a S a +===,故44a =,故选A .【名师点睛】本题考查等差数列求和及基本性质,熟记求和公式及性质,准确计算是关键,是基础题. 7.【四川省内江市2019届高三第三次模拟考试数学】已知等差数列{}n a 的前n 项和为n S ,且86a =,828S =,则其公差为A .47 B .57 C .47-D .57-【答案】B【解析】设等差数列{}n a 的公差为d ,由86a =,828S =,则1176878282a d a d +=⎧⎪⎨⨯+=⎪⎩,解得57d =,故选B .【名师点睛】本题主要考查了等差数列的通项公式,以及等差数列的前n 项和公式的应用,其中解答中熟记等差数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.8.【四川省雅安市2019届高三第三次诊断考试数学】已知等差数列{}n a ,12018a =-,其前n 项和为n S ,20192018120192018S S -=,则2019S = A .0 B .1 C .2018 D .2019【答案】A【解析】设等差数列{}n a 的公差为d ,则()112n n n S na d -=+, 所以2019110092019S a d =+,20181201720182S a d =+,代入20192018120192018S S -=,得2d =. 所以()20192019201820192018202S ⨯=⨯-+⨯=.故选A . 【名师点睛】本题主要考查了等差数列前n 项和公式,考查方程思想及计算能力,属于中档题.9.【重庆市南开中学2019届高三第三次教学质量检测考试数学】等差数列{}n a 的前7项和为28,108a =,则7a = A .6B .7【答案】A【解析】由题得11717672822,2,,26623398a d a d a a d ⨯⎧+⨯=⎪∴==∴=+⨯=⎨⎪+=⎩.故选A . 【名师点睛】本题主要考查等差数列的通项的基本量的计算,考查等差数列的前n 项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.【贵州省贵阳市2019届高三2月适应性考试(一)数学】已知{a n }为递增的等差数列,a 4+a 7=2,a 5•a 6=–8,则公差d = A .6 B .6- C .2- D .4【答案】A【解析】∵{a n }为递增的等差数列,且a 4+a 7=2,a 5•a 6=–8,∴a 5+a 6=2,∴a 5,a 6是方程22x 80x --=的两个根,且a 5<a 6,∴a 5=–2,a 6=4,∴d =a 6–a 5=6,故选A . 【名师点睛】本题考查等差数列的通项公式,考查方程的构造及解法,是基础的计算题. 11.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】在等差数列{}n a 中,若35791155a a a a a ++++=,33S =,则5a 等于A .9B .7C .6D .5【答案】B【解析】因为35791155a a a a a ++++=,所以5a 7=55,所以711a =, 因为33S =,所以21a =,所以公差7225a a d -==,所以5237a a d =+=.故选B . 【名师点睛】本题考查等差数列的第5项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.12.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】在等差数列{}n a 中,若357911355,3a a a a a s ++++==,则5a 等于A .5B .6【答案】C【解析】在等差数列{}n a 中,因为35791155a a a a a ++++=,所以7755511a a =⇒=, 又33S =,123223331a a a a a ∴++=⇒=⇒=,又因为7252a a d d =+⇒=,5237a a d ∴=+=,故选C .【名师点睛】本题考查了等差数列的性质.13.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】在数列{}n a 中,已知121n n n n a a a a +++-=-,10101a =,则该数列前2019项的和2019S =A .2019B .2020C .4038D .4040【答案】A 【解析】121n n n n a a a a +++-=-,122n n n a a a ++∴=+,{}n a ∴为等差数列,10101a =,()1201910102019201920192201922a a a S +⨯∴===.【名师点睛】本题考查等差中项,等差数列的基本性质,属于简单题.14.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】在等差数列{}n a 中,已知10101a =,则该数列前2019项的和2019S = A .2018 B .2019 C .4036 D .4038【答案】B【解析】由题得2019S =1201910102019)201920192a a a +==(.故选B . 【名师点睛】本题主要考查等差数列的前n 项和,考查等差中项的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.【贵州省2019年普通高等学校招生适应性考试数学】等差数列{}n a 中,2a 与4a 是方程2430x x -+=的两根,则12345a a a a a ++++=A .6B .8C .10D .12【答案】C【解析】∵2a 与4a 是方程2430x x -+=的两根,∴2a +4a =4=1a +532a a =, 则1234510a a a a a ++++=.故选C .【名师点睛】本题考查了等差数列的性质、一元二次方程的根与系数的关系,属于基础题. 16.【贵州省遵义市绥阳中学2019届高三模拟卷(二)数学】若等差数列{}n a 的前n 项和为258,2,8n S a a S +=-=,则n S =A .22n n -B .27n n -C .251n n ++D .27n n -+【答案】B【解析】令()11n a a n d =+-,则1114287882a d a d a d +++=-⎧⎪⎨⨯+=⎪⎩162a d =-⎧⇒⎨=⎩ 所以()216272n n n S n n n ⨯-=-⨯+⨯=-,故选B . 【名师点睛】本题考查等差数列基本量的计算,关键在于能够将已知条件转化为关于基本量的方程,属于基础题.17.【贵州省遵义市绥阳中学2019届高三模拟卷(一)数学】已知等差数列{}n a 的前n 项和分别为n S ,912162a a =+,24a =,若数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和为1011,则k =A .11B .10C .9D .8【答案】B【解析】设等差数列{}n a 的公差为d ,则()11118116,24,a d a d a d ⎧+=++⎪⎨⎪+=⎩解得12a d ==.()21222n n n S n n n-∴=+⨯=+,()111111nS n n n n ∴==-++, 1211111111110112231111k S S S k k k ⎛⎫⎛⎫⎛⎫∴+++=-+-++-=-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,10k =.故选B . 【名师点睛】本题考查等差数列的通项公式与前n 项和公式,考查裂项相消法,考查计算能力与推理能力,属于中档题.18.【云南省昆明市2019届高三高考模拟(第四次统测)数学】已知等差数列{}n a 的前n 项和为n S ,721S =,则4a = A .0 B .2 C .3 D .6【答案】C【解析】因为{}n a 是等差数列,所以1717744217)2(6263S a a a a a a ++=⇒=⇒=⇒==,故本题选C .【名师点睛】本题考查了等差数列前n 项和公式和等差数列的性质.考查了运算能力. 19.【云南省保山市2019年普通高中毕业生市级统一检测数学】已知等差数列{}n a 满足711a =,2810a a +=,则11=SA .176B .88C .44D .22【答案】B【解析】因为数列{}n a 是等差数列,由2810a a +=,得55a =,又711a =, 则()()111571*********a a a a S ++===,故选B .【名师点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.20.【西藏拉萨市2019届高三第三次模拟考试数学】记n S 为等差数列{}n a 的前n 项和,若11a =,34222S a S =+,则8a =A .8B .9C .16D .15【答案】D【解析】由题意,因为11a =,34222S a S =+, 即111322(3)2(3)22a d a d a d ⨯⨯+=+++,解得2d =, 所以81717215a a d =+=+⨯=,故选D .【名师点睛】本题主要考查了等差数列的通项公式,以及前n 项和公式的应用,其中解答中熟记等差数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.21.【西藏拉萨市2019届高三下学期第二次模拟考试数学】已知等差数列{}n a 的前n 项和2n S n bn c =++,等比数列{}n b 的前n 项和3nn T d =+,则向量(,)c d =a 的模为A .1 BCD .无法确定【答案】A【解析】等差数列{}n a 前n 项和()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,即常数项为0的二次式, 而根据已知2n S n bn c =++,故可得0c =,等比数列{}n b 的前n 项()1111111n n n b q b bT q qq q-==----, 而根据已知3nn T d =+,可得11111b d q b q⎧=⎪-⎪⎨⎪-=⎪-⎩,即1d =-,因此向量()0,1=-a ,则1=a ,故选A .【名师点睛】本题考查等差数列和等比数列求和公式的性质,属于中档题.22.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】在等差数列{}n a 中,1516a a +=,则5S = A .80 B .40 C .31 D .31-【答案】B【解析】在等差数列{}n a 中,1516a a +=,()51555164022S a a ∴=+=⨯=,故选B . 【名师点睛】本题考查等差数列的前n 项和的求法,是基础题,解题时要注意等差数列的性质的合理运用.23.【西藏拉萨市2019届高三下学期第二次模拟考试数学】等差数列{}n a 的前n 项和为n S ,且859a a -=,8566S S -=,则33a =A .82B .97C .100D .115【答案】C【解析】因为等差数列{}n a 的前n 项和为n S ,且859a a -=,所以39d =,解得3d =, 又由8566S S -=,所以11875483536622a a ⨯⨯+⨯--⨯=,解得14a =, 所以331324323100a a d =+=+⨯=,故选C .【名师点睛】本题主要考查了等差数列的通项公式,以及等差数列的求和公式的应用,其中解答中熟记等差数列的通项公式和前n 项和公式,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.24.【四川省凉山州2019届高中毕业班第二次诊断性检测数学】已知等差数列{}n a 的前n 项和为n S ,116m S -=,25m S =,11a =(2m ≥,且m ∈N ),则m 的值是A .4B .5C .6D .7【答案】B【解析】∵等差数列{}n a 的前n 项和为n S ,116m S -=,25m S =, ∴19m m m a S S -=-=,又25m S =,11a =,∴()15252m m a a m S m +===,∴5m =,故选B .【名师点睛】本题考查等差数列前n 项和公式,考查前n 项和与通项的关系,考查计算能力.25.【四川省内江市2019届高三第一次模拟考试数学】记n S 为等差数列{}n a 的前n 项和,若33a =,621S =,则数列{}n a 的公差为 A .1 B .–1 C .2 D .–2【答案】A【解析】∵S n 为等差数列{a n }的前n 项和,a 3=3,S 6=21,∴316123656212a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,解得a 1=1,d =1.∴数列{a n }的公差为1.故选A . 【名师点睛】本题考查数列的公差的求法,考查等差数列的前n 项和公式等基础知识,考查运算求解能力,是基础题.26.【四川省成都市2019届高三毕业班第一次诊断性检测数学】设n S 为等差数列的前n 项和,且3652a a a +=+,则7S =A .28B .14C .7D .2【答案】B【解析】因为563542a a a a a +=+=+,所以42a =,177477142a a S a +=⨯==,故选B . 【名师点睛】本题主要考查等差数列的性质、等差数列的前n 项和公式,属于中档题.求解等差数列有关问题时,要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.27.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知等差数列{}n a 的前n 项和为n S ,若57a =,则9S =__________. 【答案】63【解析】因为57a =,所以()199599632a a S a +===.故答案为:63. 【名师点睛】本题主要考查等差数列的前n 项和,以及等差数列的性质,熟记公式即可,属于基础题型. 28.【广西南宁市2019届高三毕业班第一次适应性测试数学】已知数列{}n a 的前n 项和为n S ,若211n n n n a a a a +++-=-,12a =,38a =,则4S =__________.【答案】26【解析】因为211n n n n a a a a +++-=-,所以数列{}n a 为等差数列,设公差为d ,则8232d -==,所以443423262S ⨯=⨯+⨯=.故答案为:26. 【名师点睛】本题主要考查了等差数列的定义及求和公式的应用,属于基础题.29.【四川省南充市高三2019届第二次高考适应性考试高三数学】设等差数列{}n a 满足:127a a +=,136a a -=-,则5a =__________.【答案】14【解析】∵等差数列{a n }满足:a 1+a 2=7,a 1–a 3=–6.∴1111726a a d a a d ++=⎧⎨--=-⎩,解得a 1=2,d =3,∴5a =a 1+4d =2+4×3=14.故答案为:14. 【名师点睛】本题考查等差数列的通项公式,考查等差数列的性质等基础知识,属于基础题. 30.【四川省内江、眉山等六市2019届高三第二次诊断性考试数学】中国古代数学专家(九章算术)中有这样一题:今有男子善走,日增等里,九日走1260里,第一日,第四日,第七日所走之和为390里,则该男子的第三日走的里数为__________. 【答案】120【解析】由题意,男子每天走的里数符合等差数列,设这个等差数列为{}n a ,其公差为d ,前n 项和为n S .根据题意可知,91471260,390S a a a =++=,法一:()199********,1402a a S a a +===∴=,147443390,130a a a a a ++==∴=, 5410d a a ∴=-=,34120a a d ∴=-=.故答案为:120.法二:91471260390S a a a =⎧⎨++=⎩,11119891260236390a d a a d a d ⨯⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩, 所以312120a a d =+=.故答案为:120.【名师点睛】本题考查文字描述转化数学语言的能力,等差数列求和和通项以及基本性质,属于简单题.。
高考数学(理科)二轮专题:第二篇专题二第1讲 等差数列、等比数列

专题二 数 列第1讲 等差数列、等比数列(限时50分钟,满分96分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·吉林省百校联盟联考)已知等差数列{a n }的前n 项和为S n ,若2a 11=a 9+7,则S 25等于A.1452B .145C.1752D .175解析 由题意可得2a 11=a 9+a 13,所以a 13=7,所以S 25=a 1+a 252×25=2a 132×25=25a 13=25×7=175.选D.答案 D2.(2019·安庆二模)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于A .1B .-1C.12D .2解析 由a n +1=λa n -1, 得a n +1-1=λa n -2=λ⎝⎛⎭⎫a n -2λ. 由于数列{a n -1}是等比数列, 所以2λ=1,得λ=2.答案 D3.(2019·广州市二模)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则{a n }的前6项和为A .-20B .-18C .-16D .-14解析 因为a 1,a 3,a 4成等比数列,所以a 23=a 1·a 4, 所以(a 1+4)2=a 1(a 1+6),所以a 1=-8,所以S 6=6×(-8)+6×52×2=-18.选B.答案 B4.设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析 若对任意的正整数n ,a 2n -1+a 2n <0,则a 1+a 2<0,又a 1>0,所以a 2<0,所以q =a 2a 1<0.若q <0,可取q =-1,a 1=1,则a 1+a 2=1-1=0,不满足对任意的正整数n ,a 2n -1+a 2n <0.所以“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件.故选C.答案 C5.(2019·湖北夷陵中学质检)已知等差数列{a n }的前n 项和为S n ,n ∈N *,且满足S 17>0,S 18<0,则数列S 1a 1,S 2a 2,…,S 17a 17中的最大项为A.S 6a 6B.S 7a 7C.S 8a 8D.S 9a 9解析 由⎩⎪⎨⎪⎧S 17>0,S 18<0,得⎩⎪⎨⎪⎧17a 9>0,9(a 9+a 10)<0,所以a 9>0,a 10<0,所以a 1>a 2>a 3>…>a 9>0>a 10>a 11>…,于是当n ≤9时,S na n>0,当10≤n ≤17时,S n a n <0,且S 9是S n 的最大值.又{a n }的正项中,a 9最小,所以S 9a 9最大.故选D. 答案 D6.(2019·云南玉溪高三适应性训练)程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为A .65斤B .184斤C .183斤D .176斤解析 由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996,设首项为a 1,结合等差数列前n 项和公式有 S 8=8a 1+8×72d =8a 1+28×17=996.解得a 1=65,则a 8=a 1+7d =65+7×17=184(斤). 即第八个孩子分得斤数为184斤.故选B. 答案 B7.(2019·大庆模拟)若数列{a n }满足1a n +1-pa n=0,n ∈N *,p 为非零常数,则称数列{a n }为“梦想数列”.已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1b 2b 3…b 99=299,则b 8+b 92的最小值是A .2B .4C .6D .8解析 依题意可得b n +1=pb n ,则数列{b n }为等比数列.由b 1b 2b 3…b 99=299,即b 9950=299,可知b 50=2,所以b 8+b 92≥2b 8b 92=2b 50=4,当且仅当b 8=b 92,即该数列为常数列时取等号.故选B.答案 B8.(2019·盐城模拟)已知a 1,a 2,a 3,a 4依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是A.1+52B.±1+52C.±1+32D.-1+32解析 因为公比q 不为1,所以删去的数不是a 1,a 4. ①若删去a 2,则由2a 3=a 1+a 4得2a 1q 2=a 1+a 1q 3, 又a 1≠0,所以2q 2=1+q 3, 整理得q 2(q -1)=(q -1)(q +1).又q ≠1,所以q 2=q +1,又q >0,得q =1+52;②若删去a 3,则由2a 2=a 1+a 4得2a 1q =a 1+a 1q 3, 又a 1≠0,所以2q =1+q 3, 整理得q (q +1)(q -1)=q -1. 又q ≠1,则可得q (q +1)=1,又q >0,得q =-1+52.综上所述,q =±1+52.故选B.答案 B二、填空题(本大题共4小题,每小题5分,共20分)9.(2019·大连八中模拟)若记等比数列{a n }的前n 项和为S n ,a 1=2,S 3=6,则S 4的值等于________.解析 由等比数列求和公式,求q ≠1时得 S 3=a 1(1-q 3)1-q =2(1-q )(1+q +q 2)1-q =6,所以q 2+q -2=0,所以q =-2或q =1(舍去), 当q =-2时,S 4=2×[1-(-2)4]1-(-2)=-10,当q =1时,S 4=4a 1=8. 答案 8或-1010.(2019·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析 解法一 由S 9=27⇒9(a 1+a 9)2=27⇒a 1+a 9=6⇒2a 5=6⇒2a 1+8d =6且a 5=3.又a 2a 5+a 8=0⇒2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1)2d =16.解法二 同解法一得a 5=3.又a 2a 5+a 8=0⇒3a 2+a 8=0⇒2a 2+2a 5=0⇒a 2=-3. ∴d =a 5-a 23=2,a 1=a 2-d =-5.故S 8=8a 1+8×(8-1)2d =16.答案 1611.(2019·屯溪模拟)各项均为正数的等比数列{a n }中,a 1=18,a 1·a 2·…·a m =8m (m >2,m ∈N *),若从中抽掉一项后,余下的m -1项之积为(42)m -1,则被抽掉的是第________项.解析 由a 1·a 2·…·a m =a m 1·q 0+1+2+3+…+(m -1)=a m 1·qm (m -1)2,可得⎝⎛⎭⎫18m·qm (m -1)2=8m,q =84m -1.设被抽掉的是a k (k ≤m ),则a 1·a 2·…·a m a k =8m a k =(42)m -1=856(m -1),则a k =85+m 6=18·q k -1, 即q k -1=811+m 6.所以84(k -1)m -1=811+m 6,则4(k -1)m -1=11+m 6,即k -1=(m -1)(11+m )24,所以m =13,k =13. 答案 1312.(2019·衡水模拟)在数列{a n }中,若a 2n -a 2n -1=p (n ≥2,n ∈N *)(p 为常数),则称{a n }为“等方差数列”.下列是对“等方差数列”的判断:①若数列{a n }是等方差数列,则数列{a 2n }是等差数列; ②数列{(-1)n }是等方差数列;③若数列{a n }是等方差数列,则数列{a kn }(k 为常数,k ∈N *)也是等方差数列; ④若数列{a n }既是等方差数列,又是等差数列,则该数列必为常数列; 其中正确命题的序号为________.解析 ①因为{a n }是等方差数列,所以a 2n -a 2n -1=p (n ≥2,n ∈N *,p 为常数)成立,得到{a 2n }为首项是a 21,公差为p 的等差数列;②因为a 2n -a 2n -1=(-1)2n -(-1)2(n-1)=1-1=0,所以数列{(-1)n }是等方差数列;③数列{a n }中的项列举出来是:a 1,a 2,…,a k ,a k +1,a k +2,…,a 2k ,…,a 3k ,… 数列{a kn }中的项列举出来是:a k ,a 2k ,a 3k ,…因为a 2k +1-a 2k =a 2k +2-a 2k +1=a 2k +3-a 2k +2=…=a 22k -a 22k -1=p ,所以(a 2k +1-a 2k )+(a 2k +2-a 2k +1)+(a 2k +3-a 2k +2)+…+(a 22k -a 22k -1)=a 22k -a 2k =kp ,类似地,可得a 2k (n +1)-a 2kn =kp ,所以,数列{a kn }是等方差数列;④{a n }既是等方差数列,又是等差数列,所以a 2n -a 2n -1=p ,且a n -a n -1=d (d ≠0),所以a n +a n -1=p d ,联立解得a n =d 2+p2d,所以{a n }为常数列,当d =0时,显然{a n }为常数列,所以该数列为常数列.答案 ①②③④三、解答题(本大题共3小题,每小题12分,共36分)13.(2019·广州综合测试)已知{a n }是等差数列,且lg a 1=0,lg a 4=1. (1)求数列{a n }的通项公式;(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和. 解析 (1)因为lg a 1=0,lg a 4=1,所以a 1=1,a 4=10. 设等差数列{a n }的公差为d , 则d =a 4-a 14-1=3.所以a n =a 1+3(n -1)=3n -2. (2)由(1)知a 1=1,a 6=16,因为a 1,a k ,a 6是等比数列{b n }的前3项, 所以a 2k =a 1a 6=16.又a n =3n -2>0,所以a k =4.因为a k =3k -2,所以3k -2=4,得k =2. 所以等比数列{b n }的公比q =b 2b 1=a 2a 1=4.所以b n =4n -1.所以a n +b n =3n -2+4n -1.所以数列{a n +b n }的前n 项和为S n =n (3n -1)2+1-4n 1-4=32n 2-12n +13(4n-1).14.(2019·贵阳质检)已知数列{a n }是等比数列,并且a 1,a 2+1,a 3是公差为-3的等差数列.(1)求数列{a n }的通项公式;(2)记b n =a 2n ,记S n 为数列{b n }的前n 项和, 证明:S n <163.解析 (1)设等比数列{a n }的公比为q , 因为a 1,a 2+1,a 3是公差为-3的等差数列,所以⎩⎪⎨⎪⎧a 2+1=a 1-3,a 3=(a 2+1)-3,即⎩⎪⎨⎪⎧a 1q -a 1=-4,a 1q 2-a 1q =-2,解得a 1=8,q =12.所以a n =a 1qn -1=8×⎝⎛⎭⎫12n -1=24-n .(2)证明 因为b n +1b n =a 2n +2a 2n =14,所以数列{b n }是以b 1=a 2=4为首项,14为公比的等比数列.所以S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫14n1-14=163×⎣⎡⎦⎤1-⎝⎛⎭⎫14n <163.15.(2019·青岛模拟)2016年崇明区政府投资8千万元启动休闲体育新乡村旅游项目.规划从2017年起,在今后的若干年内,每年继续投资2千万元用于此项目.2016年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均在上一年的基础上增长50%.记2016年为第1年,f (n )为第1年至此后第n (n ∈N *)年的累计利润(注:含第n 年,累计利润=累计净收入-累计投入,单位:千万元),且当f (n )为正值时,认为该项目赢利.(参考数值:⎝⎛⎭⎫327≈17,⎝⎛⎭⎫328≈25,ln 3≈1.1,ln 2≈0.7) (1)试求f (n )的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.解析 (1)由题意知,第1年至此后第n (n ∈N *)年的累计投入为8+2(n -1)=2n +6(千万元),第1年至此后第n (n ∈N *)年的累计净收入为 12+12×⎝⎛⎭⎫321+12×⎝⎛⎭⎫322+…+12×⎝⎛⎭⎫32n -1=12⎣⎡⎦⎤1-⎝⎛⎭⎫32n 1-32=⎝⎛⎭⎫32n -1(千万元).所以f (n )=⎝⎛⎭⎫32n-1-(2n +6)=⎝⎛⎭⎫32n-2n -7(千万元). (2)因为f (n +1)-f (n ) =⎣⎡⎦⎤⎝⎛⎭⎫32n +1-2(n +1)-7-⎣⎡⎦⎤⎝⎛⎭⎫32n-2n -7=12⎣⎡⎦⎤⎝⎛⎭⎫32n -4, 所以当n ≤3时,f (n +1)-f (n )<0,故当n <4时,f (n )递减; 当n ≥4时,f (n +1)-f (n )>0, 故当n ≥4时,f (n )递增.又f (1)=-152<0,f (7)=⎝⎛⎭⎫327-21<0,f (8)=⎝⎛⎭⎫328-23>0.所以该项目将从第8年开始并持续赢利. 答:该项目将从2023年开始并持续赢利.。
2019届高三数学复习--数列--数列、等差数列与等比数列

2019届⾼三数学复习--数列--数列、等差数列与等⽐数列2019届⾼三数学复习--数列--数列、等差数列与等⽐数列第10讲数列、等差数列与等⽐数列1.(1)[2014?全国卷Ⅱ]数列{an}满⾜an+1=,a8=2,则a1= .(2)[2018?全国卷Ⅰ]记Sn为数列{an}的前n项和.若Sn=2an+1,则S6= .[试做]命题⾓度数列的递推问题(1)解决数列的递推问题:关键⼀,利⽤an=得出an与an+1(或an-1)的递推式;关键⼆,观察递推式的形式,采⽤不同的⽅法求an.(2)若递推式形如an+1=an+f(n),an+1=f(n)?an,则可分别通过累加、累乘法求得通项公式,或⽤迭代法求得通项公式;若递推式形如an+1=pan+q(其中p,q均为常数,且p≠1),则通常化为an+1-t=p(an-t)的形式,其中t=,再利⽤换元法转化为等⽐数列求解.2.(1)[2017?全国卷Ⅲ]等差数列{an}的⾸项为1,公差不为0.若a2,a3,a6成等⽐数列,则{an}前6项的和为( )A.-24B.-3c.3D.8(2)[2016?全国卷Ⅰ]设等⽐数列{an}满⾜a1+a3=10,a2+a4=5,则a1a2…an的最⼤值为 .[试做]命题⾓度等差、等⽐数列的基本计算关键⼀:基本量思想(等差数列:⾸项a1和公差d.等⽐数列:⾸项a1和公⽐q).关键⼆:等差数列的性质,若+n=p+q(,n,p,q∈N*),则an+a=ap+aq;等⽐数列的性质,若+n=p+q(,n,p,q∈N*),则ana=apaq.3.(1)[2017?全国卷Ⅱ]等差数列{an}的前n项和为Sn,a3=3,S4=10,则 .(2)[2015?全国卷Ⅱ]设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn= .[试做]命题⾓度数列求和关键⼀:利⽤等差数列、等⽐数列的前n项和公式求解.关键⼆:利⽤数列求和⽅法(公式法、倒序相加法、分组求和法、并项求和法、错位相减法、裂项相消法)求解.⼩题1数列的递推关系1(1)已知数列{an}的前n项和为Sn,若3Sn=2an-3n,则a2018=( )A.22018-1B.32018-6c.-D.-(2)已知数列{an}满⾜a1=15,=2(n∈N*),则的最⼩值为 .[听课笔记]【考场点拨】由递推关系式求数列的通项公式,常⽤的⽅法有:①求出数列的前⼏项,再归纳猜想出数列的⼀个通项公式(注意验证);②将已知递推关系式整理、变形得到等差或等⽐数列的通项公式,或⽤累加法(适⽤于an+1=an+f(n)型)、累乘法(适⽤于an+1=an?f(n)型)、待定系数法(适⽤于an+1=pan+q 型)求通项公式.【⾃我检测】1.数列{an}满⾜a1=1,且对任意的,n∈N*,都有a+n=a+an+n,则+++…+等于( )A.B.c.D.2.定义各项均不为0的数列{an}:a1=1,a2=1,当n≥3时,an=an-1+.定义各项均不为0的数列{bn}:b1=1,b2=3,当n≥3时,bn=bn-1+.则=( )A.2017B.2018c.2019D.10093.在数列{an}中,a1=0,an+1=,则数列{an}的前2018项和S2018= .4.已知数列{an}的前n项和为Sn,且an+Sn=3n-1,则数列{an}的通项公式an= .⼩题2等差、等⽐数列的基本计算2(1)已知数列{an}的前n项和Sn=2n+1-2,bn=log2(?),数列{bn}的前n项和为Tn,则满⾜Tn>1024的n的最⼩值为( )A.9B.10c.12D.15(2)已知等差数列{an}中,a3=7,a9=19,Sn为数列{an}的前n项和,则的最⼩值为 .[听课笔记]【考场点拨】等差、等⽐数列问题的求解策略:(1)抓住基本量,⾸项a1、公差d或公⽐q;(2)熟悉⼀些结构特征,如前n项和为Sn=an2+bn(a,b是常数)的形式的数列为等差数列,通项公式为an=p?qn-1(p,q≠0)的形式的数列为等⽐数列;(3)由于等⽐数列的通项公式、前n项和公式中变量n在指数位置,所以常采⽤两式相除(即⽐值的⽅式)进⾏相关计算.【⾃我检测】1.已知数列{an}是公⽐为q的等⽐数列,若a1,a3,a2成等差数列,则公⽐q的值为( )A.-B.-2c.1或-D.-1或2.等⽐数列{an}的⾸项为3,公⽐q≠1,若a4,a3,a5成等差数列,则数列{an}的前5项和S5=( )A.-31B.33c.45D.933.设等差数列{an}的前n项和为Sn,若a1=-11,a4+a6=-6,则当Sn取得最⼩值时,n的值为 .4.已知等差数列{an}的前n项和为Sn,a1=9,a5=1,则使得Sn>0成⽴的n的最⼤值为 .⼩题3等差、等⽐数列的性质3(1)已知等差数列{an}的前n项和为Sn,若a4,a10是⽅程x2-8x+1=0的两个根,则S13=( )A.58B.54c.56D.52(2)已知数列{an}的各项都为正数,对任意的,n∈N*,a?an=a+n恒成⽴,且a3?a5+a4=72,则log2a1+log2a2+…+log2a7= .[听课笔记]【考场点拨】等差、等⽐数列性质使⽤的注意点:(1)通项性质:若+n=p+q=2k(,n,p,q,k∈N*),则对于等差数列有a+an=ap+aq=2ak,对于等⽐数列有aan=apaq=.(2)前n项和的性质:对于等差数列有S,S2-S,S3-S2,…成等差数列;对于等⽐数列,若有S,S2-S,S3-S2,…成等⽐数列,则仅在q≠-1,或q=-1且为奇数时满⾜.【⾃我检测】1.已知数列{an}为等差数列,数列{bn}为等⽐数列,且满⾜a2017+a2018=π,=4,则tan=( )A.-1B.c.1D.2.已知等⽐数列{an}中,a5=2,a6a8=8,则=( )A.2B.4c.6D.83.已知正项等⽐数列{an}的前n项和为Sn,且S10=10,S30=130,则S40=( )A.-510B.400c.400或-510D.30或404.已知等差数列{an}的公差不为0,a1=1,且a2,a4,a8成等⽐数列,{an}的前n项和为Sn,则Sn=( )A.B.c.D.⼩题4等差、等⽐数列的综合问题4(1)已知等差数列{an}的前n项和为Tn,a3=4,T6=27,数列{bn}满⾜bn+1=b1+b2+b3+…+bn,b1=b2=1,设cn=an+bn,则数列{cn}的前11项和S11=( )A.1062B.2124c.1101D.1100(2)已知数列{an}的通项公式为an=n+t(t∈R),数列{bn}为公⽐⼩于1的等⽐数列,且满⾜b1?b4=8,b2+b3=6,设cn=+,在数列{cn}中,若c4≤cn(n∈N*),则实数t的取值范围为 .[听课笔记]【考场点拨】解决数列的综合问题的易失分点:(1)公式an=Sn-Sn-1适⽤于所有数列,但易忽略n≥2这个前提;(2)对含有字母的等⽐数列求和时要注意q=1或q≠1的情况,公式Sn=只适⽤于q≠1的情况.【⾃我检测】1.已知数列{an}的各项均为整数,a8=-2,a13=4,前12项依次成等差数列,从第11项起依次成等⽐数列,则a15=( )A.8B.16c.64D.1282.已知正项等⽐数列{an}的前n项和为Sn,且a1a6=2a3,a4与2a6的等差中项为,则S5=( )A.B.30c.31D.3.当n为正整数时,定义函数N(n)表⽰n的最⼤奇因数,如N(3)=3,N(10)=5.若S(n)=N(1)+N(2)+N(3)+…+N(2n),则S(5)=( )A.342B.345c.341D.3464.已知等⽐数列{an}满⾜a2a5=2a3,且a4,,2a7成等差数列,则a1?a2?…?an的最⼤值为 .模块三数列第10讲数列、等差数列与等⽐数列典型真题研析1.(1)(2)-63[解析](1)由题易知a8==2,得a7=;a7==,得a6=-1;a6==-1,得a5=2,于是可知数列{an}具有周期性,且周期为3,所以a1=a7=.(2)⽅法⼀:令n=1,得S1=a1=2a1+1,所以a1=-1,⼜由Sn=2an+1=2(Sn-Sn-1)+1(n≥2),得Sn=2Sn-1-1(n≥2),即Sn-1=2(Sn-1-1)(n≥2),所以数列{Sn-1}是以S1-1=-2为⾸项,2为公⽐的等⽐数列,所以S6-1=(-2)×25=-64,则S6=-63.⽅法⼆:令n=1,得S1=a1=2a1+1,所以a1=-1.由Sn=2an+1①,得Sn-1=2an-1+1(n≥2)②,①-②得an=2an-2an-1(n≥2),即an=2an-1(n≥2),所以{an}是以a1=-1为⾸项,2为公⽐的等⽐数列,于是S6==-63.2.(1)A(2)64[解析](1){an}为等差数列,且a2,a3,a6成等⽐数列,则=a2?a6,即(a1+2d)2=(a1+d)(a1+5d).将a1=1代⼊上式并化简,得d2+2d=0,∵d≠0,∴d=-2,∴S6=6a1+d=1×6+×(-2)=-24.(2)设该等⽐数列的公⽐为q,则q==,可得a1+a1=10,得a1=8,所以an=8×n-1=n-4.所以a1a2…an=-3-2-1+0+…+(n-4)=,易知当n=3或n=4时,(n2-7n)取得最⼩值-6,故a1a2…an的最⼤值为-6=64.3.(1) (2)- [解析](1)设公差为d,则a1+2d=3且4a1+6d=10,解得a1=1,d=1,所以Sk=,=2,所以(2)因为a1=-1,an+1=SnSn+1,所以S1=-1,Sn+1-Sn=SnSn+1,所以-=-1,所以数列是⾸项为-1,公差为-1的等差数列,所以=-n,所以Sn=-.考点考法探究⼩题1例1(1)A(2)[解析](1)由题意可得3Sn=2an-3n,3Sn+1=2an+1-3(n+1),两式作差可得3an+1=2an+1-2an-3,即an+1=-2an-3,即an+1+1=-2(an+1),由3S1=2a1-3=3a1,可得a1=-3,∴a1+1=-2,∴数列{an+1}是⾸项为-2,公⽐为-2的等⽐数列,据此有a2018+1=(-2)×(-2)2017=22018,∴a2018=22018-1.(2)由=2,得an+1-an=2n,∵a1=15,∴当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=15+2+4+…+2(n-1)=15+2×=n2-n+15, ∵a1=15满⾜上式,∴an=n2-n+15,∴=n+-1,易知当n依次取1,2,3时,n+-1的值递减;当n取⼤于或等于4的⾃然数时,n+-1的值递增.当n=3时,=3+5-1=7;当n=4时,=4+-1=.故的最⼩值为.【⾃我检测】1.c [解析]∵an+=a+an+n对任意的,n∈N*都成⽴,∴an+1=an+a1+n=an+1+n,即an+1-an=1+n,∴a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2),把上⾯(n-1)个式⼦相加可得,an-a1=2+3+4+…+n,∴an=1+2+3+…+n=(n≥2),当n=1时,a1=1,满⾜上式,∴an=,从⽽有==2,∴+++…+=2×=.2.D [解析]当n≥3时,由an=an-1+两边同除以an-1,可得=1+,即-=1,则数列是⾸项为1,公差为1的等差数列,所以=n-1(n≥2),所以an=a1×××…×=1×1×2×…×(n-1)(n≥2).同理可得-=1(n≥3),则数列是⾸项为3,公差为1的等差数列,所以=n+1(n≥2),可得bn=b1×××…×=1×3×4×…×(n+1)(n≥2), 所以==1009,故选D.3. [解析]∵a1=0,an+1=,∴a2==,a3===-,a4==0,∴数列{an}具有周期性,其周期为3,且a1+a2+a3=0,则S2018=S3×672+2=a1+a2=.4.3-[解析]由an+Sn=3n-1,得当n≥2时,an-1+Sn-1=3n-4,两式相减得an=an-1+,∴an-3=(an-1-3).∵当n=1时,a1+S1=3-1=2,∴a1=1,∵a1-3=-2,∴数列{an-3}是以-2为⾸项,为公⽐的等⽐数列, ∴an-3=-2?,∴an=3-.⼩题2例2 (1)A (2)3 [解析](1)因为数列{an}的前n项和Sn=2n+1-2,所以当n≥2时,an=Sn-Sn-1=2n+1-2n=2n,当n=1时,a1=21+1-2=2,满⾜上式,所以an=2n,所以bn=log2(?)=log2+log2=2n+2n,所以数列{bn}的前n项和Tn=+=n(n+1)+2n+1-2,易知当n∈N*时,Tn递增.当n=9时,T9=9×10+210-2=1112>1024;当n=8时,T8=8×9+29-2=582 所以满⾜Tn>1024的n 的最⼩值为9.(2)∵a3=7,a9=19,∴公差d===2,∴an=a3+(n-3)d=7+2(n-3)=2n+1,∴Sn==n(n+2),∴==≥×2=3,当且仅当n=2时取等号.【⾃我检测】1.c [解析]由题意知2a3=a1+a2,∴2a1q2=a1q+a1,即2q2=q+1,∴q=1或q=-.2.B [解析]∵等⽐数列{an}的⾸项为3,∴an=3qn-1,⼜a4,a3,a5成等差数列,∴a4+a5=2a3,∴q2+q=2,∴(q+2)(q-1)=0,∴q=-2,∴an=3?(-2)n-1,∴S5==33,故选B.3.6 [解析]设数列{an}的公差为d,则a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,所以Sn=-11n+×2=n2-12n=(n-6)2-36,所以当n=6时,Sn取得最⼩值.4.9 [解析]因为a1=9,a5=1,所以公差d==-2,所以Sn=9n+n(n-1)(-2)=10n-n2,令Sn>0,得00成⽴的n的最⼤值为9.⼩题3例3 (1)D (2)21 [解析](1)由根与系数的关系可得a4+a10=8,结合等差数列的性质可得a1+a13=a4+a10=8,则S13===52.(2)令=1,∵a?an=a+n,∴a1?an=a1+n,∴数列{an}为等⽐数列.由a3?a5+a4=72,得+a4=72,∵a4>0,∴a4=8,∴log2a1+log2a2+…+log2a7=log2(a1?a2?…?a7)=log2=log287=21.【⾃我检测】1.c[解析]由等差数列的性质可知,a2+a4033=a2017+a2018=π,由等⽐数列的性质可知,b1b39==4,所以tan=tan=1,故选c.2.A [解析]设数列{an}的公⽐为q.∵数列{an}是等⽐数列,∴a6a8==8,∴a7=2(与a5同号),∴q2==,∴=q4=()2=2.故选A.3.B [解析]∵正项等⽐数列{an}的前n项和为Sn,∴S10,S20-S10,S30-S20,S40-S30也成等⽐数列,∴10×(130-S20)=(S20-10)2,解得S20=40或S20=-30(舍),故S40-S30=270,∴S40=400,故选B.4.A [解析]设等差数列{an}的公差为d(d≠0).∵a2,a4,a8成等⽐数列,∴=a2?a8,即(a1+3d)2=(a1+d)?(a1+7d),∴(1+3d)2=(1+d)?(1+7d),∴d=1,∴Sn=n+=.故选A.⼩题4例 4 (1)c (2)[-4,-2] [解析](1)设数列{an}的公差为d,则解得∴数列{an}的通项公式为an=n+1.当n≥2时,bn+1-bn=bn,∴bn+1=2bn,即数列{bn}从第⼆项起为等⽐数列,∴bn=2n-2(n≥2), ∴数列{bn}的通项公式为bn=分组求和可得数列{cn}的前11项和S11=(2+3+4+…+12)+(1+1+2+22+…+29)=77+210=1101.(2)在等⽐数列{bn}中,由b1?b4=8得b2?b3=8,⼜b2+b3=6,且公⽐q⼩于1,∴b2=4,b3=2,∴q==,因此bn=b2qn-2=4×=.由cn=+,得cn=∴cn是取an,bn中的较⼤者.由题易知c4是数列{cn}中的最⼩项,⼜bn=递减,an=n+t递增,∴当c4=a4时,c4≤cn,即a4≤cn,a4是数列{cn}中的最⼩项,则必须满⾜b4 【⾃我检测】1.B [解析]设由数列{an}的前12项构成的等差数列的公差为d,从第11项起构成的等⽐数列的公⽐为q,由a13===4,解得d=1或d=,⼜数列{an}的各项均为整数,故d=1,所以q==2,所以an=故a15=24=16,故选B.2.c [解析]设正项等⽐数列{an}的公⽐为q,q>0.∵a1a6=2a3,a4与2a6的等差中项为,∴q5=2a1q2,a1(q3+2q5)=3,得a1=16,q=,则S5==31.3.A [解析]由题设知,N(2n)=N(n),N(2n-1)=2n-1,∴S(n)=[1+3+5+…+(2n-1)]+[N(2)+N(4)+N(6)+…+N(2n)]=4n-1+[N(1)+N(2)+N(3)+…+N(2n-1)]=4n-1+S(n-1)(n≥2),⼜S(1)=N(1)+N(2)=2, ∴S(n)=4n-1+4n-2+…+41+2=,∴S(5)==342.故选A.4.1024[解析]设数列{an}的公⽐为q.由已知得a3a4=a2a5=2a3?a4=2,a4+2a7=2×?a7=,∴==q3, ∴q==2-1,a1==24,∴an=24?2-(n-1)=25-n,∴a1?a2?…?an=24×23×…×25-n=24+3+…+(5-n)===,∴当n=4或5时,a1?a2?…?an取得最⼤值1024.[备选理由]例1为由递推关系求数列的通项公式问题,难度较⼤;例2考查等⽐数列前n项和中参数的计算,不同于原例2只考查等差、等⽐数列的基本量的计算;例3考查等⽐数列的计算,采⽤整体求解⽐较⽅便;例4为等差数列性质的应⽤问题;例5是⼀道等差数列与等⽐数列的综合题.例 1 [配例1使⽤]已知数列{an}满⾜a1=1,a2=,若anan-1+2anan+1=3an-1an+1(n≥2,n∈N*),则数列{an}的通项公式为an= .[答案][解析]∵anan-1+2anan+1=3an-1an+1(n≥2,n∈N*), ∴+=,即-=2,⼜∵-=2,∴数列是以2为⾸项,2为公⽐的等⽐数列,∴-=2n,∴当n≥2时,=++…++=2n-1+2n-2+…+2+1==2n-1.当n=1时,=1,满⾜上式,∴=2n-1,∴an=.例 2 [配例2使⽤]已知等⽐数列{an}的前n项和Sn=32n-1+r,则r的值为( )A.B.-c.D.-[解析]B 当n=1时,a1=S1=3+r;当n≥2时,an=Sn-Sn-1=32n-1-32n-3=32n-3(32-1)=8?32n-3=8?32n-2?3-1=?9n-1.∵数列{an}为等⽐数列,∴3+r=,∴r=-,故选B.例3[配例2使⽤]在等⽐数列{an}中,已知a1+a2+a3=1,a2+a3+a4=2,则a8+a9+a10= .[答案]128[解析]设数列{an}的公⽐为q.∵a1+a2+a3=1,a2+a3+a4=(a1+a2+a3)q=2,∴q=2,∴a8+a9+a10=(a1+a2+a3)q7=27=128.例4 [配例3使⽤]在等差数列{an}中,其前n项和为Sn,若2(a1+a4+a7)+3(a9+a11)=24,则S13+2a7=( )A.17B.26c.30D.56[解析]c 设等差数列{an}的公差为d,由等差数列的性质可得a1+a7=2a4,a9+a11=2a10,则有6a4+6a10=24,即a1+6d=2,所以S13=13a1+d=13(a1+6d)=26,2a7=2(a1+6d)=4,所以S13+2a7=30.例5 [配例4使⽤]已知各项都是正数的等⽐数列{an}的公⽐q≠1,且a2,a3,a1成等差数列,则的值为( )A.B.c.D.或[解析]B 由题得a3×2=a2+a1,∴a1q2=a1q+a1,∴q=,∴==q2=.。
2019年高考数学试题分项版—数列(解析版)

2019年高考数学试题分项版——数列(解析版)一、选择题1.(2019·全国Ⅲ文,6)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.2.(2019·浙江,10)设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n ∈N *,则( )A .当b =12时,a 10>10 B .当b =14时,a 10>10 C .当b =-2时,a 10>10 D .当b =-4时,a 10>10 答案 A解析 当b =12时,因为a n +1=a n 2+12,所以a 2≥12,又a n +1=a n 2+12≥√2a n ,故a 9≥a 2×(√2)7≥12×(√2)7=4√2,a 10>a 92≥32>10.当b =14时,a n +1-a n =(a n −12)2,故当a 1=a =12时,a 10=12,所以a 10>10不成立.同理b =-2和b =-4时,均存在小于10的数x 0,只需a 1=a =x 0,则a 10=x 0<10,故a 10>10不成立.3.(2019·全国Ⅰ理,9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n答案 A解析 设等差数列{a n }的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2, ∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5, S n =na 1+n (n−1)2d =n 2-4n .故选A.4.(2019·全国Ⅲ理,5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4. 二、填空题1.(2019·全国Ⅰ文,14)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.答案 58解析 设等比数列的公比为q , 则a n =a 1q n -1=q n -1. ∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34, 即4q 2+4q +1=0,∴q =-12,∴S 4=1×[1−(−12)4]1−(−12)=58.2.(2019·全国Ⅲ文,14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________. 答案 100解析 ∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7−a 37−3=13−54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.3.(2019·江苏,8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________. 答案 16解析 方法一 设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )(a 1+4d )+a 1+7d =a 12+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.方法二 ∵S 9=a 1+a 92×9=27,∴a 1+a 9=6, ∴a 2+a 8=2a 5=6, ∴a 5=3,则a 2a 5+a 8=3a 2+a 8=0, 即2a 2+6=0, ∴a 2=-3,则a 8=9,∴其公差d =a 8−a 58−5=2,∴a 1=-5,∴S 8=8×a 1+a82=16.4.(2019·全国Ⅰ理,14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q ,因为a 42=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1−q 5)1−q=13×(1−35)1−3=1213.5.(2019·全国Ⅲ理,14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则s 10s 5=________.答案 4解析 设等差数列{a n }的公差为d ,由a 2=3a 1, 即a 1+d =3a 1,得d =2a 1,所以s 10s 5=10a1+10×92d 5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.6.(2019·北京理,10)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 .【思路分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,能求出14a =-,1d =,由此能求出5a 的n S 的最小值.【解析】:设等差数列{}n a 的前n 项和为n S ,23a =-,510S =-,∴113545102a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得14a =-,1d =,5144410a a d ∴=+=-+⨯=, 21(1)(1)19814()22228n n n n n S na d n n --=+=-+=--, 4n ∴=或5n =时,n S 取最小值为4510S S ==-.故答案为:0,10-.【归纳与总结】本题考查等差数列的第5项的求法,考查等差数列的前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查推理能力与计算能力,属于基础题. 三、解答题1.(2019·全国Ⅰ文,18)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5,即9a 5=-a 5,所以a5=0,得a1+4d=0.由a3=4得a1+2d=4.于是a1=8,d=-2.因此{a n}的通项公式为a n=10-2n,n∈N*.(2)由(1)得a1=-4d,故a n=(n-5)d,.S n=n(n−9)d2由a1>0知d<0,≥(n-5)d,化简得故S n≥a n等价于n(n−9)d2n2-11n+10≤0,解得1≤n≤10,所以n的取值范围是{n|1≤n≤10,n∈N*}.2.(2019·全国Ⅱ文,18)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.3.(2019·北京文,16)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.解(1)设{a n}的公差为d.因为a1=-10,所以a2=-10+d,a3=-10+2d,a4=-10+3d.因为a2+10,a3+8,a4+6成等比数列,所以(a3+8)2=(a2+10)(a4+6).即(-2+2d)2=d(-4+3d).解得d=2.所以a n=a1+(n-1)d=2n-12.(2)由(1)知,a n=2n-12.则当n≥7时,a n>0;当n≤6时,a n≤0.所以S n 的最小值为S 5=S 6=-30.4.(2019·天津文,18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,q >0. 依题意,得{3q =3+2d ,3q 2=15+4d ,解得{d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =[n ×3+n(n−1)2×6]+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1 =-3(1−3n )1−3+n ×3n +1=(2n−1)3n+1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n−1)3n+1+32=3(n−1)3n+2+6n 2+92(n ∈N *).5.(2019·浙江,20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.(1)解 设数列{a n }的公差为d ,由题意得 a 1+2d =4,a 1+3d =3a 1+3d , 解得a 1=0,d =2. 从而a n =2n -2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列得(S n +1+b n )2=(S n +b n )(S n +2+b n ).解得b n =1a (S n+12-S n S n +2).所以b n =n 2+n ,n ∈N *.(2)证明 c n =√a n 2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N *.我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立; ②假设n =k (k ∈N *,k ≥1)时不等式成立,即 c 1+c 2+…+c k <2√k . 那么,当n =k +1时,c 1+c 2+…+c k +c k +1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k=2√k +2(√k +1-√k )=2√k +1.即当n =k +1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.6.(2019·江苏,20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n -2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.(1)证明 设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3−4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2−4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)解 ①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由2S n=2b n-2bn+1,得S n =b nb n+12(b n+1−b n ),当n ≥2时,由b n =S n -S n -1, 得b n =b nb n+12(b n+1−b n)-b n−1bn2(b n−b n−1), 整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n (n ∈N *). ②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以q k -1≤k ≤q k ,其中k =1,2,3,…,m . 当k =1时,有q ≥1; 当k =2,3,…,m 时,有lnk k≤ln q ≤lnkk−1.设f (x )=lnx x(x >1),则f ′(x )=1−lnx x 2(x >1).令f ′(x )=0,得x =e ,列表如下:因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q =√33,当k =1,2,3,4,5时,lnk k≤ln q ,即k ≤q k ,经检验知q k -1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.7.(2019·全国Ⅱ理,19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n−1,,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12.8.(2019·北京理,20)(13分)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列. (Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.【思路分析】()1I ,3,5,6.答案不唯一.()II 考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,可得0n a >该数列的第p 项0m a ,即可证明结论.()III 考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列,这与长度为s 的递增子列末项的最小值为21s -矛盾,可得2s 必在21s -之前.继续考虑末项为21s +的长度为1s +的递增子列.因此对于数列21n -,2n ,由于2n 在21n -之前,可得研究递增子列时,不可同时取2n 与21n -,即可得出:递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.可得2,1,4,3,6,5,⋯⋯,是唯一构造. 【解析】:()1I ,3,5,6.()II 证明:考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,∴0n a >该数列的第p 项0m a , ∴00m n a a <.()III 解:考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列, 这与长度为s 的递增子列末项的最小值为21s -矛盾,2s ∴必在21s -之前. 继续考虑末项为21s +的长度为1s +的递增子列.对于数列21n -,2n ,由于2n 在21n -之前,∴研究递增子列时,不可同时取2n 与21n -, 对于1至2s 的所有整数,研究长度为1s +的递增子列时,第1项是1与2二选1,第2项是3与4二选1,⋯⋯,第s 项是21s -与2s 二选1,故递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.2∴,1,4,3,6,5,⋯⋯,是唯一构造. 即221k a k =-,212k a k -=,*k N ∈.【归纳与总结】本题考查了数列递推关系、数列的单调性,考查了逻辑推理能力、分析问题与解决问题的能力,属于难题.9.(2019·天津理,19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (ⅰ)求数列{a 2n (c 2n -1)}的通项公式;(ⅱ)求(n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 依题意得{6q =6+2d ,6q 2=12+4d ,解得{d =3,q =2,所以a n =a 1+(n -1)d =4+(n -1)×3=3n +1, b n =b 1·q n -1=6×2n -1=3×2n .所以{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)(ⅰ)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ⅱ)a i c i =[a i +a i (c i -1)] =a i +a 2i (c 2i -1)=[2n ×4+2n (2n −1)2×3]+(9×4i -1) =(3×22n -1+5×2n -1)+9×4(1−4n )1−4-n=27×22n -1+5×2n -1-n -12(n ∈N *).。
2019年高考数学等比数列(文科)含解析

Tn= ·3n+1+ + .
一、选择题
1.(2018·四川成都南充高中模拟)已知等比数列的前3项为x,3x+3,6x+6,则其第4项的值为()
A.-24 B.-24或0
C.12或0 D.24
答案:A
解析:由x,3x+3,6x+6成等比数列,得(3x+3)2=x(6x+6).解得x1=-3或x2=-1(此时a2=a3=0,不合题意,舍去).故这个等比数列的首项为-3,公比为2,所以an=-3·2n-1,所以数列的第4项为a4=-24.故选A.
7.(2018·河南百校质检)在各项均为正数的等比数列{an}中,若2a4+a3-2a2-a1=8,则2a5+a4的最小值为()
A.12 B.12
C.12 D.16
答案:C
解析:因为2a4+a3-2a2-a1=8,所以由题意知等比数列{an}中,an>0,且公比q>0,且2a1q3+a1q2-2a1q-a1=8,所以a1(2q+1)= (q>1),所以2a5+a4=a1q3(2q+1)= = ,设 =x(0<x<1),引入函数y= - =x-x3,由y′=1-3x2=0,得x=- (舍去)或x= .所以当x∈ 时,y′>0;当x∈ 时,y′<0.所以函数y=x-x3的减区间为 ,增区间为 .所以当x= 时,函数有最大值ymax= ,所以2a5+a4的最小值为 =12 .
11.(2018·衡水一模)已知在数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1+|b2|+…+|bn|=________.
答案:4n-1
解析:由题意知,q=a2-a1=-4,b1=a2=-3,所以|bn|=|-3×(-4)n-1|=3·4n-1,所以|b1|+|b2|+…+|bn|=3+3×4+3×42+…+3×4n-1=3× =4n-1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643培优点十 等差、等比数列1.等差数列的性质例1:已知数列{}n a ,{}n b 为等差数列,若117a b +=,3321a b +=,则55a b +=_______ 【答案】35【解析】∵{}n a ,{}n b 为等差数列,∴{}n n a b +也为等差数列, ∴()()()3311552a b a b a b +=+++,∴()()553311235a b a b a b +=+-+=.2.等比数列的性质例2:已知数列{}n a 为等比数列,若4610a a +=,则()713392a a a a a ++的值为( ) A .10 B .20 C .100 D .200【答案】C【解析】与条件4610a a +=联系,可将所求表达式向4a ,6a 靠拢,从而()()22271339717339446646222a a a a a a a a a a a a a a a a a ++=++=++=+,即所求表达式的值为100.故选C .3.等差、等比综合例3:设{}n a 是等差数列,{}n b 为等比数列,其公比1q ≠,且()01,2,3,,i b i n >=L ,若11a b =,1111a b =,则有( ) A .66a b = B .66a b > C .66a b < D .66a b >或66a b <【答案】B【解析】抓住1a ,11a 和1b ,11b 的序数和与6a ,6b 的关系,从而以此为入手点. 由等差数列性质出发,11a b =,1111111111a b a a b b =⇒+=+, 因为11162a a a +=,而{}n b 为等比数列,联想到111b b ⋅与6b 有关,所以利用均值不等式可得:11162b b b +>=;(1q ≠故111b b ≠,均值不等式等号不成立)所以1111116622a a b b a b +=+⇒>.即66a b >.故选B .一、单选题1.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤.”( ) A .6斤 B .7斤 C .8斤 D .9斤【答案】D【解析】原问题等价于等差数列中,已知14a =,52a =,求234a a a ++的值. 由等差数列的性质可知:24156a a a a +=+=,15332a a a +==, 则2349a a a ++=,即中间三尺共重9斤.故选D .2.设n S 为等差数列{}n a 的前n 项和,若540S =,9126S =,则7S =( ) A .66 B .68C .77D .84【答案】C【解析】根据等差数列的求和公式53540S a ==,959126S a ==,化简得35814a a =⎧⎨=⎩,根据等差数列通项公式得1128414a d a d +=⎧⎨+=⎩,解方程组得123a d =⎧⎨=⎩,()()741773723377S a a d ==+=⨯+⨯=.故选C .3.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值为( ) A .4 B .2 C .2- D .4-【答案】C对点增分集训畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643【解析】根据题意,当1n =时,11224S a λ==+,故当2n ≥时,112n n n n a S S --=-=, ∵数列{}n a 是等比数列,则11a =,故412λ+=;解得2λ=-.故选C . 4.已知等差数列{}n a 的前n 项和为n S ,5714a a +=,则11S =( ) A .140 B .70 C .154 D .77【答案】D【解析】等差数列{}n a 的前n 项和为n S ,5714a a +=, ∴57111111411111177222a a a a S ++=⋅=⋅=⋅=.故选D . 5.已知数列{}n a 是公比为q 的等比数列,且1a ,3a ,2a 成等差数列,则公比q 的值为( ) A .12-B .2-C .1或12-D .1-或12【答案】C【解析】由题意知:3122a a a =+,∴21112a q a q a =+,即221q q =+, ∴1q =或12q =-.故选C .6.公比不为1的等比数列{}n a 的前n 项和为n S ,且12a -,212a -,3a 成等差数列,若11a =,则4S =( ) A .5- B .0C .5D .7【答案】A【解析】设{}n a 的公比为q ,由12a -,212a -,3a 成等差数列,可得2132a a a -=-+,若11a =,可得22q q -=-+,解得()21q =-舍去,则()()()44141125112a q S q---===----,故选A .7.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=L ( ) A .12 B .10 C .8D .32log 5+【答案】B【解析】由等比数列的性质结合题意可知:56479a a a a ==,且110293847569a a a a a a a a a a =====, 据此结合对数的运算法则可得:()53132310312103log log log log log 910a a a a a a +++===L L .故选B .8.设公差为2-的等差数列{}n a ,如果1479750a a a a +++=+L ,那么36999a a a a ++++L 等于( ) A .182- B .78- C .148- D .82-【答案】D【解析】由两式的性质可知:36999147972222a a a a a d a d a d a d +++⋅⋅⋅+=++++++⋅⋅⋅++, 则36999506682a a a a d +++⋅⋅⋅+=+=-.故选D .9.已知等差数列{}n a 的前n 项和为n S ,且133215S S -=,则数列{}n a 的第三项为( ) A .3 B .4- C .5- D .6【答案】C【解析】设等差数列{}n a 的公差为d ,∵133215S S -=,∴()112312321536a a a a a a ++==--,∴1325a d a +=-=.故选C . 10.等差数列{}n a 的前n 项和为n S ,若81026a a =+,则11S =( ) A .27 B .36 C .45 D .66【答案】D【解析】∵81026a a =+,∴610106a a a +=+,∴66a =,∴()1111161111662a a S a +===,故选D .11.设{}n a 是各项为正数的等比数列,q 是其公比,n K 是其前n 项的积,且56K K <,678K K K =>,则下列结论错误..的是( ) A .01q << B .71a =C .95K K >D .6K 与7K 均为n K 的最大值【答案】C畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643【解析】设等比数列11n n a a q-=,n K 是其前n 项的积,所以()121n n n n K a q -=,由此55611K K a q <⇒<,66711K K a q =⇒=,77811K K a q >⇒>所以6711a a q ==,所以B 正确,由511a q <,各项为正数的等比数列,可知01q <<,所以A 正确,611a q =,()121n n n n K a q-=可知()()113221n n n n n n K a qq--==,由01q <<,所以x q 单调递减,()n n 132-在6n =,7时取最小值,所以n K 在6n =,7时取最大值,所以D 正确.故选C .12.定义函数()f x 如下表,数列{}n a 满足()1n n a f a +=,n *∈N ,若12a =,则1232018a a a a ++++=L ( )A .7042B .7058C .7063D .7262【答案】C【解析】由题设知()13f =,()25f =,()34f =,()46f =,()51f =,()62f =, ∵12a =,()1n n a f a +=,n *∈N ,∴12a =,()225a f ==,()351a f ==,()413a f ==, ()534a f ==,()646a f ==,()762a f ==……,∴{}n a 是周期为6的周期数列, ∵201833662=⨯+,∴()1232018336123456257063a a a a ++++=⨯+++++++=L ,故选C .二、填空题13.已知等差数列{}n a ,若2376a a a ++=,则17a a +=________【答案】4【解析】∵2376a a a ++=,∴1396a d +=,∴132a d +=,∴42a =,∴17424a a a +==.故答案为4.14.已知等比数列{}n a 的前n 项和为n S,若公比q =1231a a a ++=,则12S 的值是___________. 【答案】15【解析】已知1231a a a ++=,则()313111a q S q-==-,又q =11a q =-;∴()()()12121121111511q a q S qq---===--.15.设n S 是等差数列{}n a 的前n 项和,若53109a a =,则95SS =_______. 【答案】2【解析】()()19955315992552a a S a S a a a +==+,又53109a a =,代入得95910259S S =⨯=.16.在等差数列{}n a 中,14101619100a a a a a ++++=,则161913a a a -+的值是_______. 【答案】20【解析】根据等差数列性质14101619105100a a a a a a ++++==,所以1020a =, 根据等差数列性质,1619131613191910191020a a a a a a a a a a -+=+-=+-==.三、解答题17.已知数列{}n a 中,12a =,12n n a a +=. (1)求n a ;(2)若n n b n a =+,求数列{}n b 的前5项的和5S . 【答案】(1)2n n a =;(2)77. 【解析】(1)12a =,12n n a a +=,畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643则数列{}n a 是首项为2,公比为2的等比数列,1222n n n a -=⨯=; (2)2n n n b n a n =+=+,()()()()()234551222324252S =+++++++++ ()()23451234522222=+++++++++()515522277212+⨯-⨯=+=-.18.设{}n a 是等差数列,其前n 项和为()*n S n ∈N ;{}n b 是等比数列,公比大于0,其前n 项和为()*n T n ∈N .已知11b =,322b b =+,435b a a =+,5462b a a =+. (1)求n S 和n T ;(2)若()124n n n n S T T T a b ++++=+L ,求正整数n 的值. 【答案】(1)()12n n n S +=,21n n T =-;(2)4.【解析】(1)设等比数列{}n b 的公比为q ,由11b =,322b b =+,可得220q q --=. 因为0q >,可得2q =,故12n n b -=.所以122112nn n T -==--.设等差数列{}n a 的公差为d . 由435b a a =+,可得134a d +=.由5462b a a =+得131316a d +=,从而11a =,1d =, 故n a n =,所以()12n n n S +=.(2)由(1),有()()112122122221222n n n n n T n T T n ++++⨯-=+++-=-=---L L .由()124n n n n S T T T a b ++++=+L ,可得()1112222n n n n n n ++++--=+,整理得2340n n --=,解得1n =-(舍),或4n =. 所以n 的值为4.。