第07讲(三次函数的导数问题)(原卷版)
人教版七下数学第07讲 实数中蕴含的数学思想及实数大小比较技巧(学生版)

第07讲 实数中蕴含的数学思想及实数大小比较技巧(原卷版) 第一部分 专题典例剖析+针对训练专题1特殊到一般的思想专题解读:各种特殊情形往往包含着一般性的规律,我们常常通过研究特殊情形时问题的答案或解法,然后猜想、归纳出一般性的规律,并把这个规律运用到一般情形.例如我们通过研究一些正数、0、负数的平方根或立方根,从而归纳、总结出平方根、立方根的性质.典例1 请你观察下列计算过程:因为112=121,所以121=11;用样,因为1112=12321,所以12321=111;…;由此猜想76543211234567898=________.针对训练11.观察下面的式子:√1+13=2√13,√2+14=3√14,√3+15=4√15⋯请你将猜想到的规律用含正整数n (n >1)的式子表示出来是 .专题2 转化思想专题解读:转化思想就是将一个待解决的问题A ,转化为另一个较容易解决或已经解决的问题B ,从而获得问题A 的答案.转化思想是数学中的核心思想.如:求一个负数的立方根转化为求一个正数立方根的相反数,求无理数的混合运算可以通过取近似数转化为有理数的运算,比较两个同次根无理数的大小可以转化为比较两个有理数的大小.典例2 (2021秋•信都区期中)比较大小:−√13和−√25.针对训练22.(2021秋•榆阳区校级月考)通过估算比较√6+12与32的大小?专题3 分类思想专题解读:当一个问题包含有多种情形时,需要逐一讨论,然后汇总得出问题的答案.如在本章中对实数进行分类时,如果按不同的标准,就有不同的分类方法.实数⎩⎨⎧无理数有理数, 实数⎪⎩⎪⎨⎧负实数正实数0.典例3 求方程(21x -3)2=9中x 的值.针对训练33.求x 的值:4(x ﹣1)2=25.专题4 数形结合思想专题解读:“数”与“形”是对立统一的,借助于数轴,可以把抽象的无理数或实数直观地表示出来,达到“以形启数”、“以数助形”的目的.典例4 实数a 、b 在数轴上的位置如图6-1所示,请化简|a +b|+2)(a b -.图6-1针对训练44.(2021秋•福田区校级期末)a 、b 、c 在数轴上的位置如图所示,则:(1)用“<、>、=”填空:﹣b > 0,b ﹣a > 0,a ﹣c < 0;(2)化简:|﹣b |﹣|b ﹣a |+|a ﹣c |.5.(2021春•崇川区校级月考)已知点A 、B 、C 在数轴上表示的数a 、b 、c 的位置如图所示: 化简:√b 33−√a 2−|b +c |+√(a −b −c)2.专题5 实数的大小比较在比较两个实数大小时候,要根据题目的特点,选用不同的方法,下面给出几种常见的比较方法. 方法一、绝对值比较法典例5 比较-6与-3的大小.典例6 当0<x <1时,x 2,x ,x1从小到大的顺序是 .方法三、取近似值法 典例7 比较-417和3π-的大小. 方法四、平方法典例8 比较35和8的大小方法五、放缩法典例9 比较27+与257-的大小.针对训练56.(2021秋•双牌县期末)比较大小:6√3 7√2(填>,<,=).7.(2021秋•南京期末)比较大小:√3 √2+1.(填“>”、“<”或“=”).8.(2021秋•鼓楼区期末)比较大小:√13−1 3(填“>”、“<”或“=”).9.(2012春•淮北校级月考)规定一种新运算:a △b =a •b ﹣a +1,如3△4=3×4﹣3+1,请比较﹣3△√2与√2△(﹣3)的大小.。
(完整版)专题三导数与三次函数

7 ∴33332222mamambbmmccm 由155fabc ∴32532mmm 6m ∴23ma,39,2122mbcm 2、若函数32111132fxxaxax在区域1,4内为减函数,在区间6,上为增函数,试求实数a的取值范围。(2004全国卷) 解:21fxxaxa 令0fx解得11x,21xa ①当11a即2a时,fx在1,上为增函数,不合题意 ②当11a即2a时,函数fx在,1上为增函数,在1,1a内为减函数,在1,a上为增函数,依题意应有: 当1,4x时,0fx,当6,x时,0fx 所以416a,解得 57a 综上,a的取值范围是5,7 3、已知函数323fxaxbxx在1x处取得极值, ⑴讨论1f和1f是函数fx的极大值还是极小值; ⑵过点0,16A作曲线yfx的切线,求此切线方程。(2004天津)
3 x ,1 -1 (-1,1) 1 1, fx + 0 - 0 + ()fx 极大值 极小值 ∴()fx的单调递增区间是,1和1, ()fx的单调递减区间是1,1 当1x时,fx有极大值311312faa 当1x时,fx有极小值311312faa 要使()fx有一个零点,需且只需2020aa,解得2a 要使()fx有二个零点,需且只需2020aa,解得2a 要使()fx有三个零点,需且只需2020aa,解得22a 变式五、已知函数33,0fxxxa,如果过点,2Aa可作曲线yfx的三条切线,求a的取值范围 解:设切点为00,xy,则233fxx ∴切线方程000yyfxxx 即 2300332yxxx ∵切线过点A,2a ∴23002332xax 即 320023320xaxa ∵过点,2Aa可作yfx的三条切线 ∴方程有三个相异的实数根
2023年上海高考数学满分复习攻略第07讲 三角函数图像与性质(解析版)

第07讲 三角函数图像与性质【考点梳理】一、 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin x y =cos x y =tan x图象定义域 R R{x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数奇函数递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2递减区间⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无对称中心(k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0对称轴方程 x =k π+π2x =k π 无二、 函数y =A sin(ωx +φ)的图象与性质1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示.x -φω-φω+π2ωπ-φω3π2ω-φω 2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A2.函数y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时振幅 周期 频率 相位 初相A T =2πω f =1T =ω2πωx +φ φ3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径4.三角函数应用(1)用正弦函数可以刻画三种周期变化的现象:简谐振动(单摆、弹簧等),声波(音叉发出的纯音),交变电流.(2)三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f (x )=A sin(ωx +φ)+k 中的待定系数.(3)把实际问题翻译为函数f (x )的性质,得出函数性质后,再把函数性质翻译为实际问题的答案.【解题方法和技巧】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.4.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 5.由图象确定函数解析式解决由函数y =A sin(ωx +φ)的图象确定A ,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准第一个“零点”和第二个“零点”的位置.要善于抓住特殊量和特殊点.【考点剖析】【考点1】正切函数一、单选题1.(2021·上海·闵行中学高三期中)下列函数中,既是奇函数又在定义域上是增函数的是( ) A .sin y x = B .tan y x =C .e x y =D .32y x x =+【答案】D【分析】根据基本初等函数的单调性以及单调性的性质、函数奇偶性的定义逐一判断四个选项的正误即可得正确选项.【详解】对于A :sin y x =为奇函数,在定义域上有增有减,不是增函数,故选项A 不正确;对于B :tan y x =为奇函数,在πππ,π22k k ⎛⎫-++ ⎪⎝⎭()k ∈Z 上单调递增,但在定义域上不是增函数,故选项B不正确;对于C :e x y =既不是奇函数也不是偶函数,故选项C 不正确;对于D :()()()3322f x x x x x f x -=--=-+=-,所以32y x x =+是奇函数,因为3y x =和2y x =都是R 上的增函数,所以32y x x =+在定义域上是增函数,故选项D 正确; 故选:D.2.(2021·上海市进才中学高三期中)下列函数中,值域为()0,∞+的是( ) A .4x y =B .32y x =C .tan y x =D .cos y x =【答案】A 【分析】逐一进行验证,可判断结果. 【详解】对A ,函数4x y =的值域为()0,∞+;对B ,函数32y x =的值域为[)0,+∞; 对C ,函数tan y x =的值域为R ; 对D ,函数cos y x =的值域为[]1,1- 故选:A3.(2022·上海·高三专题练习)在平面直角坐标系中,角θ(32ππθ<<)的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过函数()2x f x =-与12()log ()g x x =--的交点,角(0,)4πα∈,则( )A .1cot()θα-<+<B .1tan()θα-<+<C .1cos()θα-<+<D .1sin()θα-<+<【答案】D【分析】首先函数特征判断函数()f x 和()g x 互为反函数,所以可判断54πθ=,再计算53,42ππθα⎛⎫+∈ ⎪⎝⎭,再判断函数值的范围,判断选项.【详解】因为122()2()log ()log (),xf xg x x x =-=--=-互为反函数,其交点在y x =上,又32ππθ<<,所以54πθ=,而0,4πα⎛⎫∈ ⎪⎝⎭,所以53,42ππθα⎛⎫+∈ ⎪⎝⎭,所以()()tan()1,,cot()0,1,sin()1,θαθαθα⎛+∈+∞+∈+∈- ⎝⎭. 故选:D.【点睛】关键点点睛:本题考查函数性质与三角函数的综合应用,本题的关键是判断函数()f x 和()g x 互为反函数,从而确定角θ的大小. 二、填空题4.(2022·上海·高三专题练习)若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x 都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.【分析】根据题设凸函数的性质可得1(sin sin sin )sin()33A B CA B C ++++≤即可求最大值,注意等号成立条件.【详解】由题设知:1(sin sin sin )sin()sin 333A B C A B C π++++≤==∴sin sin sin A B C ++≤3A B C π===时等号成立.5.(2022·上海·高三专题练习)函数πtan 2y x =的最小正周期为___________. 【答案】2【分析】根据正切函数的周期性进行求解即可.【详解】解:πtan 2y x =的周期为π2π2T ==,故答案为:26.(2022·上海·高三专题练习)已知函数tan 6y x πω⎛⎫ ⎪⎝+⎭=的图象关于点,03π⎛⎫ ⎪⎝⎭对称,且1ω≤,则实数ω的值为___________. 【答案】12-或1【分析】根据正切函数的性质,代入点,03π⎛⎫⎪⎝⎭,求解参数ω的值.【详解】∵函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图象关于点,03π⎛⎫⎪⎝⎭对称,且1ω≤,∴36k ππωπ⨯+=,k ∈Z ,或362k πππωπ⨯+=+,k ∈Z则令0k =,可得实数12ω=-或1ω=,故答案为:12-或1.【考点2】三角函数图像与性质一、单选题1.(2022·上海市实验学校模拟预测)已知以4为周期的函数()(](]1,1cos ,1,32x f x xx π⎧∈-⎪=⎨-∈⎪⎩,其中0m >.若方程()3xf x =恰有5个实数解,则m 的取值范围为( ) A.8)3 B. C .48(,)33D.4(3【答案】B【分析】作出函数()f x 和3x y =的图象,要想使方程()3xf x =恰有5个实数解,则需直线3x y =处在函数()f x 在(3,4)内的曲线切线和()8f 之间.【详解】解:作出函数()f x 和()3xy g x ==的图象如图:若方程()3x f x =恰有5个实数解, 则直线3xy =处在函数()f x 在(3,4)内的曲线切线和()8f 之间. 函数()f x 是周期为4的周期函数, ∴()()80f f m ==,此时8()3g x =.()61f =,()()626g f =>,∴此时两个函数不相交.当(3x ∈,5]时,4(1x -∈-,1],2()(4)1(4)f x f x m x ∴=-=--(3x ∈,5].由21(4)3x m x --,得22222(91)721350m x m x m +-+=, 则由0∆=,得22222(72)4(91)1350m m m --+⨯=, 整理得213515819m ==,解得15m = 当(7x ∈,9]时,8(1x -∈-,1],2()(8)1(8)f x f x m x ∴=-=--(7x ∈,9]. 即2221(8)y x m --=,将3x y =代入整理得222(8)19x x m -+=,即221(1)166309x x m+-+=, 由判别式221164(1)6309m ∆=-+⨯<得7m <∴要使方程()3x f x =恰有5个实数解,则1573m <<, 即m 的取值范围为15,73⎛⎫⎪ ⎪⎝⎭,故选:B .2.(2021·上海·模拟预测)函数()()sin2cos f x x x θ=-+在()0,2π上的零点个数记为()g θ,若π02θ≤≤,则()g θ的最大值与最小值之和为( ) A .7 B .8 C .9 D .10【答案】A【分析】函数()()sin2cos f x x x θ=-+在()0,2π上的零点个数即为函数sin 2y θ=与()cos y x θ=+的交点个数,()cos y x θ=+是由cos y x =向左平移θ个单位得到的, 可得当0θ=时,()g θ最大;当π2θ=时,()g θ最小,即可求解. 【详解】令()()sin 2cos 0f x x x θ=-+=,解得()sin 2cos x x θ=+,()f x 的零点个数可看成sin 2y θ=与()cos y x θ=+的交点个数,()cos y x θ=+是由cos y x =向左平移θ个单位得到的,因为π02θ≤≤,所以当0θ=时,交点个数最多,由sin 2cos x x =, 即2sin cos cos x x x =,所以cos 0x =或1sin 2x =, 解得:1π2x =,23π2x =,3π6x =,45π6x =, 所以()()max 04g g θ==,当π2θ=时,交点个数最少,πsin 2cos sin 2x x x ⎛⎫=+=- ⎪⎝⎭,即2sin cos sin x x x =-,所以1cos 2x =-或sin 0x =,解得:5πx =,62π3x =,74π3x =, 所以()min π32g g θ⎛⎫== ⎪⎝⎭,故()g θ的最大值与最小值之和为437+=,故选:A.3.(2022·上海·模拟预测)已知函数()sin cos f x a x b x =-(a 、b 为常数0a ≠,x ∈R )在π4x =处取得最小值,则函数3π()4f x -是( ) A .偶函数,且图象关于点(π,0)对称 B .偶函数,且图象关于点3π(,0)2对称 C .奇函数,且图象关于点3π(,0)2对称 D .奇函数,且图象关于点(π,0)对称【答案】D【分析】由题意先求出()f x 的最简形式,再根据三角函数性质对选项逐一判断 【详解】22()sin cos )f x a x b x a b x ϕ=-++,若()f x 在4x π=处取得最小值,则πsin()14ϕ+=-,ϕ5π2π,Z 4k k =+∈,225π())4f x a b x =++,2222)3π3π()445π)4f b x a x x a b --++=+-, 可得函数3π()4f x -是奇函数,且图象关于点(π,0)对称. 故选:D4.(2021·上海市七宝中学模拟预测)函数()()30,0y x ωϕωϕπ=+><<为奇函数,A 、B 分别为函数图象上相邻的最高点与最低点,且AB 4=,则该函数的一条对称轴为( ) A .1x = B .2x =C .2x π=D .2x π=【答案】A【分析】由函数()f x 的基本性质可求得ϕ、ω的值,再利用正弦型函数的对称性可求得该函数的对称轴方程,即可得出合适的选项.【详解】因为函数()()0,0y x ωϕωϕπ+><<为奇函数,且0ϕπ<<,则2ϕπ=,所以,2y x x πωω⎛⎫+= ⎪⎝⎭,因为A 、B 分别为函数图象上相邻的最高点与最低点,且AB 4=,则(2216AB πω⎛⎫=+= ⎪⎝⎭,因为0>ω,可得2πω=,则()2x f x π=,由()Z 22xk k πππ=+∈,可得()21Z x k k =+∈,所以,该函数的一条对称轴为直线1x =. 故选:A.5.(2021·上海市建平中学高三期中)设函数()sin cos f x a x x =+(a 为常数),则“0a =”是“()f x 为偶函数”的( ) A .充分非必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件【答案】C【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】解:当0a = 时,()sin cos cos f x x x x a =+=, 所以()f x 为偶函数; 当()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,∴()sin()cos()sin +cos a f x x x a x x -=-+-=-,即sin cos sin +cos x x x x a a +=- ,得sin 0a x =对任意的x 恒成立,从而0a =.从而“0a =”是“()f x 为偶函数”的充分必要条件. 故选:C.6.(2020·上海·高三专题练习)已知函数tan y x ω=在,22ππ⎛⎫- ⎪⎝⎭内是严格减函数,则ω的取值范围是( )A .01ω<B .10ω-<C .1ωD .1ω-【答案】B【分析】根据正切函数的图象与性质,列出不等式组,即可求解. 【详解】因为函数tan y x ω=存在减区间,则0ω<由,22x ππ⎛⎫∈- ⎪⎝⎭,可得,22x ωπωπω⎛⎫∈- ⎪⎝⎭,由题意函数tan y x ω=在,22ππ⎛⎫- ⎪⎝⎭内是严格减函数,可得0ω<且满足2222ωππωππ⎧≥-⎪⎪⎨⎪-≤⎪⎩,解得10ω-<.故选:B.7.(2022·上海·高三专题练习)已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性 D .函数()f x 的值域为R【答案】B【解析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案.【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B8.(2022·上海浦东新·二模)将函数()sin2f x x =的图像向左平移4π个单位后,得到函数()g x 的图像,设,,A B C 为以上两个函数图像不共线的三个交点,则ABC 的面积不可能为( )A. BCD【答案】D【分析】先求得()g x 的解析式,在同一坐标系内作出()()f x g x 、图像,不妨取x 轴正半轴第一个交点为A ,第二个交点为B ,分别求得当C 位于不同位置时,ABC 的面积,根据规律,分析即可得答案.【详解】由题意得()sin 2sin 2cos 242g x x x x ππ⎡⎤⎛⎫⎛⎫=+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,在同一坐标系内作出()()f x g x 、图像,如下图所示令sin 2cos2x x =,解得,82k x k Z ππ=+∈, 不妨取x 轴正半轴第一个交点为A ,第二个交点为B , 所以252,,88A B ππ⎛⎛ ⎝⎭⎝⎭若C 点位于192,82C π⎛ ⎝⎭时,ABC 的面积1922288S ππ⎛⎫=⨯-= ⎪⎝⎭,故C 正确 当C 点位于2132,8C π⎛ ⎝⎭时,ABC 的面积113522288S ππ⎛⎫=⨯- ⎪⎝⎭, 当C 点位于31728C π⎛ ⎝⎭时,ABC 的面积11722288S πππ⎛⎫=⨯- ⎪⎝⎭,故B 正确, 因为312AC AC =,此时3ABC △为1ABC 面积的2倍, 以此类推,当C 位于不同位置时,ABC 2的整数倍,故A 正确,D 错误, 故选:D二、填空题9.(2021·上海崇明·一模)设函数()5sin 0,2f x x m x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的零点为123,,x x x ,若123,,x x x 成等比数列,则m =_______. 2【分析】将函数()5sin 0,2f x x m x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的零点转化为sin ,y x y m ==的交点横坐标,结合函数图像,列方程求出零点,进而可得m 的值. 【详解】令sin 0x m -=,得sin x m =则函数()5sin 0,2f x x m x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的零点即为sin ,y x y m ==的交点横坐标,如图:由图可知122321323x x x x x x x ππ+=⎧⎪+=⎨⎪=⎩,解得123143494x x x πππ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2sin4m π∴==210.(2021·上海·曹杨二中高三期中)设0>ω.若函数sin y x ω=在区间[],2ππ上恰有两个零点,则ω的取值范围是___________. 【答案】1ω=或322ω≤<或522ω<<. 【分析】由sin 0x ω=得,x k ωπ=则满足2,Z k k ωω≤≤∈的k 恰有两解,即求.【详解】由sin 0x ω=得,x k ωπ=即,Z k x k πω=∈,∵函数sin y x ω=在区间[],2ππ上恰有两个零点, ∴2,Z k k πππω≤≤∈,即满足2,Z k k ωω≤≤∈的k 恰有两解,又0>ω,所以k 取1,2或2,3或3,4,当k 取1,2时,01ω<≤且223ω≤<,即1ω=; 当k 取2,3时,12ω<≤且324ω≤<,即322ω≤<,当k 取3,4时,23ω<≤且425ω≤<,即522ω<<, 所以ω的取值范围是1ω=或322ω≤<或522ω<<. 故答案为:1ω=或322ω≤<或522ω<<.11.(2022·上海·高三专题练习)设函数()cos20y x x =≥和函数()cos100y x x =≥的图象的公共点的横坐标从小到大依次为1x ,2x ,…,n x ,若()34tan cos x x α-=,则sin 2α=___________.【答案】35【分析】利用余弦方程,解出x 的值,然后得到3π4x =,4π3x =,代入()34tan cos x x α-=,利用正切的两角差公式求出tan α的值,然后再利用二倍角公式以及“1”的代换,结合“弦化切”的方法,求解即可. 【详解】因为()cos2cos100x x x =≥,则有1022πx x k =+或1022πx x n +=,k ,n ∈N , 解得1π4x k =或π6n x =,k ,n ∈N , 又函数()cos20y x x =≥和函数()cos100y x x =≥的图象的公共点的横坐标从小到大依次为1x ,2x ,…,n x , 所以0x =,π6,π4,π3,π2,2π3,…,故3π4x =,4π3x =, 所以()34tan cos x x α-=,即ππtan cos 43α⎛⎫-= ⎪⎝⎭,则1tan 11tan 2αα-=+,解得1tan 3α=, 故2222sin cos 2tan 3sin 22sin cos sin cos tan 15ααααααααα====++.故答案为:35. 12.(2022·上海·模拟预测)给定曲线族()()24sin 2cos 68sin cos 10x y θθθθ-+-++=,θ为参数,则这些曲线在直线2y x =上所截得的弦长的最大值是_____【答案】【分析】联立求得交点的横坐标,利用弦长公式得到弦长,根据三角函数的有界性得到不等关系,求出82x -≤≤,从而求出弦长最大值.【详解】联立方程()()24sin 2cos 68sin cos 102x y y x θθθθ⎧-+-++=⎨=⎩,解得:0x =或8sin cos 12sin cos 3x θθθθ++=-+,所以弦长12d x =-=,由8sin cos 1,2sin cos 3x θθθθ++=-+得:(28)sin (1)cos 13x x x θθ--+=-,由辅助)13,x θϕ+=-13x ∴-26160x x +-≤,解得:82x -≤≤,所以8,x d ≤=≤即弦长的最大值是85 故答案为:8513.(2022·上海市奉贤中学高三阶段练习)已知0>ω,()()2sin 0f x x x πωω⎛⎫=≤≤ ⎪⎝⎭,()2,0A ,()2,1B ,()1,1C ,()1,2D ,()0,2E ,O 位坐标原点,()y f x =图像上的点都在折线OABCDEO 所围成的区域(包括边界)内,则ω的最小值为___________. 【答案】56π【分析】由函数图象在折线OABCDEO ,围成区域内,要使得ω最小,即周期最大,因此点(1,1)C 在函数图象上,代入求解即可得.【详解】要使得ω最小,即周期最大,因此点(1,1)C 在函数图象上,所以2sin 1ω=,1sin 2ω=, 又最大值是2,最高点在线段AD 上,因此点(1,1)C 在函数的递减区间上,所以56πω=. 故答案为:56π.14.(2022·上海·复旦附中模拟预测)如果存在正整数ω和实数ϕ使得函数()()2cos =+f x x ωϕ(ω,ϕ为常数)的图像如图所示(图像经过点()1,0),那么ω的值为______.【答案】2【分析】函数式降幂化为余弦的一次式,由(1)0f =得2k πωϕπ+=+,再由图象得周期T 满足423T <<,得出324ππω<<,结合*ω∈N ,可得ω的值. 【详解】21cos(22)()cos ()2x f x x ωϕωϕ++=+=,由图象可得1cos(22)(1)02f ωϕ++==,222k ωϕππ+=+,2k πωϕπ+=+①,3142TT ⎧>⎪⎨⎪<⎩,423T <<,42232πω<<,324ππω<<②. *ω∈N ,所以2ω=.故答案为:2.15.(2022·上海交大附中高三开学考试)在数列{}n a 中,11a =,n S 为{}n a 的前n 项和,关于x 的方程21cos 10n n x a x a +-++=有唯一解,若不等式()291nn n S ka +≥-,对任意的*N n ∈恒成立,则实数k 的取值范围为______ 【答案】297,4⎡⎤-⎢⎥⎣⎦【分析】设()21cos 1n n f x x a x a +=-++,分析可得()1010n n f a a +=+-=,求得n a n =,()12n n n S +=,对n分奇数和偶数两种情况讨论,结合参变量分离法可求得实数k 的取值范围.【详解】设函数()21cos 1n n f x x a x a +=-++,该函数的定义域为R ,因为()()()()2211cos 1cos 1n n n n f x x a x a x a x a f x ++-=---++=-++=,则函数()f x 为偶函数,因为方程()0f x =有唯一解,则()1010n n f a a +=+-=,所以,11n n a a +-=且11a =,故数列{}n a 是以1为公差和首项的等差数列, 故11n a n n =+-=,()12n n n S +=,由题意可得()291nn n kn ++≥-.若n 为奇数,则91k n n -≤++,因为9117n n ++≥=,当且仅当3n =时,等号成立, 所以,7k -≤,可得7k ≥-; 若n 为偶数,则91k n n ≤++,令91n b n n=++,则2152b =,4294b =,当4n ≥时,()()299991821122222n n b b n n n n n n n n +-=+++---=+-=-+++,()()221802n n n n +-=>+, 且数列{}n b 中的偶数项从4b 开始单调递增,因为42b b <,此时294k ≤. 综上所述,2974k -≤≤. 故答案为:297,4⎡⎤-⎢⎥⎣⎦.16.(2022·上海市光明中学模拟预测)设角数列{}n α的通项为()*21N n n n kπαϕ=-+∈,,其中k 为常数且02πϕ⎛⎫∈ ⎪⎝⎭,.若存在整数[]340k ∈,,使{}n α的前k 项中存在()i j i j αα≠,满足cos cos i j αα=,则ϕ的最大值为__________. 【答案】1939π【分析】由cos cos i j αα=确定i j αα,之间的关系,结合,i j 的范围求ϕ的最大值. 【详解】因为cos cos i j αα=,不妨设1,Z i j k i j ≤<≤∈,, 所以)=2(Z j i t t ααπ∈-或)=2(Z j i t t ααπ∈+, 所以()()22112j i t k k ππϕϕπ-+---=或()()22112j i t k kππϕϕπ-++-+=, 所以j i tk -=或()2j i t kπϕπ+-+=因为1i j k ≤<≤,Z t ∈,所以j i tk -≠, 所以()2j i t kπϕπ+-+=,因为1i j k ≤<≤,所以1223i j k ≤+-≤-所以1232i j k k k +-≤≤-,又02πϕ⎛⎫∈ ⎪⎝⎭,,Z t ∈ 所以12t ≤≤ 所以()22j i t j i t k k πϕππ+-⎛⎫=-+-=- ⎪⎝⎭,又02πϕ⎛⎫∈ ⎪⎝⎭, 若1t =,k 为偶数时,要使ϕ最大,则2i j +-最小,又02πϕ⎛⎫∈ ⎪⎝⎭,,所以122i j k +->,2Z i j +-∈所以当1212i j k +-=+时ϕ取最大值,最大值为2111912240k k k ϕπππ+⎛⎫⎛⎫=-=-≤ ⎪ ⎪⎝⎭⎝⎭若1t =,k 为奇数时,要使ϕ最大,则2i j +-最小,又02πϕ⎛⎫∈ ⎪⎝⎭,,所以122i j k +->,2Z i j +-∈所以当11222i j k +-=+时ϕ取最大值,ϕ最大值为11119122239k k k ϕπππ+⎛⎫⎛⎫=-=-≤ ⎪ ⎪⎝⎭⎝⎭, 同理可得若2t =,k 为偶数时,则ϕ的最大值为32111922240k k k ϕπππ+⎛⎫⎛⎫=-=-≤ ⎪ ⎪⎝⎭⎝⎭若2t =,k 为奇数时,则ϕ的最大值为311119222239k k k ϕπππ+⎛⎫⎛⎫=-=-≤ ⎪ ⎪⎝⎭⎝⎭又19193940ππ≥, 所以ϕ的最大值为1939π, 故答案为:1939π. 三、解答题17.(2021·上海市七宝中学模拟预测)已知函数()1sin 2212g x x x =+,函数()f x 与函数()g x 的图象关于原点对称. (1)求()y f x =的解析式;(2)求函数()f x 在[]0,π上的单调递增区间.【答案】(1)()sin 213f x x π⎛⎫=+- ⎪⎝⎭(2)单调递增区间是0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦【分析】(1)设点(),x y 是函数()y f x =的图象上任意一点,所以,点(),x y --在()y g x =的图象上,将点(),x y --的坐标代入函数()y g x =的解析式,可得出函数()y f x =的解析式;(2)化简函数解析式为()sin 213f x x π⎛⎫=+- ⎪⎝⎭,利用正弦型函数的单调性可求得函数()f x 在R 上的单调递增区间A ,将区间A 与区间[]0,π取交集可得结果.(1)解:设点(),x y 是函数()y f x =的图象上任意一点, 由题意可知,点(),x y --在()y g x =的图象上,于是有()()1sin 2212y x x -=--+,所以,()1πsin 221sin 2123f x x x x ⎛⎫=-=+- ⎪⎝⎭. (2)解:由(1)可知,()sin 213f x x π⎛⎫=+- ⎪⎝⎭,[]0,x π∈,记[0,]D π=,由()222Z 232k x k k πππππ-≤+≤+∈,解得()5Z 1212k x k k ππππ-≤≤+∈,记()5,Z 1212A k k k ππππ⎡⎤=-+∈⎢⎥⎣⎦,则70,,1212A D πππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 于是,函数()f x 在[]0,π上的单调递增区间是0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦.18.(2022·上海市实验学校模拟预测)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11C ︒,则在哪段时间实验室需要降温? 【答案】(1)4C ︒(2)在10时至18时实验室需要降温【分析】(1)先把解析式化简,得到()102sin()123f t t ππ=-+,利用三角函数的性质求出()f t 在[0,24)上取得最大值12,取得最小值8,即可求得;(2)依题意列不等式()11f t >,直接解得. (1)因为1()10sin )102sin()12212123f t t t t ππππ=-+=-+, 又024t ≤<,所以731233t ππππ≤+<,1sin()1123ππ-≤+≤t ,当2t =时,sin()1123t ππ+=;当14t =时,sin()1123t ππ+=-;于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12C ︒,最低温度为8C ︒,最大温差为4C ︒(2)依题意,当()11f t >时实验室需要降温.由(1)得()102sin()123f t t ππ=-+,所以102sin()11123t ππ-+>,即1sin()1232t ππ+<-,又024t ≤<,因此71161236t ππππ<+<,即1018t <<, 故在10时至18时实验室需要降温.19.(2022·上海市实验学校高三阶段练习)已知平面向量()()()sin π2,1,3,cos2a x b x =-=,函数()f x a b =⋅.(1)写出函数f (x )的单调递减区间;(2)设π()lim (02π)πnn nn g x x x ∞→+=<<+,求函数()y f x =与()y g x =图象的所有交点坐标.【答案】(1)减区间为π2ππ,π,Z 63k k k ⎡⎤++∈⎢⎥⎣⎦;(2)π17π23π,1,,0,,031212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎝⎭⎝⎭⎝⎭【分析】(1)根据平面向量数量积的坐标表示公式,结合辅助角公式、正弦型函数的单调性进行求解即可;(2)根据极限的运算性质,结合特殊角的正弦值进行求解即可. (1)()π3sin(π2)cos 22cos 22sin(2)6f x a b x x x x x =⋅=-+=+=+,当ππ3π2π22π(Z)262k x k k +≤+≤+∈时,函数单调递减, 解得:π2πππ(Z)63k x k k +≤+≤+∈, 因此函数f (x )的单调递减区间为π2ππ,π,Z 63k k k ⎡⎤++∈⎢⎥⎣⎦;(2)当0πx <<时,π1()lim lim 1π1()πn n n n n ng x x x ∞∞→+→+===++,即()ππ5ππ2sin(2)126663f x x x x =+=⇒+=⇒=,所以交点的坐标为π,13⎛⎫⎪⎝⎭; 当πx =时,π1()limππ2n n n n g x ∞→+==+,即()π12sin(2π)62f x =+=,方程无实根; 当π2πx <<时,1()lim1()πn n g x x ∞→+==+,即()ππ2sin(2)023π66f x x x =+=⇒+=,或π24π6x +=,解得17π12x =或23π12x =,即交点坐标为17π23π,0,,01212⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,综上所述:交点坐标为π17π23π,1,,0,,031212⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 20.(2022·上海交大附中模拟预测)已知函数()()1cos 2f x x g x f x ωϕ⎛⎫==+ ⎪⎝⎭,,其中[]0,2πϕ∈(1)若12ω=且直线π2x =是()g x 的一条对称轴,求()g x 的递减区间和周期;(2)若21π3ωϕ==,,求函数()()()h x f x g x =-在π0,2⎛⎫⎪⎝⎭上的最小值; 【答案】(1)3ππ4π,4π,22k k k Z ⎡⎤-++∈⎢⎥⎣⎦;4π,(2)14-【分析】(1)根据题设中的对称轴可得π2π,2k k Z ϕ=-∈,根据其范围可求其值,再根据公式和整体法可求周期及减区间.(2)利用三角变换和整体法可求函数的最小值.(1)可知11()cos 22g x x ϕ⎛⎫=+ ⎪⎝⎭,因为直线π2x =是()g x 图象的一条对称轴,故1π1π,222k k Z ϕ⨯+=∈,解得π2π,2k k Z ϕ=-∈,而[]0,2πϕ∈,故3π2ϕ=,则13()cos π24g x x ⎛⎫=+ ⎪⎝⎭,则周期2π4πT ω==,再令13π[2π,π2π],24x k k k Z +∈+∈,则3ππ4π,4π,22x k k k Z ⎡⎤∈-++∈⎢⎥⎣⎦,故()g x 的递减区间为3ππ4π,4π,22k k k Z ⎡⎤-++∈⎢⎥⎣⎦.(2)可知π()cos 3g x x ⎛⎫=+ ⎪⎝⎭ππ()cos()cos cos cos 3 3h x x x x x ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭211cos cos cos cos 22x x x x x x ⎛⎫== ⎪ ⎪⎝⎭11cos 2222x x +=⋅1π1sin 2264x ⎛⎫=--+ ⎪⎝⎭因为π0,2x ⎛⎫∈ ⎪⎝⎭,故ππ5π2,666x ⎛⎫-∈- ⎪⎝⎭,则在ππ262x -=即π3x =取()h x 最小值,其最小值为111244-+=-.【考点3】三角函数综合应用一、填空题1.(2022·上海闵行·二模)若函数cos y x x =+的图像向右平移ϕ个单位后是一个奇函数的图像,则正数ϕ的最小值为___________;【答案】π6【分析】先用辅助角公式得到πcos 2sin 6y x x x ⎛⎫=+=+ ⎪⎝⎭,求出平移后的解析式,根据奇偶性得到16k <,从而当0k =时,求出ϕ的最小值.【详解】πcos 2sin 6y x x x ⎛⎫=+=+ ⎪⎝⎭,向右平移ϕ个单位后解析式为()π2sin 6f x x ϕ⎛⎫=-+ ⎪⎝⎭,则要想使得()π2sin 6f x x ϕ⎛⎫=-+ ⎪⎝⎭为奇函数,只需ππ,6k k Z ϕ-+=∈,解得:ππ,6k k Z ϕ=-∈, 因为0ϕ>,所以ππ>06k -,k Z ∈,解得:16k <,k Z ∈,当0k =时,正数ϕ取得最小值,所以π6ϕ=. 故答案为:π62.(2020·上海·高三专题练习)方程2cot 1x =的解集是_________.【答案】,4x x k k Z ππ⎧⎫=±∈⎨⎬⎩⎭【分析】化简得到cot 1x =±,分别计算cot 1x =和cot 1x =-得到答案. 【详解】2cot 1x =,则cot 1x =±, 当cot 1x =时,4x k ππ=+,k Z ∈;当cot 1x =-时,4x k ππ=-,k Z ∈;故4x k ππ=±,k Z ∈.故答案为:,4x x k k Z ππ⎧⎫=±∈⎨⎬⎩⎭.【点睛】本题考查了解三角方程,意在考查学生的计算能力,漏解是容易发生的错误. 3.(2021·上海·南洋中学高三阶段练习)将函数()sin 2y x ϕ=+的图象向左平移4π个单位后得到得到函数图象关于点4,03π⎛⎫⎪⎝⎭成中心对称,那么ϕ的最小值为__________.【答案】6π【分析】首先确定平移后函数的解析式,然后结合三角函数的特征整理计算即可求得最终结果.【详解】由题意可知平移之后的函数解析式为:()sin 22cos 24y x x πϕϕ⎡⎤⎛⎫=++=+ ⎪⎢⎥⎝⎭⎣⎦,函数图象关于点4,03π⎛⎫⎪⎝⎭成中心对称,则:()4232k k Z ππϕπ⨯+=+∈, 整理可得:()136k k Z πϕπ=-∈, 则当2k =时,ϕ有最小值6π. 【点睛】本题主要考查三角函数的平移变换,三角函数的对称中心及其应用等知识,意在考查学生的转化能力和计算求解能力. 二、解答题4.(2020·上海·高三专题练习)已知函数2()2cos sin 3sin sin cos 3⎛⎫=+-+ ⎪⎝⎭f x x x x x x π(1)求函数()f x 的最小值及取得最小值时相应的x 的值;(2)若当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的反函数为1()f x -,求1(1)f -的值【答案】(1)当512πx k π=-,则()f x 的最小值为2-;(2)4π.【解析】(1)根据和差公式,二倍角公式,化简函数的解析式,再根据三角函数的性质即可得出答案;(2)利用互为反函数的性质,可得出()11f -的值.【详解】()2212cos sin 3sin cos 3 =2cos sin cos cos sin 3sin cos 33 =2sin cos 322sin 23f x x x x x xx x x x x x x x x x ππππ⎛⎫=++ ⎪⎝⎭⎛⎫++ ⎪⎝⎭⎛⎫=+ ⎪⎝⎭()当()2232x k k Z πππ+=-∈时,即()512x k k Z ππ=-∈,()f x 取得最小值2-. (2)令72sin 21,,31212x x πππ⎛⎫⎡⎤+=∈ ⎪⎢⎥⎝⎭⎣⎦32,322x πππ⎡⎤∴+∈⎢⎥⎣⎦,则52364x x πππ+=⇒=故()114f π-=.【点睛】(1)三角恒等变换主要是考查对和差公式,二倍角公式,降幂公式的综合应用,一般是将函数的解析式化简为()sin()f x A ωx φB =++形式,再研究该函数的性质.(2)求反函数的y 值时,易错点为容易忽略,x y 的范围.5.(2020·上海市杨浦高级中学高三阶段练习)函数2())6sin cos 2cos 14f x x x x x π=-+-+,x ∈R .(1)把()f x 的解析式改写为()sin()f x A x ωϕ=+(0A >,0>ω)的形式;(2)求()f x 的最小正周期并求()f x 在区间[0,]2π上的最大值和最小值;(3)把()y f x =图像上所有的点的横坐标变为原来的2倍得到函数()y g x =的图像,再把函数()y g x =图像上所有的点向左平移4π个单位长度,得到函数()y h x =的图像,若函数()y h x =[0,]m 上至少有20个零点,求m 的最小值.【答案】(1)())4f x x π=-;(2)T π=,最大值2-;(3)1136π.【解析】(1)由三角恒等变换的公式,即可化简函数()f x 的解析式为())4f x x π=-;(2)由(1)知())4f x x π=-,求得()f x 的最小正周期为22T ππ==,结合三角函数的性质,即可求得函数的最大值和最小值;(3)根据三角函数的图象变换,求得函数()h x x =,得到y x =令0y =,求得26x k ππ=+或52,6ππ=+∈x k k Z ,结合函数()y h x =[0,]m 上至少有20个零点,求得1136m π≥,即可得到实数m 的最小值.【详解】(1)由题意,函数2())6sin cos 2cos 14f x x x x x π=-+-+22)3sin 2(2cos 1)x x x x =+--2sin 22cos 2)4πx x x =-=-.即()f x 的解析式为())4f x x π=-.(2)由(1)知())4f x x π=-,所以函数()f x 的最小正周期为22T ππ==, 因为[0,]2x π∈,则2[,]444x ππ3π-∈-,所以当244x ππ-=-,即0x =时,函数取得最小值,最小值为())24f x π=-=-;当242x ππ-=,即38x π=时,函数取得最大值,最大值为()sin()2f x π==即函数的最小值为2-,最大值为(3)把()y f x =图像上的点的横坐标变为原来的2倍,得到函数())4g x x π=-,再把函数()y g x =图像上所有的点向左平移4π个单位长度,可得()h x x =,则函数()y h x x ==,令0y =,即0x =,即1sin 2x =,解得26x k ππ=+或52,6ππ=+∈x k k Z ,要使得函数()y h x =[0,]m 上至少有20个零点, 则满足51132966m πππ≥+⨯=,即实数m 的最小值为1136π. 【点睛】本题主要考查了三角函数的图象变换,三角函数的图象与性质,以及三角恒等变换的化简的综合应用,同时考查了函数与方程的应用,其中解答中熟记三角恒等变换的公式,以及三角函数的图象与性质是解答的关键,着重考查推理与运算能力,属于中档试题.6.(2020·上海市浦东中学高三期中)已知函数()2cos 2sin f x x x x =-.⑴若角α的终边与单位圆交于点34,55P ⎛⎫⎪⎝⎭,求()f α的值;⑵当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的单调递增区间和值域.⑵单调递增区间是,66x ππ⎡⎤∈-⎢⎥⎣⎦,值域是[]2,1-. 【分析】⑴ 利用定义即可求解()f α的值;⑵ 利用三角恒等式公式化简,结合三角函数的性质即可求解,当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求解内层函数,从而求解值域.【详解】解:()1角α的终边与单位圆交于点34,55P ⎛⎫⎪⎝⎭,43sin ,cos 55αα∴==,()22434cos 2sin 2555f αααα⎛⎫=-=⨯-⨯ ⎪⎝⎭⑵由()2cos 2sin cos212sin 216f x x x x x x x π⎛⎫=-=+-=+- ⎪⎝⎭;由222262k x k πππππ-≤+≤+,得,36k x k ππππ-≤≤+,又,63x ππ⎡⎤∈-⎢⎥⎣⎦,所以()f x 的单调递增区间是,66x ππ⎡⎤∈-⎢⎥⎣⎦;,63x ππ⎡⎤∈-⎢⎥⎣⎦,52666x πππ∴-≤+≤,1sin 2126x π⎛⎫∴-≤+≤ ⎪⎝⎭, 故得()f x 的值域是[]2,1-.【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键. 7.(2020·上海·高三专题练习)已知2221tan tan αβ=+ ,求证:2221sin sin βα=- . 试题分析:方法一由2221tan tan αβ=+ ⇒222tan 1tan tan2sin221tan αββββ-+==.⇒2222222222222sin tan 11tan 1sin cos cos 2sin22s 1tan 1sin tan 1sin cos 112cos in ααααααβααααααα-----++++=====-;方法二:由已知可得2212(1)tan tan αβ+=+⇒222sin cos 2cos ααα+=·22222sin cos 12cos cos cos βββαβ+=⇒222cos cos βα= ,⇒2212(1)sin sin βα-=-⇒2221sin sin βα=- .试题解析:方法一 ∵2221tan tan αβ=+ ,∴2tan 1tan22αβ-=. ∵2222sin sin tan2cos 1sin βββββ-==,∴22tan sin21tan βββ+=. ∴22222222sin tan 11tan 1cos 2sin2tan 1sin tan 1112cos ααααβαααα----+++===22222sin cos 2s 1sin cos in ααααα-+==-. 方法二 ∵2221tan tan αβ=+ ,∴2212(1)tan tan αβ+=+ , 即222sin cos 2cos ααα+=·222sin cos cos βββ+,即2212cos cos αβ=, 即222cos cos βα= ,即2212(1)sin sin βα-=- , ∴2221sin sin βα=- .【真题模拟题专练】一、单选题1.(2022·上海青浦·二模)已知函数()sin cos f x x x =+的定义域为[],a b ,值域为2⎡-⎣,则b a -的取值范围是( )A .3ππ,42⎡⎤⎢⎥⎣⎦B .π3π,24⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .3π3π,42⎡⎤⎢⎥⎣⎦【答案】D【分析】根据正弦函数的图像特征和性质,结合定义域和值域,即可求解.【详解】π()sin cos )4f x x x =+=+,因为[],x a b ∈,所以πππ,444x a b ⎡⎤+∈++⎢⎥⎣⎦,因为π1)4x -≤+≤πsin()14x ≤+≤.正弦函数sin y x =在一个周期π3π,22⎡⎤-⎢⎥⎣⎦内,要满足上式,则ππ5π,444x ⎡⎤+∈-⎢⎥⎣⎦,所以()()max min 5ππ3π5ππ3π--=,-=442424b a b a ⎛⎫-=-= ⎪⎝⎭,所以b a -的取值范围是3π3π,42⎡⎤⎢⎥⎣⎦. 故选:D2.(2022·上海松江·二模)设函数()sin()(05)6f x x πωω=+<<图像的一条对称轴方程为12x π=,若1x 、2x 是函数()f x 的两个不同的零点,则12||x x -的最小值为( ) A .6πB .4π C .2π D .π【答案】B【分析】根据对称轴和ω的范围可得ω的值,从而可得周期,然后由题意可知12||x x -的最小值为2T可得. 【详解】由题知,1262k k πππωπ+=+∈Z ,则124,k k ω=+∈Z ,因为05ω<<,所以4ω= 所以22T ππω==易知12||x x -的最小值为24T π=. 故选:B3.(2021·上海金山·一模)下列函数中,以2π为周期且在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增的是( ) A .()cos2f x x =B .()sin 2f x x =C .()sin 4f x x =D .()cos2f x x =【答案】A 【分析】分别计算出ABCD 的周期,再判断是否在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增即可.【详解】A: ()cos2f x x =,周期为2π,在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增,故A 正确;B: ()sin 2f x x =,周期为2π,在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,排除;C: ()sin 4f x x =,周期为2π,在区间,42ππ⎡⎤⎢⎥⎣⎦上不具有单调性,排除; D: ()cos2f x x =,周期为π,排除. 故选:A.4.(2020·上海黄浦·一模)将函数y =sin (4x 3π+)的图象上各点的横坐标伸长为原来的2倍,再向右平移3π个单位,得到的函数图象的一条对称轴的方程为( ) A .x 12π=-B .x 16π=C .x 4π=D .x 2π=【答案】A【解析】先求出变换后的解析式,再根据解析式求解函数的对称轴. 【详解】将函数y =sin (4x 3π+)的图象上各点的横坐标伸长为原来的2倍,再向右平移3π个单位,得到的函数为sin(2)3y x π=-,令232x k ππ-=π+,k Z ∈,解得212k x π5π=+, 由1k =-可得12x π=-.故选:A.【点睛】本题主要考查三角函数的图象变换及性质,注意x 的系数对结果的影响,侧重考查数学运算的核心素养.5.(2021·上海黄浦·一模)为了得到函数()sin y x x x R =∈的图像,可以将函数()2sin y x x R =∈的图像( )A .向右平移6π个单位 B .向左平移3π个单位 C .向右平移3π个单位 D .向左平移6π个单位【答案】C【分析】将函数转化为2sin 3y x π⎛⎫=- ⎪⎝⎭,然后根据三角函数图象变换的知识判断出正确选项.【详解】函数sin 2sin 3y x x x π⎛⎫==- ⎪⎝⎭所以将函数2sin y x =的图象向右平移3π个单位,即可得到2sin 3y x π⎛⎫=- ⎪⎝⎭的图象,即得到函数sin y x x =的图象.故选:C. 二、多选题6.(2021·上海交大附中模拟预测)为了得到函数sin 22y x x =的图象,可以将函数2cos 2y x x =-的图象作怎样的平移变换得到( )A .向左平移34π个单位 B .向左平移4π个单位 C .向右平移34π个单位 D .向右平移4π个单位 【答案】BC【分析】由函数解析式应用辅助角公式化简,结合左加右减的原则,即可判断平移变换的过程.【详解】sin 222(sin 2coscos 2sin )2sin[2()]336y x x x x x πππ==+=+,[sin 2cos()cos 2sin()]2sin 2cos 22[2()]6612x x x y x x πππ-+-=-=-=,∴2cos 2y x x =-向左平移4π个单位或向右平移34π个单位得到sin 22y x x =.故选:BC 三、填空题7.(2022·上海金山·二模)设()sin f x a x =+,若存在125,,,,36n x x x ππ⎡⎤∈⎢⎥⎣⎦,使()()()()121n n f x f x f x f x -+++=成立的最大正整数n 为9,则实数a 的取值范围是__________.【答案】151773,,1416167⎡⎫⎛⎤--⋃--⎪ ⎢⎥⎣⎭⎝⎦##151773|1416167a a a ⎧⎫-≤≤--<≤-⎨⎬⎩⎭或【分析】依题意()()()()min maxmin max 89f x f x f x f x ⎧≤⎪⎨>⎪⎩,分类讨论作出函数简图,求得最值解不等式组即可【详解】536x ππ≤≤1sin 12x ⇒≤≤1sin 12a a x a ⇒+≤+≤+ 依题意()()()()min maxmin max 89f x f x f x f x ⎧≤⎪⎨>⎪⎩(1)当12a >-时, 函数草图如下图所示,此时, ()()min max 1,12f x a f x a =+=+,则8419912a a a a +≤+⎧⎪⎨+>+⎪⎩⇒73167a -<≤- 满足条件; (2)当 112a -<≤-时, 函数草图如下图所示,此时,()()min max 50,max ,26f x f x ff ππ⎧⎫⎛⎫⎛⎫==⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭, 则()()()()min max min max 89f x f x f x f x ⎧≤⎪⎨>⎪⎩无解(3)当1a =-时, 函数草图如下图此时, ()min 0f x =,()max 12f x a ⎛⎫=-+ ⎪⎝⎭,则102102a a ⎧⎛⎫≤-+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪>-+ ⎪⎪⎝⎭⎩, 无解; (4)当1a <-时, 函数草图如下图所示,此时, ()()min 1f x a =-+, ()max 12f x a ⎛⎫=-+ ⎪⎝⎭,则 ()()18121912a a a a ⎧⎛⎫-+≤-+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-+>-+ ⎪⎪⎝⎭⎩解得 15171416a -≤<-, 满足条件故答案为:151773,,1416167⎡⎫⎛⎤--⋃--⎪ ⎢⎥⎣⎭⎝⎦8.(2021·上海松江·一模)已知函数()3sin cos (0)f x x x ωωω=+>,若()4f x f π⎛⎫⎪⎝⎭对任意的实数x 都成立,则ω的最小值为___________.【答案】43【分析】化简()f x ,由()4f x f π⎛⎫⎪⎝⎭可得24f π⎛⎫= ⎪⎝⎭,得到48,3ωk k Z =+∈即可求解.【详解】()cos 2sin()6f x x x x =+=+πωωω,且()4f x f π⎛⎫⎪⎝⎭,()2sin 2446πππf ω⎛⎫∴=⨯+= ⎪⎝⎭,2,462πππωk πk Z ∴⨯+=+∈,483ωk ∴=+,k Z ∈ min 43ω∴=故答案为:439.(2021·上海杨浦·一模)在平面直角坐标系中,已知点(1,0)A -、(0,3)B ,E 、F 为圆224x y +=上两个动点,且||4EF =,则AE BF ⋅的最大值为___________.【答案】4【分析】依题意E 、F 为直径的两个端点,设()2cos ,2sin E θθ,则()2cos ,2sin F θθ--,即可表示出AE ,BF ,再根据平面向量数量积的坐标运算及辅助角公式计算可得;【详解】解:因为E 、F 为圆224x y +=上两个动点,且||4EF =,所以E 、F 为直径的两个端点,设()2cos ,2sin E θθ,则()2cos ,2sin F θθ--,因为(1,0)A -、(0,3)B ,所以()2cos 1,2sin AE θθ+=,()2cos ,2sin 3BF θθ=---,所以()()()222cos 2cos 1sin 2sin 34cos sin 2cos 26sin AE BF θθθθθθθθ+--=-⋅=-++--42cos 6sin θθ=--- ()4θϕ=--+,其中1tan 3ϕ=;所以当()sin 1θϕ+=-时()max4AE BF⋅=故答案为:410.(2021·上海奉贤·一模)函数3cos y x a x =+是奇函数,则实数=a __________. 【答案】0【分析】根据给定条件利用奇函数的定义计算作答.【详解】因函数3()cos y f x x a x ==+是奇函数,其定义域为R ,则对R x ∀∈,()()f x f x -=-,即33()cos()(cos )x a x x a x -+-=-+,整理得:2cos 0a x =,。
三次函数专题(解析版)

三次函数专题一、定义:定义1、形如32(0)y ax bx cx d a =+++≠的函数,称为“三次函数”(从函数解析式的结构上命名)。
定义2、三次函数的导数232(0)y ax bx c a '=++≠,把2412b ac ∆=-叫做三次函数导函数的判别式。
由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。
二、三次函数32(0)y ax bx cx d a =+++≠图象与性质的探究: 1、单调性。
一般地,①当24120b ac ∆=-≤时,三次函数)0(23≠+++=a d cx bx ax y 在R 上是单调函数; ②当24120b ac ∆=->时,三次函数)0(23≠+++=a d cx bx ax y 在R 上有三个单调区间。
根据0,0<>a a 两种不同情况进行分类讨论,令2()320f x ax bx c '=++=两根为12,x x 且12x x <,则:2、对称中心。
三次函数)0()(23≠+++=a d cx bx ax x f 是关于点对称,且对称中心为点))3(,3(abf a b --,此点的横坐标是其导函数极值点的横坐标。
证明:函数)0()(23≠+++=a d cx bx ax x f 关于点(m ,n )对称的充要条件是n x m f x m f 2)()(=++-,即:])()()([23d x m c x m b x m a +-+-+-+n d x m c x m b x m a 2])()()([23=++++++,整理得,n d mc bm am x b ma 2)2222()26(232=+++++,据多项式恒等对应系数相等,可得, a b m 3-=且d mc bm am n +++=23=)3()(ab f m f -=, 从而三次函数是中心对称曲线,且对称中心是))3(,3(ab f a b --. 可见,)(x f y =图象的对称中心在导函数)(x f y '=的对称轴上,且又是两个极值点的中点,同时也是二阶导为零的点(拐点)。
导数法解“三次”函数问题

导数法解“三次”函数问题新教材中导数内容的介入,为研究函数的性质提供了新的活力,通过求导可以研究函数的单调性和极值,其操作的步骤学生易掌握,判别的方法也不难。
特别地,当f(x)为三次函数时,通过求导得到的f /(x)为二次函数,且原函数的极值点就是二次函数的零点;同时利用导数的几何意义:曲线在某一点P (00,y x )处的切线的斜率)(0/x f k =,可得到斜率 k 为关于0x 的二次函数。
根据这些特点,一般三次函数问题,往往可通过求导,转化为二次函数或二次方程问题,然后结合导数的基本知识及二次函数的性质来解决。
下面笔者从课堂或试卷上出现的这一类型题目中选择几例,同时结合学生产生的问题,略作说明。
例1:已知f(x)=d cx bx x +++23在(—∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们分别为α、2、β.(1) 求c 的值; (2) 求证:f(1)≥2(3) 求|α-β|的取值范围。
解:(1),23)(2/c bx x x f ++= 由题意可得:x=0为f(x)的极值点, ∴0,0)0(/=∴=c f(2)令023)(2/=+=bx x x f ,得32,021b x x -==∵f(x)在(—∞,0)上是增函数,在[0,2]上是减函数, ∴232≥-b ,即3-≤b又∵b d d b f 48,048,0)2(--=∴=++∴=∴.2371)1(≥--=++=b d b f(3)∵方程f(x)=0有三个根α、2、β. ∴设),)(2()(223n mx x x d cx bx x x f ++-=+++= 由待定系数法得2,2d n b m -=+=∴α、β为方程02)2(2=-++d x b x 的两根,∴ α+β=-(b+2),αβ=-d/2;∴|α-β|2=16)2(1242)2(222--=--=++b b b d b ∵3-≤b ,∴|α-β|2≥9, ∴|α-β| ≥3一般地,若已知三次函数f(x)=)0(23>+++a d cx bx ax 在(—∞,m )上是增函数,在[m ,n]上是减函数,在(n,+∞)上是增函数,则二次方程f /(x)=0即0232=++c bx ax 的两个根为m ,n ;且当),(),(+∞⋃-∞∈n m x 时f /(x)>0,当),(n m x ∈时f /(x)<0,反之亦然。
三次函数与导数--例题与练习答案

三次函数与导数--例题与练习答案三次函数与导数例题与练习答案例1.(14全国大纲卷文21,满分12分)函数32()33(0)f x ax x x a =++≠.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围.解:(Ⅰ)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ).(ⅰ)当a ≥1时,△≤0,则()0f x '≥恒成立,且()0f x '=当且仅当1,1a x ==-,故此时()f x 在R 上是增函数.(ⅱ)当1a <且0a ≠,时0>?,()0f x '=有两个根:12x x ==,若01a <<,则12x x <, 当2(,)x x ∈-∞或1(,)x x ∈+∞时,()0f x '>,故()f x 在21(,),(,)x x -∞+∞上是增函数;当21(,)x x x ∈时,()0f x '<,故()f x 在21(,)x x 上是减函数;若0上是减函数;当),(21x x x ∈21(,)x x x ∈时,()0f x '>,故()f x 在),(21x x 上是增函数;(Ⅱ)当0>a 且0>x 时, 0363)(2>++='x ax x f ,所以当0a >时,()f x 在区间(1,2)是增函数.当0a <时,()f x 在区间(1,2)是增函数,当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞.例2.(14安徽文数 20)(本小题满分13分)设函数23()1(1)f x a x x x =++--,其中0a >。
(1)讨论()f x 在其定义域上的单调性;(1)当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.(Ⅰ)()f x 的定义域为(,)-∞+∞,2()123f x a x x '=+--令()0f x '=,得1212x x x x ==<所以12()3()()f x x x x x '=---当1x x <或2x x >时,()0f x '<;当12x x x <<时,()0f x '>,故()f x 在12(,)(,)x x -∞+∞和内单调递减,在12(,)x x 内单调递增(Ⅱ)因为0a >,所以120,0x x <>(ⅰ)当4a ≥时,21x ≥,由(Ⅰ)知,()f x 在[0,1]上单调递增,所以()f x 在0x =和1x =处分别取得最小值和最大值(ⅱ)当04a <<时,21x <,由(Ⅰ)知,()f x 在[0,2x ]上单调递增,在[2x ,1]上单调递减,因此()fx 在2x x ==处取得最大值又(0)1,(1)f f a ==,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =和1x =处同时取得最小值;当04a <<时,()f x 在0x =处取得最小值。
专题14 三次函数(学生版) -2025年高考数学压轴大题必杀技系列导数

专题14 三次函数函数与导数一直是高考中的热点与难点, 我们知道二次函数是重要的且具有广泛应用的基本初等函数,学生对此已有较为全面、系统、深刻的认识,并在某些方面具备了把握规律的能力,由于三次函数的导数是二次函数,我们可以利用二次函数深入研究三次函数的图象与性质,这使得三次函数成为高考数学的一个热点.(一)三次函数的单调性由于三次函数()f x 的导数()f x ¢是二次函数,我们可以利用()0f x ¢=根的情况及根的分布来研究三次函数的单调性,特别是含有参数的三次函数的单调性通常要借助二次方程根的分布求解.【例1】(2024届青海省部分学校高三下学期联考)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.【解析】(1)()()()()2111f x x mx m x x m =+-+=-++¢,令()0f x ¢=,解得1x =或1x m =--,①当11m -->,即2m <-时,由()0f x ¢>得1x <或1x m >--;由()0f x ¢<得11x m <<--,所以()f x 在(),1¥-和()1,m ¥--+上单调递增;在()1,1m --上单调递减;②当11m --=,即2m =-时,()0f x ¢³恒成立,所以()f x 在R 上单调递增;③当11m --<,即2m >-时,由()0f x ¢>得1x >或1x m <--;由()0f x ¢<得11m x --<<,所以()f x 在(),1m ¥---和()1,¥+上单调递增;在()1,1m --上单调递减;综上,当2m <-时,()f x 在(),1¥-和()1,m ¥--+上单调递增;在()1,1m --上单调递减;当2m =-时,()f x 在R 上单调递增;当2m >-时,()f x 在(),1m ¥---和()1,¥+上单调递增;在()1,1m --上单调递减.(2)因为()f x 有3个零点,所以2m ¹-,当2m >-时,极大值()()221163m f m m æö--=++ç÷èø;极小值()12123f m =--,所以()22106312023m m m ìæö++>ç÷ïïèøíï--<ïî,解得43m >-且1m ¹-,当2m <-时,极大值()12123f m =--;极小值()()221163m f m m æö--=++ç÷èø,所以()22106312023m m m ìæö++<ç÷ïïèøíï-->ïî,解得4m <-,综上,m 的取值范围为()()4,4,11,3¥¥æö--È--È-+ç÷èø.(二)过平面上一点P 作三次函数图象的切线的条数1.此类问题一般是先设出切点Q ()(),t f t ,写出曲线()f x 在x t =处的切线方程,把点P 坐标代入,整理出一个关于t 的三次方程,该方程实根个数就是切线条数.2.以三次函数为 bx ax x f +=3)(为例,研究一下三次函数的切线问题:若M (x 1,y 1)是三次曲线bx ax x f +=3)(上的任一点,设过M 的切线与曲线y=f (x )相切于(x 0,y 0),则切线方程为))((000x x x f y y -¢=-,因点M 上此切线上,故))((01001x x x f y y -¢=-,又13110300,bx ax y bx ax y +=+=,所以))(3()(0120030131x x b ax bx ax bx ax -+=+-+,整理得:0)2()(10210=+-x x x x ,解得,10x x =或210x x -=.综上所述,当点M 是对称中心即01=x 时,过点M 作曲线的切线切点是惟一的,且为M ,故只有一条切线;当点M 不是对称中心即01¹x 时,过点M 作曲线的切线可产生两个不同的切点,故必有两条切线,其中一条就是以M 为切点(亦即曲线在点M 处)的切线. 由此可见,不仅切线与曲线的公共点可以多于一个,而且过曲线上点的切线也不一定惟一【例2】(2024届福建省泉州市高中毕业班5月适应性练习)已知函数()()32220f x ax x x a a =--+³.(1)当1a =时,若直线3y x b =-+与曲线()y f x =相切,求b ;(2)若直线22y x =--与曲线()y f x =恰有两个公共点,求a .【解析】(1)当1a =时,()32221f x x x x =--+,()2342f x x x ¢=--,因为直线3y x b =-+与曲线()y f x =相切,设切点为()00,x y ,则切线斜率()2000342k f x x x ¢==--,可得2000032000034233221x x y x by x x x ì--=-ï=-+íï=--+î,解得00121x y b =ìï=-íï=î或00134273127x y b ì=ïïï=íïï=ïî,所以1b =或3127b =.(2)因为直线22y x =--与曲线()y f x =恰有两个公共点,所以方程322222ax x x a x --+=--,即方程()()321210a x x +--=有两个不等实根,因为=1x -是方程()()321210a x x +--=的一个根;当1x ¹-时,方程可化为()2220ax a x a -+++=(*),依题意,方程(*)有不等于1-的唯一根,因为0a ³,若0a =,则(*)即220x -+=,1x =,满足条件;若0a >,则由()()22202420a a a a a a ++++¹ìïí=+-+=ïîV ,解得:23a =.综上所述,0a =或23a =.【例3】(2024届江苏省南通市高三上学期期初质量监测)已知函数()()320f x ax bx cx a =++>的极小值为2-,其导函数()f x ¢的图象经过()1,0A -,()10B ,两点.(1)求()f x 的解析式;(2)若曲线()y f x =恰有三条过点()1,P m 的切线,求实数m 的取值范围.【解析】(1)()232f x ax bx c ¢=++,因为0a >,且()f x ¢的图象经过()1,0A -,()10B ,两点.所以当(),1x Î-¥-时,()0f x ¢>,()f x 单调递增;当()1,1x Î-时,()0f x ¢<,()f x 单调递减;当()1,x Î+¥时,()0f x ¢>,()f x 单调递增.所以()f x 在1x =处取得极小值,所以()12f a b c =++=-,又因为()10f ¢-=,()10f ¢=,所以320a b c -+=,320a b c ++=,解方程组3203202a b c a b c a b c -+=ìï++=íï++=-î得1a =,0b =,3c =-,所以()33f x x x =-.(2)设切点为()00,x y ,则30003y x x =-,因为()233f x x ¢=-,所以()20033f x x ¢=-,所以切线方程为()()()320000333y x x x x x --=--,将()1,P m 代入上式,得32002330x x m -++=.因为曲线()y f x =恰有三条过点()1,P m 的切线,所以方程322330x x m -++=有三个不同实数解.记()32233g x x x m =-++,则导函数()()26661g x x x x x ¢=-=-,令()0g x ¢=,得0x =或1.列表:x(),0¥-0()0,11()1,+¥()g x ¢+0-+()g x ↗极大↘极小↗所以()g x 的极大值为()03g m =+,()g x 的极小值为()12g m =+,所以()()0010g g ì>ïí<ïî,解得32m -<<-.故m 的取值范围是()3,2--.(三)三次函数的极值三次函数()f x 的极值点就是二次函数()f x ¢的零点,所以与三次函数极值有关的问题常借助“三个二次”的关系求解.【例4】(2024届山东省实验中学高三二模)已知函数()()2()(,,)f x x a x b a b a b =--Î<R .(1)当1,2a b ==时,求曲线()y f x =在点()()22f ,处的切线方程;(2)设12,x x 是()f x 的两个极值点,3x 是()f x 的一个零点,且3132,x x x x ¹¹.是否存在实数4x ,使得1234,,,x x x x 按某种顺序排列后构成等差数列?若存在,求4x ;若不存在,说明理由.【解析】(1)当1,2a b ==时,()()2(1)2f x x x =--,则()()()()()()22121135f x x x x x x ¢=--+-=--,故()21f ¢=,又()20f =,所以曲线()y f x =在点()2,0处的切线方程为2y x =-;(2)()()()222()()33a b f x x a x b x a x a x +æö¢=--+-=--ç÷èø,由于a b <,故23a ba +<,令()0f x ¢>,解得x a <或23a b x +>;令()0f x ¢<,解得23a ba x +<<;可知()y f x =在2,3ab a +æöç÷èø内单调递减,在()2,,,3a b a +æö-¥+¥ç÷èø内单调递增,所以()f x 的两个极值点为2,3a b x a x +==,不妨设122,3a bx a x +==,因为3132,x x x x ¹¹,且3x 是()f x 的一个零点,故3x b =.又因为22233a b a b a b ++æö-=-ç÷èø,故4122233a b a b x a ++æö=+=ç÷èø,此时22,,,33a b a ba b ++依次成等差数列,所以存在实数4x 满足题意,且423a bx +=.(四)三次函数的零点1.若三次函数()f x 没有极值点,则()f x 有1个零点;2. 三次函数()f x 有2个极值点12,,x x ,则()()120f x f x >时()f x 有1个零点;()()120f x f x =时()f x 有2个零点;()()120f x f x <时()f x 有3个零点.【例5】(2023届江西省赣抚吉十一校高三第一次联考)已知函数322()432f x x mx m x =--+,其中0m ³.(1)若()f x 的极小值为-16,求m ;(2)讨论()f x 的零点个数.【解析】(1)由题得22()383(3)(3)f x x mx m x m x m ¢=--=-+,其中0m ³,当0m =时,()0f x ¢³,()f x 单调递增,()f x 无极值;当0m >时,令()0f x ¢>,解得3m x <-或3x m >;令()0f x ¢<,解得33mx m -<<,所以()f x 的单调递减区间为,33m m æö-ç÷èø,单调递增区间为,3m æö-¥-ç÷èø,()3,m +¥,所以当3x m =时,()f x 取得极小值()33218f m m =-,所以321816m -=-,解得1m =.(2)由(1)知当0m >时,()f x 的极小值为()33218f m m =-,()f x 的极大值为31420327m f m æö-=+>ç÷èø,当32180m -<,即m >时,()f x 有三个零点,如图①曲线 ;当32180m -=,即m =,()f x 有两个零点,如图②曲线;当32180m ->,即0<,()f x 有一个零点,如图③曲线;当0m =时,()32f x x =+,易知()f x 有一个零点. 综上,当0m £<()f x 有一个零点;当m ,()f x 有两个零点;当m >,()f x 有三个零点.(五)三次函数图象的对称性三次函数32()(0)f x ax bx cx d a =+++¹的图象有六种,如图:10010200200f x ()x10010200200f x ()x100102000200f x ()x对函数32()(0)f x ax bx cx d a =+++¹,原函数的极值点与单调性与导函数的正负有关,所以容易发现导函数中的参数当a 为正时,原函数的图象应为上图中的(1)、(3)、(5、(4)、(6)三种情况.当0D >时,二次方程()0f x ¢=有两相异实根1x ,故函数()f x 存在两个极值点,图象为上图中的(3)、(4,且在根的两边()f x ¢的符号相同,这时函数()f x 只存在驻点1)、(2)两种,当0D <时;方程()0f x ¢=无实根,()f x ¢)两种.仔细观察图象,我们还不难发现三次函数是中心对称曲线,这一点可以得到进一步的验证:设n x m f x m f 2)()(=++-,得n d x m c x m b x m a d x m c x m b x m a 2])()()([])()()([2323=++++++++-+-+-整理得,n d mc bm am x b ma 2)2222()26(232=+++++.据多项式恒等对应系数相等,可得ab m 3-=且d mc bm am n +++=23,从而三次函数是中心对称曲线,且由)(m f n =知其对称中心))(,(m f m 仍然在曲线上.而abm 3-=是否具有特殊的意义?对函数)(x f 进行两次求导,b ax x f 26)(+=¢¢再令等于0,得abx 3-=,恰好是对称中心的横坐标,这可不是巧合,因为满足0)(=¢¢m f 的m 正是函数拐点的横坐标,这一性质刚好与图象吻合.【例6】对于三次函数32()(0)f x ax bx cx d a =+++¹,给出定义:设()f x ¢是函数()y f x =的导数,()f x ¢¢是()f x ¢的导数,若方程()0f x ¢¢=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若32115()33212f x x x x =-+-,请你根据这一发现.(1)求函数()f x 的对称中心;(2)计算122020()(()()20212021202120213f f f f +++×××+.【解析】(1)2()3,()21f x x x f x x ¢¢¢=-+\=-Q ,令()0f x ¢¢=,即210x -=,解得12x =,321111115()(()3123222212f \=´-´+´-=,由题中给出的结论,可知函数()f x 的对称中心为1(,1)2.(2)由(1)知函数32115()33212f x x x x =-+-的对称中心为1(,1)2,所以11()()222f x f x ++-=,即()(1)2f x f x +-=,故120202201920201()()2,(()2,(()2202120212021202120212021f f f f f f +=+=×××+=,所以1220201()()((220202020202120212021202312f f f f +++×××+=´´=. (六)三次函数与韦达定理的交汇由于三次函数的导数是二次函数,而二次函数常与韦达定理交汇,故有时可以用定理交汇处理三次函数问题【例7】设21,x x 是函数)0(23)(223>-+=a x a xb x a x f 的两个极值点,且2||||21=+x x(1)求a 的取值范围; (2)求证:934||£b .【解析】(1)22')(a bx ax x f -+=,'12,()0x x f x =是的两个实根,又a >0a bx x a x x -=+<-=2121,0,a ab x x x x 4||||||222121+=-=+由2||||21=+x x 得22232244444(1)b a b a a a a a +==-=-,即1002£<\³a b Q (2)设,44)(322a a a gb -==则)32(4128)(2'a a a a a g -=-=22()(0)(1)33g a 在,在单调递增,在,上单调递增max 216[()](327g a g ==,934£\b 【例8】(2024年2月第二届“鱼塘杯”高考适应性练习)对三次函数()32,0f x ax bx cx d a =+++¹,如果其存在三个实根123,,x x x ,则有123122331123,,b c dx x x x x x x x x x x x a a a++=-++==-.称为三次方程根与系数关系.(1)对三次函数()32f x ax bx cx d =+++,设()()g x f x =¢,存在0x ÎR ,满足()()()0000f x g x g x =¹¢=.证明:存在10x x ¹,使得()()()210f x a x x x x =--;(2)称()f x 是[],m M 上的广义正弦函数当且仅当()f x 存在极值点()12,,x x m M Î,使得()(){}()(){}12,,f x f x f m f M =.在平面直角坐标系xOy 中,(),A a b 是第一象限上一点,设()()()2,()4bf x x a xg x x a x b x =-+=--.已知()g x 在()0,a 上有两根03x x <.(i )证明:()f x 在()0,¥+上存在两个极值点的充要条件是327a b >;(ii )求点A 组成的点集,满足()f x 是[]03,x x 上的广义正弦函数.【解析】(1)因为()00f x =,所以不妨设()()()()()012,0f x a x x x x x x a =---¹,所以()()()()()()()()()010212,0g x f x a x x x x a x x x x a x x x x a ¢==--+--+--¹,因为()()000g x g x =¢¹,所以()()()()()0001020,0g x f x a x x x x a ¢==--=¹,所以不妨取02x x =满足题意,且此时必有10x x ¹,否则若0x x =,则有()()30f x a x x =-,()()()203g x f x a x x ¢==-,()()06g x a x x ¢=-,而此时()()00060g x a x x ¢=-=与已知()()000g x g x =¢¹矛盾,综上所述,存在10x x ¹,使得()()()210f x a x x x x =--.(2)(i )(),A a b 是第一象限上一点,所以0,0a b >>,因为()()b f x x a x x =-+,所以()()32222,0,0b x ax b f x a x a b x x-+-¢=--=>>,设()322h x x ax b =-+-,则()00h b =-<,而x ®-¥时,()h x ®+¥,x ®+¥时,()h x ®-¥,所以()3220h x x ax b =-+-=存在负根,因为()f x 在()0,¥+上存在两个极值点,等价于方程()3220x ax bf x x -+-¢==在()0,¥+上有两个根,等价于方程()3220h x x ax b =-+-=在()0,¥+上存在两个根,注意到三次方程最多有3个根,所以方程()3220h x x ax b =-+-=有一个负根,两个不同的正根,而()262h x x ax ¢=-+,当03a x <<时,()2620h x x ax ¢=-+>,()h x 单调递增,当3a x >时,()2620h x x ax ¢=-+<,()h x 单调递减,所以当且仅当33320327927a a a a h b b æö=-+-=->ç÷èø,即当且仅当327a b >,综上所述,命题(i )得证;(ii )容易验证,327a b >时,()0g x =也恰好有两个正根03,x x ,此时:由于对0x >来说,()0f x ¢=等价于3220x ax b -+=,()0g x =等价于()240x a x b --=,所以对0x >,如果()0g x =,那么()()()32202444a x a a x x a x a x f b b -----æö¢=-+=+=ç÷èø,这意味着3012,22a x a x x x --==,然后,对两个不相等的正数()()()(),,b u v f u f v u v a u v uv éù-=--+-êúëû,所以()()f u f v =当且仅当bu v a uv++=,那么如果1t x =或2x ,就有02a t x -=或3x ,故()()2f t g a t ¢=-,此时()()()()()()2322222222b t a t b b t at bt a t a t a a a t a t t a t t a t t a t ---++-+=-+=+=+=----,所以()()2f t f a t =-,这意味着()()()()0213,f x f x f x f x ==,最后,由于()()322m x h x x ax b =-=-+有一个极值点3a x =,所以12,x x 都不等于3a (12,x x 是不相等的正零点,同时该方程还有另一个负零点,但3a只要是根就是二重的,所以3a不可能是根),这就说明1302,x x x x ¹¹,结合()f x 的单调性以及()()()()0213,f x f x f x f x ==,必有0123x x x x <<<,所以此时()f x 一定是广义正弦函数,综上所述,满足题意的(){}3,|27A a b ab =>.【例1】(2024届福建省泉州市高三5月适应性练习)已知函数()()32220f x ax x x a a =--+³.(1)当1a =时,若直线3y x b =-+与曲线()y f x =相切,求b ;(2)若直线22y x =--与曲线()y f x =恰有两个公共点,求a .【解析】(1)当1a =时,()32221f x x x x =--+,()2342f x x x ¢=--,因为直线3y x b =-+与曲线()y f x =相切,设切点为()00,x y ,则切线斜率()2000342k f x x x ¢==--,可得2000032000034233221x x y x by x x x ì--=-ï=-+íï=--+î,解得00121x y b =ìï=-íï=î或00134273127x y b ì=ïïï=íïï=ïî,所以1b =或3127b =.(2)因为直线22y x =--与曲线()y f x =恰有两个公共点,所以方程322222ax x x a x --+=--,即方程()()321210a x x +--=有两个不等实根,因为=1x -是方程()()321210a x x +--=的一个根;当1x ¹-时,方程可化为()2220ax a x a -+++=(*),依题意,方程(*)有不等于1-的唯一根,因为0a ³,若0a =,则(*)即220x -+=,1x =,满足条件;若0a >,则由()()22202420a a a a a a ++++¹ìïí=+-+=ïîV ,解得:23a =.综上所述,0a =或23a =.【例2】(2024届福建省泉州第五中学高考热身测试)已知函数()32,f x x ax a =-+ÎR .(1)若2x =-是函数()f x 的极值点,求a 的值,并求其单调区间;(2)若函数()f x 在1,33éùêúëû上仅有2个零点,求a 的取值范围.【解析】(1)()23f x x a =¢-,()2120f a =¢--=,得12a =,当12a =时,()23120f x x ¢=-=,得2x =-或2x =,()(),,x f x f x ¢的变化情况如下表所示,x(),2¥--2-()2,2-2()2,¥+()f x +0-+()f x ¢增区间极大值18减区间极小值14-增区间所以函数()f x 的增区间是(),2¥--和()2,¥+,减区间是()2,2-;(2)令()320f x x ax =-+=,1,33x éùÎêúëû,得3222x a x x x+==+,令()22g x x x =+,1,33x éùÎêúëû,()()32221220x g x x x x-=-==¢,得1x =,如下表,x131,13æöç÷èø1()1,33()g x ¢-0+()g x 559减区间极小值3增区间293因为函数()f x 在1,33éùêúëû上仅有2个零点,即y a =与()y g x =有2个交点,如图:即5539a <£.【例3】(2024届陕西省铜川市高三下学期模拟)已知函数()()322312R h x x x x m m =+-+Î的一个极值为2-.(1)求实数m 的值;(2)若函数()h x 在区间3,2k éùêúëû上的最大值为18,求实数k 与m 的值.【解析】(1)由()()322312R h x x x x m m =+-+Î,得()()()26612621h x x x x x ¢=+-=+-,令()0h x ¢=,得2x =-或1x =;令()0h x ¢<,得2<<1x -;令()0h x ¢>,得<2x -或1x >.所以函数()h x 有两个极值()2h -和()1h .若()22h -=-,得()322(2)3(2)1222m ´-+´--´-+=-,解得22m =-;若()12h =-,得3221311212m ´+´-´+=-,解得5m =.综上,实数m 的值为-22或5.(2)由(1)得,()(),h x h x ¢在区间3,2æù-¥çúèû的变化情况如下表所示:x(),2-¥-2-()2,1-131,2æöç÷èø32()h x ¢+-+()h x Z 极大值20m +]极小值7m -Z92m -由表可知,①当312k £<时,函数()h x 在区间3,2k éùêëû上单调递增,所以最大值为3922h m æö=-ç÷èø,其值为253-或12,不符合题意;②当2k =-时,函数()h x 在()2,1-上单调递减,在31,2æöç÷èø上单调递增,因为()220h m -=+,3922h m æö=-ç÷èø,()322h h æö>ç÷èø,所以()h x 在3,2k éùêúëû上的最大值为()220h m -=+,其值为2-或25,不符合题意;③当2k <-时,函数()h x 在(),2k -上单调递增,在()2,1-上单调递减,在31,2æöç÷èø上单调递增,因为()220h m -=+,3922h m æö=-ç÷èø,()322h h æö>ç÷èø,所以()h x 在3,2k éùêúëû上的最大值为()220h m -=+,其值为2-或25,不符合题意;④当21k -<<时,()h x 在(),1k 上单调递减,在31,2æöç÷èø上单调递增,若()h x 在区间3,2k éùêúëû上的最大值为3922h m æö=-ç÷èø,其值为12或253-,不符合题意,又因为若22m =-,则()2202h m -=+=-.那么,函数()h x 在区间3,2k éùêúëû上的最大值只可能小于-2,不合题意,所以要使函数()h x 在区间3,2k éùêúëû上的最大值为18,必须使()32231218h k k k k m =+-+=,且5m =,即()322312518h k k k k =+-+=.所以322312130k k k +--=,所以3222213130k k k k k +++--=.所以()()()22111310kk k k k +++-+=,所以()()221310k k k +-+=.所以22130k k +-=或10k +=,所以k =10k +=.因为21k -<<,所以k =舍去.综上,实数k 的值为1,m -的值为5.【例4】(2023届江苏省徐州市睢宁县高三下学期5月模拟)已知函数32()2f x x mx =-+,R m Î,且()|()|g x f x =在(0,2)x Î上的极大值为1.(1)求实数m 的值;(2)若()b f a =,()c f b =,()a f c =,求,,a b c 的值.【解析】(1)2()|2|g x x x m =-,02x ££,① 0m £时,32()2g x x mx =-,∴2()620g x x mx ¢=-≥,无极值.② 4m ³时,32()2g x x mx =-+,∴()2(3)g x x m x ¢=-,当23m³,即6m ³时,()0g x ¢³,无极大值;当46m £<时,3m x <时,()0g x ¢>;23mx <<时,()0g x ¢<,∴()g x 在3m x =处取极大值,即3(1327m m g ==,∴3m =,舍去.③04m <<时,()32322,022,22m x mx x g x m x mx x ì-+££ïï=íï-<£ïî,∴()()()23,0223,22m x m x x g x m x x m x ì-££ïï=íï-<£î¢ï,03m x <<时,()0g x ¢>;32m m x <<时,()0g x ¢<;22mx <<时,()0g x ¢>.∴()g x 在3m x =处取极大值3127m =,∴3m =符合题意.综上,3m =.(2)由(1)可知,32()23f x x x =-+,()2()6661f x x x x x =-+=-+¢,令()0f x ¢>可得10x -<<,令()0f x ¢<可得1x >或0x <,如图所示.① 当0a <时,()0b f a =>,当302b <≤时,0()1c f b <=≤,则()0a f c =>,矛盾;当32b >时,()0c f b =<,∴()0a f c =>,矛盾.② 当0a =时,符合题意.③ 当102a <<时,102x <<时,()f x x <,∴10()2b f a a <=<<,则10()2c f b b <=<<,10()2a f c c <=<<,∴a cb a <<<,矛盾.④ 当12a =时,符合题意.⑤ 当112a <<时,112x <<时,()f x x >,∴11()2b f a a >=>>,则11()2c f b b >=>>,11()2a f c c >=>>,∴a cb a >>>,矛盾.⑥ 当1a =时,符合题意.⑦ 当312a <£时,0()1b f a =<≤,则0()1c f b =<≤,∴()1a f c =<,与1a >矛盾.⑧ 当32a >时,()0b f a =<,()0c f b =>,∴()1a f c =≤,与32a >矛盾.综上,0abc ===,或12a b c ===,或1a b c ===.【例5】(2023届重庆市第十一中学校高三上学期11月质量检测)已知函数()3233f x x x ax =-++,()f x 在1x 处取极大值,在2x 处取极小值.(1)若0a =,求函数()f x 的单调区间;(2)在方程()()1f x f x =的解中,较大的一个记为3x ,在方程()()2f x f x =的解中,较小的一个记为4x ,证明:4132x x x x --为定值.【解析】(1)当0a =时,()3233f x x x =-+,定义域为R,()236f x x x ¢=-,当()0f x ¢>时,2x >或0x <;当()0f x ¢<时,02x <<;即函数()f x 的单调增区间为(),0¥-,()2,+¥;单调减区间为(0,2).(2)由()236f x x x a ¢=-+,根据题意,得2360x x a -+=的两根为12,x x ,且12x x <,即36120a D =->,得3a <,122x x +=,所以121x x <<,因为()()1f x f x =,则32321113333x x ax x x ax -++=-++,可知323211133x x ax x x ax -+=-+,因为()10f x ¢=,即21163a x x =-,即()()()()233222211111111133323230x x x x ax ax x x x x x x x x x x x éù-+-+-=-+--+=-+-=ëû,可知3132x x =-,同理,由()()2f x f x =,可知()()()()233222222222222233323230x x x x ax ax x x x x x x x x x x x éù-+-+-=-+--+=-+-=ëû;得到4232x x =-,所以()1412123212111232113211x x x x x x x x x x x x ------====------.【例6】已知函数3211()(0)32f x ax bx cx a =++>.(1)若函数()f x 有三个零点分别为1x ,2x ,3x ,且1233x x x ++=-,129x x =-,求函数()f x 的单调区间;(2)若1(1)2f a ¢=-,322a c b >>,证明:函数()f x 在区间(0,2)内一定有极值点;(3)在(2)的条件下,若函数()f x求ba的取值范围.【解析】(1)因为函数3221111()()(0)3232f x ax bx cx x ax bx c a =++=++>,又1233x x x ++=-,129x x =-,则30x =,123x x +=-,129x x =-因为12,x x 是方程211032ax bx c ++=的两根,则332b a -=-,39c a =-,得2ba=,3c a =-,所以222()()(23)(1)(3)b c f x ax bx c a x x a x x a x x aa¢=++=++=+-=-+.令()0f x ¢=解得:1x =,3x =-当()0f x ¢>时,3x <-或1x >,当()0f x ¢<时,31x -<<,故()f x 的单调递减区间是(3,1)-,单调递增区间是(,3)-¥-,(1,)+¥.(2)因为2()f x ax bx c ¢=++,1(1)2f a ¢=-,所以12a b c a ++=-,即3220a b c ++=.又0a >,322a c b >>,所以30a >,20b <,即0a >.0b <.于是1(1)02f a ¢=-<,(0)f c ¢=, (2)424(32)f a b c a a c c a c ¢=++=-++=-.①当0c >时,因为(0)0f c ¢=>,1(1)02f a ¢=-<,而()f x ¢在区间(0,1)内连续,则()f x ¢在区间(0,1)内至少有一个零点,设为x m =,则在(0,)x m Î,()0f x ¢>,()f x 单调递增,在(,1)x m Î,()0f x ¢<,()f x 单调递减,故函数()f x 在区间(0,1)内有极大值点x m =; ②当0c £时,因为1(1)02f a ¢=-<, (2)0f a c ¢=->,则()f x ¢在区间(1,2)内至少有一零点.设为x n =,则在(1,)x n Î,()0f x ¢<,()f x 单调递减,在(,2)x n Î,()0f x ¢>,()f x 单调递增,故函数()f x 在区间(1,2)内有极小值点.综上得函数()f x 在区间(0,2)内一定有极值点.(3)设m ,n 是函数的两个极值点,则m ,n 也是导函数2()0f x ax bx c ¢=++=的两个零点,由(2)得3220a b c ++=,则b m n a +=-,32c bmn a a ==--.所以||m n -=由已知³,则两边平方得2(2)23b a ++³,得出21b a +³,或21b a +£-,即1b a ³-,或3ba£-,又232c a b =--,322a c b >>,所以3322a a b b >-->,即334a b a -<<-.因为0a >,所以334b a -<<-.综上分析,b a的取值范围是[1-,3)4-.1.(2024届江苏省连云港市高三下学期4月阶段测试)已知函数()32123f x x x mx n =-++在1x =时取得极值.(1)求实数m 的值;(2)存在[]2,4x Î,使得()2f x n >成立,求实数n 的取值范围.2.设函数()()()31f x x ax b x =---ÎR ,其中,a b 为实常数.(1)若3a =,求()f x 的单调区间;(2)若()f x 存在极值点0x ,且()()10f x f x =其中10x x ¹.求证:1023x x +=;3.(2024届海南省琼中县高三上学期9月全真模拟)已知函数()()24f x x x m =-,0m >.(1)当4m =时,求()f x 在[]1,1-上的值域;(2)若()f x 的极小值为2-,求m 的值.4.(2024届贵州省贵阳第一中学高三上学期适应性月考)已知函数()323f x x x =-.(1)求函数()y f x =在0x =处的切线方程;(2)若过点()1,P t -存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)请问过点()0,0A ,()1,1B --,()1,3C -,()1,1D -,()1,2E -分别存在几条直线与曲线()y f x =相切?(请直接写出结论,不需要证明)5. (2024届内蒙古包头市高三上学期调研)已知函数3219()32f x x ax x =-++.(1)讨论()f x 的单调性;(2)若()()F x f x x =-有2个零点,求a 的值.(注:()3322()x a x a x ax a -=-++)6.(2024届江苏省南通市模拟预测)设0a >,函数3()21f x ax x =-+.(1)当1a =时,求过点(0,1)-且与曲线()y f x =相切的直线方程:(2)12,x x 是函数()f x 的两个极值点,证明:()()12f x f x +为定值.7.已知曲线()33f x x x l =-+在点()()A m f m ,处的切线与曲线的另外一个交点为B P ,为线段A B 的中点,O 为坐标原点.(1)求()f x 的极小值并讨论()f x 的奇偶性.(2)直线OP 的斜率记为k ,若()0,2m "Î,18k ³,求证:7l £-.8.设函数()321132f x x x ax =-+,a ÎR .(1)若2x =是()f x 的极值点,求a 的值,并讨论()f x 的单调性.(2)已知函数()()21223g x f x ax =-+,若()g x 在区间()0,1内有零点,求a 的取值范围.(3)设()f x 有两个极值点1x ,2x ,试讨论过两点()()11,x f x ,()()22,x f x 的直线能否过点()1,1,若能,求a 的值;若不能,说明理由.9.已知函数()314f x x ax =++,()ln g x x =-,用{}min ,m n 表示m ,n 中的最小值,设函数()()(){}()min ,0h x f x g x x =>,讨论()h x 零点的个数.10.(2024届青海省部分学校高三下学期联考)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.11.(2023届上海市嘉定区高三三模)已知函数32()(R)f x x bx cx b c =++Î、,其导函数为()f x ¢,(1)若函数()f x 有三个零点123x x x 、、,且123133,9x x x x x ++==-,试比较(3)(0)f f -与3(2)f ¢的大小.(2)若(1)2f ¢=-,试判断()f x 在区间(0,2)上是否存在极值点,并说明理由.(3)在(1)的条件下,对任意的,R m n Î,总存在[0,3]x Î使得|()|f x mx n t ++³成立,求实数t 的最大值.12.设函数()3213f x x a x b =-+,其中a ,b 为常数.(1)讨论()f x 的单调性;(2)若函数()f x 有且仅有3个零点,求3b a 的取值范围.13.(2024届湖南省岳阳市高三教学质量监测三)已知ABC V 的三个角,,A B C 的对边分别为,,a bc 且2c b =,点D 在边BC 上,AD 是BAC Ð的角平分线,设AD kAC =(其中k 为正实数).(1)求实数k 的取值范围;(2)设函数325()22b f x bx cx =-+-①当k =时,求函数()f x 的极小值;②设0x 是()f x 的最大零点,试比较0x 与1的大小.。
导数解决三次函数问题

演示
四、品一品:
从本节课的学习中,体会到了什么?
课堂小结
本节课我们运用了导数工具对三次函数进行初步研究: (1)了解三次函数图像形状 (2)了解三次函数的性质(单调性、极值、与x轴交点情况) (3)初步掌握三次函数的有关题型:
①切线问题 ②单调性与极值问题 ③ 图像交点与方程解的问题 并从中体会等价转化思想、函数与方程思想、数形结合思想及分 类讨论思想在解题中的重要作用。
减区间: (-∞, +∞)
减区间: (-∞, +∞)
引例2: 方程x3-6x2+9x-10=0的实根个数是
-15
-10
2 -5
-2 -4 -6 -8 -10 -12
5
10
15
二、探一探: 三次函数图像与x轴交点有哪几种可能性?
6
6
6
6
4
4
2 2
C
-15
-10
-5
5
10
15
-15
-10
-5
5
10
15
谢谢观看! 2020
课题:运用导数解决有关三次函数问题
引例1: 画一画:如何画出下面三次函数的图像? Y
导函数:
y x2 2x 3
函数:
几何画板演示
y 1 x3 x2 3x 1 3
-1 O Y
X 3
-1 O
X 3
一、想一想:三次函数与其导函数图象之间的关系
判
f′(x)
别 式
=
3ax2+ 2bx+c 图
象
2. 三次函数极大值等于零或极小值等于 零时图像与x轴交点有二个;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第07讲(三次函数的导数问题)
【目标导航】
运用三次函数的图像研究零点问题, 三次函数的单调性问题, 三次函数的极值与最值问题。
【例题导读】
例1、若13
x 3-x 2+ax -a =0只有一个实数根,求实数a 的取值范围.
例2、 已知函数f (x )=13x 3-k +12x 2,g (x )=13
-kx ,若函数f (x )与g (x )的图象有三个不同的交点,求实数k 的取值范围.
例3、设函数f (x )=13x 3-a 2x 2+1,其中a >0,若过点(0,2)可作曲线y =f (x )的三条不同切线,求实数a 的取值范围.
例4、已知函数f (x )=14
x 3-x 2+x . (1)求曲线y =f (x )的斜率为1的切线方程;
(2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x ;
(3)设F (x )=|f (x )-(x +a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.
例5、已知函数f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x -ax ,x≥0,其中常数a ∈R .
(1) 当a =2时,求函数f (x )的单调区间;
(2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,求实数a 的取值范围;
例6、已知函数32()1f x x ax bx a b =+++∈,,R .
(1)若20a b +=,
① 当0a >时,求函数()f x 的极值(用a 表示);
② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;
例7、已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)
(1)求b 关于a 的函数关系式,并写出定义域;
(2)证明:33b a >;
(3)若(),'()f x f x 这两个函数的所有极值之和不小于72
-,求a 的取值范围.
例8、已知函数f(x)=2x 3-3(a +1)x 2+6ax ,a ∈R .
(1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;
(2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围;
(3) 若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.
【反馈练习】
1、若函数f (x )=23x 3-2ax 2-3x 在(-1,1)内有且只有一个极值点,则实数a 的取值范围是________.
2、已知函数f (x )=14x 4+a 3x 3+12
x 2(a ∈R ,a ≠0)有且仅有3个极值点,则实数a 的取值范围 是________.
3、若函数f (x )=a 3x 3-12(a +1)x 2+x -13
(a >0)在[0,2]上有两个零点,则实数a 的取值范围是________.
4、设函数f (x )=x 3-92
x 2+6x -a . (1)对于任意实数x ,f ′(x )≥m 恒成立,求实数m 的最大值;
(2)若方程f (x )=0有且仅有一个实根,求实数a 的取值范围.
5、已知函数f (x )=ax 3+|x -a |,a ∈R .
(1)若函数g (x )=x 4,试讨论方程f (x )=g (x )的实数解的个数;
(2)当a >0时,若对于任意的x 1∈[a ,a +2],都存在x 2∈[a +2,+∞),使得f (x 1)f (x 2)=1 024,求满足条件的正整数a 的取值集合.
6、已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ).
(1) 当a =b =1时,求f (x )的单调增区间;
(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b a
的值; (3) 当a =0时,若f (x )<ln x 的解集为(m ,n ),且(m ,n )中有且仅有一个整数,求实数b 的取值范围.
7、若函数y =f(x)在x =x 0处取得极大值或极小值,则称x 0为函数y =f(x)的极值点.
设函数f(x)=x 3-tx 2+1(t ∈R ).
(1) 若函数f (x )在(0,1)上无极值点,求t 的取值范围;
(2) 求证:对任意实数t ,函数f (x )的图像总存在两条切线相互平行;
(3) 当t =3时,函数f (x )的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组.
8、已知函数g(x)=x 3+ax 2+bx(a ,b ∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)
(1) 求b 关于a 的函数关系式;
(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-73
.。