西南交大数值分析题库分析题库2(方程组)

合集下载

数值分析期末考试和答案

数值分析期末考试和答案

数值分析期末考试和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 插值法B. 迭代法C. 直接法D. 拟合法答案:C2. 以下哪个数值方法是用于求解非线性方程的?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 拉格朗日插值法答案:B3. 在数值积分中,梯形法则的误差与下列哪个因素无关?A. 被积函数的二阶导数B. 积分区间的长度C. 积分区间的划分数量D. 被积函数的一阶导数答案:D4. 以下哪个数值方法是用于求解常微分方程的?A. 欧拉方法B. 牛顿迭代法C. 拉格朗日插值法D. 高斯消元法答案:A5. 在数值分析中,下列哪个方法用于求解特征值问题?A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形法则答案:B6. 以下哪个数值方法是用于求解线性最小二乘问题的?A. 高斯消元法B. 梯形法则C. 正交分解法D. 牛顿迭代法答案:C7. 在数值分析中,下列哪个方法用于求解非线性方程组?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 欧拉方法答案:B8. 在数值分析中,下列哪个方法用于求解偏微分方程?A. 有限差分法B. 牛顿迭代法C. 线性插值法D. 梯形法则答案:A9. 在数值分析中,下列哪个方法用于求解优化问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 单纯形法答案:D10. 在数值分析中,下列哪个方法用于求解插值问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 拉格朗日插值法答案:D二、填空题(每题2分,共20分)1. 在数值分析中,求解线性方程组的直接法包括______消元法和______消元法。

答案:高斯;LU2. 牛顿迭代法的收敛速度是______阶的。

答案:二3. 梯形法则的误差与被积函数的______阶导数有关。

答案:二4. 欧拉方法是一种求解______阶常微分方程的数值方法。

答案:一5. 幂迭代法是求解______特征值问题的数值方法。

西南交通大学研究生数值分析总复习

西南交通大学研究生数值分析总复习

记x*表示x的近似值,若x* 0.a1a2 an 10m , (ai 是0,1,,9中的一个数字,a1 0),
*
1 mn 如果 x x 10 , 则称x *近似x时具有n位有效数字。 2
返回
前进
3. 记近似值x*=0.a1a2…an×10m,若要保留五位有效数 字(这是 以后常会用到的),即要求误差限ε<0.5×10m-n, 则n=5;
1 这即要求出满足: 10( n 1) 0.01%的n 2a1
例3(续)
1 由a1 5 10( n 1) 0.01% 0.0001 25 10( n 1) 0.001 n 1 lg 0.001 3 n 4 1 因此,只要对 0.052631578 的近似值取四位 19 1 有效数字为 0.05263 ,则其相对误差限就不 超过0.01% 19
返回
前进
§2 绝对误差、相对误差和有效数字
2.1 绝对误差与相对误差 设 x *为准确值的近似值,记
e xx
*
e x x* er x x
分别称e为近似值x *的绝对误差或误差, er为x*的相对误差。
一般情况下,准确值是不知道的,从而也不能算出绝 对误差e的准确值,但往往可以根据测量工具或计算的情 况估计出e 的取值范围,即估计出绝对误差的一个上界ε :
返回
前进
迭代法是一种重要的逐次逼近法,其基本思想是: 设方程f (x) = 0在区间[a, b]内有一根x*,将方程化为等价 方程x = (x),并在[a, b]内任取一点x0作为初始近似值, 然后按迭代公式计第二章 非线性方程求解算: x ( x ), (k 0,1,2,) (2 - 3)
返回

西南交大数值分析题库积分微分方程

西南交大数值分析题库积分微分方程

用复化梯形公式计算积分1()f x dx ⎰,要把区间[0,1]一般要等分 41 份才能保证满足误差小于0.00005的要求(这里(2)()1f x ∞≤);如果知道(2)()0f x >,则 用复化梯形公式计算积分1()f x dx ⎰此实际值 大 (大,小)。

在以10((),())()(),(),()[0,1]g x f x xf x g x dx f x g x C =∈⎰为内积的空间C[0,1]中,与非零常数正交的最高项系数为1的一次多项式是 23x -3. (15分)导出用Euler 法求解 (0)1y yy λ'=⎧⎨=⎩的公式, 并证明它收敛于初值问题的精确解解 Euler 公式 11,1,,,k k k xy y h y k n h nλ--=+==L -----------(5分) ()()1011kk k y h y h y λλ-=+==+L ------------------- (10分)若用复化梯形求积公式计算积分1x I e dx =⎰区间[0,1]应分 2129 等分,即要计算个 2130 点的函数值才能使截断误差不超过71102-⨯;若改用复化Simpson 公式,要达到同样精度区间[0,1]应分12 等分,即要计算个 25 点的函数值1.用Romberg 法计算积分 232x e dx -⎰解 []02()()2b aT f a f b -=+= 9.6410430E-003 10221()222b a a bT T f -+=+= 5.1319070E-00310022243T T S -== 4.6288616E-00322T = 4.4998E-003 21122243T T S -== 4.E-0031002221615S S C -== 4.6588636E-00332T = 4.7817699E-00332222243T T S -== 4.1067038E-0032112221615S S C -== 4.5783515E-0031002226463C C R -== 4.7358037E-0032.用复合Simpson 公式计算积分232x e dx -⎰(n=5)解 44501()4()2()(),625k k h h b aS f a f a kh f a kh f b h ==⎡⎤-=++++++=⎢⎥⎣⎦∑∑5S =4.3630653 E-0033、 对于n+1个节点的插值求积公式()()bnk k k af x dx A f x =≈∑⎰ 至少具有 n 次代数精度. 4、 插值型求积公式()()bnk k k af x dx A f x =≈∑⎰的求积系数之和0nk k A =∑=b-a 5、 证明定积分近似计算的抛物线公式()()4()()22bab a a b f x dx f a f f b -+⎡⎤≈++⎢⎥⎣⎦⎰具有三次代数精度 证明 如果具有4阶导数,则()()4()()22bab a a b f x dx f a f f b -+⎡⎤-++⎢⎥⎣⎦⎰=)(f 2880)a b ()4(5η--(η∈[a,b])因此对不超过3次的多项式f(x)有()()4()()022bab a a b f x dx f a f f b -+⎡⎤-++=⎢⎥⎣⎦⎰即()()4()()22bab a a b f x dx f a f f b -+⎡⎤=++⎢⎥⎣⎦⎰精确成立,对任一4次的多项式f(x)有 因此定积分近似计算的抛物线公式具有三次代数精度 或直接用定义证.6、 试确定常数A ,B ,C 和a ,使得数值积分公式有尽可能高的代数精度。

数值分析西南交通大学

数值分析西南交通大学

1.填空(1). 在等式∑==nk k kn x f ax x x f 010)(],,,[ 中, 系数a k 与函数f (x ) 无 关。

(限填“有”或“无”) (2). Gauss 型求积公式不是 插值型求积公式。

(限填“是”或“不是”)或“无”) (3). 设l k (x )是关于互异节点x 0, x 1,…, x n , 的Lagrange 插值基函数,则∑=-nk k m k x l x x 0)()(≡0 m=1,2,…,n(4). ⎥⎦⎤⎢⎣⎡-=3211A ,则=1||||A 4 ,=2||||A 3.6180340 ,=∞||||A 5 ; (5). 用1n +个不同节点作不超过n 次的多项式插值,分别采用Lagrange 插值方法与Newton 插值方法所得多项式 相等(相等, 不相等)。

(6). 函数3320,10(),01(1),12x f x x x x x x -≤<⎧⎪=≤<⎨⎪+-≤≤⎩与函数3321,10()221,01x x x g x x x x ⎧++-≤<=⎨++≤≤⎩中,是三次样条函数的函数是 g(x),另一函数不是三次样条函数的理由是二阶导不连续 。

(7). n 个不同节点的插值型求积公式的代数精度一定会超过n-1 次2.设)5()(2-+=x x x αϕ,要使迭代法)(1k k x x ϕ=+局部收敛到5*=x ,则α取值范围 解:因x x αϕ21)(+=',由1521*)(<+='αϕx ,即0522<<-α故α的取值范围是051<<-α。

3.给定方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111 211111112321x x x证明Jacobi 方法发散而Gauss-Seidel 方法收敛。

分析 观察系数矩阵的特点,它既不严格对角占优,也不对称正定,因此应该写出Gauss-Seidel 方法的迭代矩阵B ,然后再观察是否11<B或1<∞B 或求出)(B ρ,看其是否小于1。

西南交大《数值计算》习题习题

西南交大《数值计算》习题习题

4
5
y
0
16
46
88
0
求各价差商,并写出Newton基本插值公式。 4. 已知函数表:
x 0.125 0.250 0.375 0.500 0.625 0.750
f(x) 0.79618 0.77334 0.74371 0.70431 0.65632 0.60228
(1) 写出差分表 (2) 用Newton向前插值公式计算f(0.158)的近似值 (3) 用Newton向后插值公式计算f(0.636)的近似值 5. 求次数不高于4次的多项式p(x),使它满足:
6. 用Romberg法计算下述积分。
(1)
(2)
使误差不超过
7. 分别用n=5的Gauss型求积公式,计算:

8. 试证明上的Gauss-Legendre求积公式的节点和系数关于原点是对称分
布。
习题八 1. 分别用Euler法,改进Euler法,二阶及四阶标准Rumge-Kutta法求 解如下的初值问 题。 在点x=0.1处的数值解(分别取h=0.1,h=0.05)及局部截断误差(准确
(1) p(1)=p (1)=0, p(2)=p (2) =0, p(3)=1 (2) p(0)=p (0)=0, p(1)=p (1) =1, p(2)=1 并写出误差表达式。 6. 已知数据表:
x
1
2
4
5
y
1
4
6
4
试分别求出满足下列条件的三次样条插值函数。 (1)S (1)=1 S (5)=0 (2)S (1)=1 S (5)=0 7. 设
习题八分别用euler法改进euler法二阶及四阶标准rumgekutta法求解如下的初值问在点x01处的数值解分别取h01h005及局部截断误差准确解y用adamas预报一校正公式求初值问题

西南交大数值分析第二次大作业(可以运行)

西南交大数值分析第二次大作业(可以运行)

数值分析第二次大作业1(1)用Lagrange插值法程序:function f=Lang(x,y,x0)syms t;f=0;n=length(x);for(i=1:n)l=y(i);for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));endf=f+l;simplify(f);if(i==n)if(nargin==3)f=subs(f,'t',x0);elsef=collect(f);f=vpa(f,6);endendendx=[1,2,3,-4,5];y=[2,48,272,1182,2262]; t=[-1];disp('插值结果')yt=Lang(x,y,t)disp('插值多项式')yt=Lang(x,y)ezplot(yt,[-1,5]);运行结果:插值结果:Yt= 12.0000插值多项式:yt =4.0*t^4 - 2.0*t^3 + t^2 - 3.0*t + 2.0(2)构造arctan x在[1,6]基于等距节点的10次插值多项式程序:function f=New(x,y,x0)syms t;if(length(x)==length(y))n=length(x);c(1:n)=0.0;elsedisp('xºÍyάÊý²»µÈ£¡');return;endf=y(1);y1=0;xx=linspace(x(1),x(n),(x(2)-x(1)));for(i=1:n-1)for(j=1:n-i)y1(j)=y(j+1)-y(j);endc(i)=y1(1);l=t;for(k=1:i-1)l=l*(t-k);end;f=f+c(i)*l/factorial(i);simplify(f);y=y1;if(i==n-1)if(nargin==3)f=subs(f,'t',(x0-x(1))/(x(2)-x(1)));elsef=collect(f);f=vpa(f,6);endendend>>x=[1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6];y=[atan(1),atan(1.5),atan(2),atan(2.5),atan(3),atan(3.5),atan(4),atan(4.5),atan(5),atan (5.5),atan(6)];disp('插值多项式')yt=New(x,y)ezplot(yt,[1,6]);hold onezplot('atan(t)',[1,6])grid on运行结果:插值多项式yt =1.34684*10^(-10)*t^10 - 6.61748*10^(-9)*t^9 + 1.28344*10^(-7)*t^8 - 0.00000104758*t^7 - 0.00000243837*t^6 + 0.000149168*t^5 - 0.00176296*t^4 + 0.0125826*t^3 - 0.0640379*t^2 + 0.250468*t + 0.7853982(1)用MATLAB自带spline函数用于进行三次样条插值程序:>>x=[-5,-4,-3,-2,-1,0,1,2,3,4,5];y=[0.03846,0.05882,0.10000,0.20000,0.50000,1.00000,0.50000,0.20000,0.10000,0.0 5882,0.03846];xi=linspace(-5,5)yi=spline(x,y,xi);plot(x,y,'rp',xi,yi);hold on;syms xfx=1/(1+x^2);ezplot(fx);grid on运行结果:由图可知,三次样条插值多项式图像与原函数图像基本一致。

西南交通大学数值分析上机实习

西南交通大学数值分析上机实习

目录解题: (1)题目一: (1)1.1计算结果 (1)1.2结果分析 (1)题目二: (2)2.1计算结果 (2)2.2结果分析 (3)题目三: (4)3.1计算结果 (4)3.2结果分析 (5)总结 (5)附录 (6)Matlab程序: (6)题目一: (6)第一问Newton法: (6)第二问Newton法: (6)第一问Steffensen加速法: (7)第二问Steffensen加速法: (7)题目二 (8)1、Jacobi迭代法 (8)2、Causs-Seidel迭代法 (8)题目三: (9)题目一:分别用牛顿法,及基于牛顿算法下的Steffensen 加速法(1)求ln(x +sin x )=0的根。

初值x0分别取0.1, 1,1.5, 2, 4进行计算。

(2)求sin x =0的根。

初值x0分别取1,1.4,1.6, 1.8,3进行计算。

分析其中遇到的现象与问题。

1.1计算结果求ln(x +sin x )=0的根,可变行为求解x-sinx-1=0的根。

1.2结果分析从结果对比我们可发现牛顿—Steffensen 加速法比牛顿法要收敛的快,牛顿法对于初值的选取特别重要,比如第(1)问中的初值为4的情况,100次内没有迭代出来收敛解,而用Steffensen 加速法,7次迭代可得;在第(2)问中的初值为1.6的情况,收敛解得31.4159,分析其原因应该是x x f cos )('=,x0=1.62π≈,0)('≈x f ;迭代式在迭代过程中会出现分母趋近于0,程序自动停止迭代的情况,此时得到的x 往往非常大,而在第一问中我们如果转化为用x+sinx=1,则可以收敛到结果。

用雅格比法与高斯-赛德尔迭代法解下列方程组Ax=b,研究其收敛性,上机验证理论分析是否正确,比较它们的收敛速度,观察右端项对迭代收敛有无影响。

(1)A行分别为A1=[6,2,-1],A2=[1,4,-2],A3=[-3,1,4];b1=[-3,2,4]T,b2=[100,-200,345]T,(2) A行分别为A1=[1,0,8,0.8],A2=[0.8,1,0.8],A3=[0.8,0.8,1];b1=[3,2,1]T,b2=[5,0,-10]T,(3)A行分别为A1=[1,3],A2=[-7,1];b=[4,6]T2.1计算结果初值均为0矩阵带入(1)A行分别为A1=[6,2,-1],A2=[1,4,-2],A3=[-3,1,4];b1=[-3,2,4]T,b2=[100,-200,345]T2) A行分别为A1=[1,0,8,0.8],A2=[0.8,1,0.8],A3=[0.8,0.8,1];b1=[3,2,1]T,b2=[5,0,-10]TT2.2结果分析ρ小于1,故方程组雅可比迭代收第一小题的经计算谱半径为5427B(=).0敛。

数值分析练习题附答案

数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 其中 l32 为一任意常数,且 U 奇异,故分解不 1 0 0 l32 2 1 1 2 6 0 1 3 2 1
1 1 0 0
惟一。 对 C,i0,i=1,2,3,故 C 可分解且分解惟一。 C
6 3 1 0 0 1
10. 矩阵第一行乘以一数成为 A 证明 设0,则
2 ,证明当 1 1
2 3 2 || 3 ||
2 时,即 3 1 2
2 时,Cond(A)有最小值,且 minCond(A)=7 3
p
3 4
AX
p
。 (1)求 A
,p
1, 2, 1, 2,
(2)求 A 的谱半径 ( A) 。
(3)求三个非零向量 X,分别满足
A
p
X
p
, p
解 (1) A 1 由 | AT A
4,|| x || 4 ,而
( A A)( x
x
,故 x
A
1
1 240 319 499 179 240
559 559 626.2 499 559 0.5 , || A 1 || || A || 0.5 0.56012 499 || A 1 || || A ||
Cond( A)
|| A ||
|| A 1 ||2 | 1 | 1 | 2 | 3 | 1 |
假设 x+x=y, A(x+x)=b+b 取 b=(1,-1)T,b=(1,1)T,则解 Ax=b,即
2 1
又解 故 x
1 x1 2 x2 1 y1 2 y2
2
1 1 2 0
得x 得y
1 1 , 3 3
T
T
2 1
(1,1)T , || x ||2 || x ||2
|| A ||
|| A 1 || ||
计算结果说明了用对角阵左乘 A 可以改善其条件数。 6. 设 A
2.0001 2
1 ,b 1
7.0003 ,已知 Ax=b 的精确解为 x=(3,-1)T. 7
T
(1)计算条件数 Cond(A); (2)若近似解 x (2.97, 1.01) ,计算剩余向量 r b Ax ; (3) 利用事后误差估计式计算不等式右端, 并与不等式左边比较。 此结果说明了什么?
4 2 。 , 3 3 || b ||2 || b ||2 Cond( A) 2 2 2 3

|| x ||2 || x ||2
1 2 3 || b ||2 Cond( A) 2 || b ||2
3 而 Con( A)2
8. 求下面两方程组的解,并利用矩阵的条件数估计
|| x || || x ||
而左端
|| r || 0.05 120012 || b || 7.0003 || x x || 0.03 0.01 || x || 3
857.192
这表明当 A 为病态矩阵时,尽管剩余||r||很小,误差估计仍然较大。因此,当 A 病态时, 用||r||大小作为检验解的准确度是不可靠的。 7. 设对称正定阵 A 扰动b,使
1
max (QT Q)
4
4
2
1 QQT 16
1 T Q ,从而 (Q 1 )T (Q 1 ) 4
|| Q 1 ||2
max [(Q 1 )T (Q 1 )]
1 max ( I ) 4
1
1 max ( QQT ) 16 1 1 所以 Cond 2 (Q) || Q ||2 || Q ||2 2 2
2 1
1 ,试计算||A-1||2,||A||2 和 Cond(A)2,且找出 b(常数)及 2
|||2

Cond( A) 2
| I
A|
1
2
1 2
2
4
3 ,故 1
1, 2
3 ,从而
|| A ||2 | 2 | 3,
Cond( A) 2
x12
2 x2
4 x2 | || A ||1 6.
0,| x2 | 1 。
|| X || || AX ||
解此方程组得 x1 记 则
T
max(| x1 |,| x2 |) max(| x1
1。
2 x2 |,| 3x1
x2
( A A) 是 ATA 的最大特征值,X 是相应的特征向量,且 || X ||2
Cond( AB) || AB || || ( AB) 1 || || A || || B || || B 1 A 1 || || A || || B || || B || A || || A 1 || || B || || B 1 ||
5. 计算 Cond(A)及 Cond(DA);其中
1
|| || A 1 ||
( A) || A ||
其中||A||为 A 的任何一种算子范数。 分析 由于谱半径是特征值的绝对值的最大者,故由特征值的定义出发论证是自然的。 证明 由特征值定义,对任一特征值有 AX=X(X0,特征向量) 取范数有
1
||AX||=|| ||X|| 由于范数||A||是一种算子范数,故有相容关系 ||AX||||A|| ||X|| 从而 || ||X||||A|| ||X|| 由于 X0,故||||A||,从而 (A) ||A|| 4. 设 A,B 为 n 阶矩阵,试证 Cond(AB) Cond(A) Cond(B) 分析 由条件数定义和矩阵范数的性质即可证明。 证明
A
1
1 2 2
|| X || || X ||
1 1 1 1.5 ,从而 Cond(A)=22.5 1 1
Cond ( A) || b || 有 || b ||
6
由公式
|| X || || bX |
1 10 2 22.5 2/3
1.6875 10
5
3. 试证明矩阵 A 的谱半径与范数有如下关系
2. 设有方程组 Ax=b,其中
1 2
A
1 0 2 2 0 2
1 1 , 2
b
1 2 1 已知它有解 X 3 2 3
1 2 1 . 如果右端有小扰动 3 0
|| b ||
1 10 6 ,试估计由此引起的解的相对误差。 2
分析 本题是讨论方程组的右端项的小误差所引起的解的相对误差的估计问题, 这与系 数矩阵的条件数有关,只要求出 Cond(A),再由有关误差估计式即可算得结果。 解答 容易求得
240 179
240 179.5
319 x1 240 x2
319.5 x1 240 x2
3 即 Ax=b 4
3 4
即 (A
A) ( x
x)
b
3
记A
240 179
x)
319 , A 240
b 的解 x
0 0.5 8 6
0.5 ,则 Ax=b 的解 x 0 4 3
,从而 || x ||
4 ,而 3

14 x2 14 x1
2
(5 ( 5
2 x2
x1 x2
代入 x1 其中 b
1 ,得 x2
1 b
2
1
, x1
bx2
b
1 b
2
1
14 .此 X (5 221)
( x1 , x2 )T 就是满足 || AX ||2 || A ||2 ,|| X ||2 1的向量。
5
1. 求矩阵 Q 的||Q||1,||Q||2,||Q||与 Cond2(Q),其中
Q
1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
分析 这实际上是基本概念题,只要熟悉有关范数与条件数的定义即可。 解答 (1)由定义,显然||Q||1=4 (2)因 QTQ=4I,故 || Q ||2 (3)由定义显知 || Q || (4)因 QTQ=4I,故 Q
X ,|| Y || p 1 也满足 X p
|| AY || p || A || p || Y || p || A || p 。故按题目要求,只须求出满足 || X || p 1的解。这时,有
|| X ||1 | x1 | || AX ||1 | x1
解此方程组得 x1
| x2 | 1, 2 x2 | | 3x1 1, 4 x2 |) || A || 7.
1,
|| AX ||2 2
这表明 X 即为所求。 令 A AX
T
( AX , AX )
( x)
( AT AX , X )
10 14 x1 14 20 x2
14 b 5 221
(X , X )
(15 221)

x1 x2
( AT A) || A ||2 2

X ,即 x
221) x1 , 221) x2 ,
由误差估计得
|| x || || x ||
|| x ||
表明估计 || x ||
|| A || || A || || A || 1 Cond( A) || A || 1.274 || x || 5.10 Cond( A)
0.56012 0.43988
1.274
4 是符合实际的。
9. 下述矩阵能否分解为 LU(其中 L 为单位下三角阵,U 为上三角阵)?若能分解,那 么分解是否惟一?
max(4,6)
6, A
max(3,7)
7 , AT A
10 14 14 20

I | 0 ,得..。解得
I | 0 ,得 2
15
5 2
221 ,故 A 2
0 ,解得
15
1 (5 2
221 。
33) ,故
(2)由 | A
相关文档
最新文档