欧米伽环换热器维修论文概要

欧米伽环换热器维修论文概要
欧米伽环换热器维修论文概要

加氢装置Ω环密封高压换热器的检修工艺

杜昊,任俊杰,董秀丽,黄艳,王志坤

中国石油华北石化公司,河北任丘 062552

摘要:介绍了Ω环密封高压换热器的检修工艺, 对设计、使用及检修中的问题进行了分析, 提出了解决办法。

关键词:Ω环,换热器,检修

加氢装置工艺介质易燃易爆,包括加氢换热器在内的主要设备在高温、高压及有氢气和硫化氢存在的条件下运行, 要求设备具有很高的可靠性。加氢换热器一般设计压力 7.0~ 20MPa 、温度 300~500℃ , 材料为 15CrMoR+321或 2.25Cr-1Mo+347,是石化行业中设计难度高、制造难度大的换热设备。选择何种密封结构至关重要,直接影响加氢换热器密封可靠性及制造难易程度。因此管板与管箱、壳体的密封结构成为加氢换热器结构设计最重要的环节。目前常用的换热器密封结构形式有金属环垫(八角垫、椭圆垫密封、螺纹锁紧环、隔膜密封(盖板式密封、Ω环密封等。

1 Ω环换热器简介

Ω环换热器的管板与管箱法兰、壳体法兰的密封采用Ω环密封结构,如图 1所示,利用回转壳受压性能好的机理,设计制作Ω环密封元件;密封环与法兰、管板以角焊缝的形式连接,介质和环境完全隔绝,有效的解决了其它类型垫片可能出现的密封面失效问题, 属于无垫片密封。Ω环密封结构设备主螺栓具有较小的预紧和操作载荷,减小了设备法兰与主螺栓的尺寸和重量。同钢垫圈密封结构(八角垫、椭圆垫和螺纹锁紧环密封结构相比, Ω环密封结构兼有两者的优点,拆卸检修方便、密封绝对可靠等特点。同时具有制造简单、重量轻、造价低、占地面积小以及直径、压力、温度适用范围广的优势,特别适合在石化企业的加氢装置、重整装置以及化肥装置中推广使用。可减小设备检修强度、提高设备的可靠性,节省设备的一次性投

资,具有较高的经济效益和社会效益,有着广阔的应用前景。该结构换热器国内自1996年研发至今,已在很多加氢装置推广使用。

图1 Ω环换热器结构简图

2 Ω环换热器的检修技术要求

由于Ω环换热器的管板与管箱法兰、壳体法兰的密封采用Ω环密封结构, Ω环换热器的拆装难度在于合焊及切割两瓣Ω环,其余与普通大法兰式换热器没有区别。在组装Ω环时,两瓣环的拼缝焊接时要求高度对中,错边量非常小,焊接时在两片法兰之间的缝隙中完成,增加了焊接难度。拆装检修时,先用专用的工具把Ω环切割开,拆装检修完毕后再重新组焊,需要准确判定拆装的次数。检修的质量将直接影响Ω环的密封质量,因此必须严格按照检修规程进行施工。

装置停工后,须将设备从系统中隔离,排净残存介质,并对设备进行氮气置换。由于加氢装置换热器在检修期间存在连多硫酸腐蚀的情况, 可按照美国 NACE -RP -

01-75《炼厂停工期间使用中和溶液防止奥氏体不锈钢产生应力腐蚀开裂》的要求和步骤进行,自加氢反应器出口至加氢反应产物流程进行碱洗中和,在该流程的内表面保留碱膜。

2.1 环拆卸规程

2.1.1拆卸管箱:

(1 将设备法兰上 4根全螺纹螺柱以外的主螺柱卸掉, 使用手动切割或自动切割工具将管板与壳体连接Ω环沿中线切割开 , 保留全螺纹螺柱下方无法切割部分;

(2 在 4根全螺纹螺柱附近安装至少 4根主螺柱夹紧管板, 再将 4根全螺纹螺柱卸掉, 移至壳体法兰螺栓孔与管板支耳螺栓孔中,使壳体与管板维持连接;

(3 使用手动切割或自动切割工具将全螺纹螺柱下方管板与管箱连接Ω环沿中线切割开;

(4拆卸管箱。

2.1.2拆卸管束

使用手动切割或自动切割工具将管板与壳体连接Ω环沿中线切割开 , 保留全螺纹螺柱下方无法切割部分;

(2垫平管板,将 4根全螺纹螺柱卸掉;使用手动切割或自动切割工具将全螺纹螺柱下方管板与壳体连接Ω环沿中线切割开;

(3在管板端面安装环首螺钉,缓慢抽拉管束,不得碰伤Ω环。

2.1.3如果只抽管束不卸管箱,即管束与管箱一起拆卸

(1 将设备法兰上 4根全螺纹螺柱以外的主螺柱卸掉; 使用手动切割或自动切割工具将管板与壳体连接Ω环沿中线切割开 , 保留全螺纹螺柱下方无法切割部分;

(2 在 4根全螺纹螺柱附近安装至少 4根主螺柱夹紧管板, 再将 4根全螺纹螺柱卸掉, 移至管箱法兰螺栓孔与管板支耳螺栓孔,使壳体与管板维持连接,使用手动切割或自动切割工具将全螺纹螺柱下方管板与壳体连接Ω环沿中线切割开;

(3将管束连带管箱一起抽出。

2.2 Ω环组装规程

组装前按图 3?打磨Ω环之间坡口;

组装过程可参照拆卸;要求密封环之间焊接接头组对错边量不得大于 0.5mm ;采用钨

(1为了组装方便,拆卸前可对Ω环作标记;

(2 Ω环组装时,应保证Ω环与设备法兰或管板的同心度及垂直度;

(3在Ω环组焊时,在Ω环最低部预留一段 5-10mm 左右不焊,待Ω环其余部分全部焊完后,停留一段时间,使Ω环腔内空气冷却至常温后再补焊预留段, Ω环组装完毕后应再次进行碱洗;

(4在气密性试验前或开车前,用蒸汽加热Ω环底部,使Ω环温度在 100℃以上,直至气密结束或装置正常运行后。

2.4 Ω环更换程序

在Ω环换热器检修过程中,每次拆卸时应对Ω环的内、外表面进行仔细检查,以便及时发现有害缺陷,对存在缺陷的Ω环可进行修复或者更换。更换步骤如下:

(1将Ω环与设备法兰或管板的焊缝打磨干净,按 JB/T 4730.5-2005进行 100%渗透检测, I 级合格;

(2组装Ω环,保证Ω环与设备法兰或管板的同心度,偏差不大于 0.5mm ;

(3将Ω环与设备法兰或管板进行焊接,至少分二遍施焊,且焊脚高度≥ 6mm ;

(4施焊完成后焊接接头按 JB/T 4730.5-2005进行 100%渗透检测, I 级合格。 3 问题和讨论

Ω形环的使用寿命主要取决于两个Ω形半环间对接焊缝的质量,试验表明通过对装、拆焊接工艺进行严格的控制, Ω环可重复装、拆 4一 6次。

该类型换热器在加氢装置应用以来,也出现了多次泄漏故障。

上海炼油厂 100万 t/a汽柴油加氢精制装置中 7台临氢高压换热器均采用 Q 环密封结构, 2000年第一次检修后,发现在装置开工升温后Ω环底部焊缝热影响区处出现泄漏, 为穿透性裂纹。在泄漏处用铁胶泥与特制压块堵住, 用蒸汽保护后装置继续运行了 2年多, 裂纹没有扩展。 2002年第 2次拆卸,对换热器原管箱与管板连接的Ω环进行了更换,开工升温后,在Ω环下部焊缝热影响区出现 1条 3-4mm 的穿透裂纹。经事后分析该缺陷是由于加氢装置的长期运行中, 高温 H2+H2S介质与钢生成 FeS , 在停工检修打开设备时与空气中的氧气和水接触反应生成连多硫酸,从而造成腐蚀开裂。

华北石化 120万吨年柴油加氢装置有 6台临氢高压换热器均采用 Q 环密封结构, 在 2011年对换热器进行了检修,检修后在装置氮气置换过程中发现其中一台Ω环顶部焊缝存在局部气孔,检查发现是由于该换热器Ω环恢复过程中,换热器法兰螺栓长度较长,位置受限于换热器的接管法兰,无法全部退出,只能漏出部分Ω环的焊接位置,施工单位采用了手

电焊代替钨极氩弧焊,出现了焊接气孔。修复后在装置进一步升温升压的过程中又在另外的换热器发现两处Ω环下部泄漏。后经返厂维修,初步判断为连多硫酸腐蚀引起。

通过对以上Ω环维修中及维修后的故障情况分析,运行中Ω环出现故障的可能较小, 绝大部分故障出现在检修过程中及设备检修后投入运行初期,采取规定的拆卸、组装工艺和防范措施,是可以避免停工再开工后Ω环的泄漏的现象发生。

在Ω环换热器的设计、使用和检修过程中特别需要注意以下几点

3.1 设计方面

(1改进换热器结构,减小由于管箱重力和管线推力施加在Ω环上的应力。

(2对于存在连多硫酸腐蚀的情况, 升级Ω环的材质。更换材质奥氏体不锈钢18Cr-8Ni

(304长期在高温 H2+H2S环境下,停工时会形成连多硫酸应力腐蚀。 18Cr-8Ni-Ti (321短期使用一般不会产生连多硫酸应力腐蚀,而长时间使用以 18Cr-8Ni-

Nb(347L为宜。对含稳定化元素 Ti, Nb的奥氏体不锈钢,经固溶处理,可极大地降低产生晶间腐蚀的倾向。因此, Ω环须进行固溶处理。

3.2 检修过程

(1装置停工后,可按照美国 NACE -RP -01-75《炼厂停工期间使用中和溶液防止奥氏体不锈钢产生应力腐蚀开裂》的要求和步骤,自加氢反应器出口至加氢反应产物流程进行碱洗中和。另外,对Ω环进行拆卸检查,组装完成后应再次进行碱洗。

(2在制造及维修的装拆过程中, 首先要进行良好的定位。减小两个Ω形半环焊接接头的错边量 ; 其次应避免Ω形环承受管箱或管板的重力,防止产生剪切破坏。设计结构是在设备上设置 4只装拆螺栓,装拆螺栓全长要加工螺纹,管板上焊有带螺纹的支耳,并要求在检修过程中严格按照程序进行施工。

(3Ω形环的焊接关键是要防止过大的焊接变形。为此 , 要严格按照焊接工艺要求,为避免出现夹渣、气孔等缺陷,保证密封的质量,施焊时每条焊缝至少焊两道,每道焊完均应进行 100%渗透检测,以确认无任何缺陷。每次Ω形环刨开后,要对Ω形环的内、外表面进行仔细的检查,焊接前应认真清理焊接表面,对于焊接后发现的缺陷,必须全部消除后才允许补焊。

(4由于现场条件限制, Ω形环壁厚薄 (3-3.5mm , 焊接位置固定, 对焊接工人的技术要求较高,应尽量聘请有经验的专业单位完成。使用Ω形环密封结构换热器的

安装,还需要注意螺拴的预紧问题。由于Ω形环厚度小,不能承受过大的载荷,因此在螺栓预紧时, 应对螺栓施加一定的预紧力。并且通过测量法兰与管板间的间隙,使其均匀,保证操作状态下的螺栓受力。

(5 长期使用的加氢Ω环换热器内部堆焊层存在氢损伤,如果更换Ω环必须进行消氢处理。

3.3 使用维护

(1在工艺上采用热态开工, 系统先升温后升压。在设备上可防止加氢反应器在升压过程中发生脆性破坏 ; 在工艺上可有效防止在开工过程中发生连多硫酸应力腐蚀。反应器中催化剂是硫化态 (在催化剂表面形成金属硫化物 ,在氢气状况下,可能还原生成硫化氢, 另在催化剂床层中吸附着在开工中形成的硫化物,催化剂中吸附水分,如采用冷态开工, 随气体循环流出反应器的硫化物,在遇到低于其露点温度的工况时,会发生露点积液,在不锈钢表面可能发生应力腐蚀 , 如采用热态开工,使整个反应系统在较短的时间内升到较高的温度 (高于硫化物露点温度 ,从而避免发生露点应力腐蚀开裂。

(2开车或停车时,操作压力及操作温度应缓慢上升或下降,避免造成过大的压差和热冲击;

(3 设备严禁在超过设备铭牌规定的条件下运行;对于按压差设计的设备,无论是开车、停车或操作工况,均应严格控制管壳程的压差不超过设备铭牌的规定,请用户特别注意,严格遵守!

(4 装置停工后,须将设备从系统中隔离,排净残存介质,并对设备进行氮气保护。

(5 应结合巡检,经常对管壳程介质的温度及压降进行检测记录,分析换热器的泄漏和结垢情况,应经常监视管束的振动情况。

参考文献:

1、加氢装高压换热器Ω型密封环的维修及腐蚀原因分析石油化工设备技术, 2005, 26(6 上海高桥石化工程建设有限公司李力生

2、高压换热器的Ω形环密封结构压力容器, 2000,总第 102期上海高桥石化顾雪东

3、螺纹锁紧环双壳程换热器与Ω型密封结构换热器特点比较石油化工设备技术, 2004, 25(2 中国石化工程建设公司尹丹勤等

4、加氢换热器Ω环泄漏原因和对策石油化工设备 2000, 32(1 兰州石油机械研究所宋秉棠等

5、加氢装置Ω型密封环高压换热器时效分析与防治高桥石化 2003,第 18卷第2期, 沈红杰等

6、Ω环换热器检修规程甘肃蓝科石化高新装备股份有限公司

作者简介:杜昊(1979~ ,男,黑龙江齐齐哈尔人,工程师,从事炼油生产和设备管理。

换热器设计开题报告

毕业设计开题报告 论文题目: 抽余液塔底换热器设计 学院化工装备学院 专业:过程装备与控制工程 学生姓名:邓华 指导教师:翟英明(高级工程师) 开题时间:2015年3月16日 一、选题目的 1、通过毕业设计,练习综合运用课程和实践的基本知识,进行融会贯通的独立思考。 2、在规定的时间内完成指定的设计任务,从而得到化工换热器设计的主要程序和方法。 3、培养分析和解决工程实际问题的能力。 4、树立正确的设计思想,培养实事求是,严肃认真,高度负责的工作作风。 5、通过此次设计任务,学会换热器的结构及强度设计计算及制造、检修和维护方法。 二、选题意义 在不同温度的流体间传递热能的装置称为热交换器,简称换热器。在换热器中至少要有两种温度不同的流体,一种流体温度高,放热;另一种流体温度低,吸热。换热器是实现传热过程的基本设备。而此设备是比较典型的传热设备。 二十世纪20年代出现板式换热器,并应用于食品工业。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。 化工、石油等行业中广泛使用各种换热器,它们是化工,石油,动力,食品及其它许多工业部门的通用设备,在工业设备价值及作用方面占有十分重要的地位。随着工业的迅速发展,能源消耗量不断增加,能源紧张已成为一个世界性问题。为缓和能源紧张的状况,世界各国竞相采取节能措施,大力发展节能技术,已成为当前工业生产和人民生活中一个重要课题。换热器在节能技术改造中具有很重要的作用,表现在两方面:一方面是在生产工艺流程中使用着大量的换热器,提高这些换热器效率,显然可以减少能源的消耗;另一方面,用换热器来回收工业余热,可以显著地提高设备的热效率。 三、国内现状 目前,我国换热器产业的市场规模大概为700亿人民币,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场。基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。2010年至2020年期间,我国换热器产业将保持年均10~15%左右的速度增长。到2015年,我国换热器产

列管式换热器说明书

目录 一、设计任务 (2) 二、概述与设计方案简介 (3) 2.1 概述 (3) 2.2设计方案简介 (4) 2.2.1 换热器类型的选择 (4) 2.2.2流径的选择 (6) 2.2.3流速的选择 (6) 2.2.4材质的选择 (6) 2.2.5管程结构 (6) 2.2.6 换热器流体相对流动形式 (7) 三、工艺及设备设计计算 (7) 3.1确定设计方案 (7) 3.2确定物性数据 (8) 3.3计算总传热系数 (8) 3.4计算换热面积 (9) 3.5工艺尺寸计算 (9) 3.6换热器核算 (11) 3.6.1传热面积校核 (11) 3.6.2.换热器压降的核算 (12) 四、辅助设备的计算及选型 (13) 4.1拉杆规格 (13)

4.2接管 (13) 五、换热器结果总汇表 (14) 六、设计评述 (15) 七、参考资料 (15) 八、主要符号说明 (15) 九、致 (16) 一、设计任务

二、概述与设计方案简介 2.1 概述 在工业生产中用于实现物料间热量传递的设备称为换热设备,即换热器。换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。 换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。 直接接触式换热器又称混合式换热器。在此类换热器中,冷、热流体相互接触,相互

浮头式换热器设计

浮头式换热器1;浮头式换热器设计概述 2;浮头式换热器国外研究现状和发展趋势3;设计研究技术路线和目标 4;研究容和拟解决的关键问题 5;计划安排和预期成果 6;参考文献

成人高等教育 毕业设计(论文) 题目_________________________________ _________________________________ 学生_________________________________ 联系 指导教师_________________________________ 评阅人_________________________________ 教学站点_________________________________ 专业_________________________________ 完成日期_________________________________

成人高等教育毕业设计(论文)任务书 年月日

浮头式换热器的设计

摘要 本次设计的题目为浮头式换热器。浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗。在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,采用了2-4型,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构。然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数.压强校核.壳程压降.管程压降的计算。设计的后半部分则是关于结构和强度的设计,主要是根据已经选定的换热器型式进行设备各零部件(如壳体. 折流板. 管箱固定管板.分程隔板.拉杆.进出口管.浮头箱.浮头.支座.法兰.补强圈)的设计, [关键词]换热器;浮头;管壳 工况: 一种浮头式换热器,它由壳体、换热管束、管板、浮头、外接管、法兰螺栓连接件、膨胀件等组成,其特点是壳体与换热管束之间可连接一个膨胀节,以消除热膨胀差,浮头直接与外接管相接,以减小流阻。膨胀节与法兰连接件全部在壳体外,安装和检修方便,该种浮头换热器结构简单、紧凑,流阻小,热效率高,便于检修,适用于换热介质之间温差大的工况,尤为适用石油、化工等高温高压的换热装置中。 目录

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

浮头式换热器检修方案

1. 概述 本次抢修换热器的体积较大、检修的设备重量较重,检修时间紧,并需高度交叉作业,为确保换热器的检修优质、高速、安全顺利的完成,特编制本方案。 2. 编制依据 《石油化工换热器设备施工及验收规范》SH3532-95 《石油化工施工安全技术规程》SH3505-1999 《管壳式换热器》GB151-1999 3. 检修准备 3.1 检修前,应根据检修计划会同车间主管人员一起到现场最终确定检修工作内容和计 划工作量,熟悉现场的每一项检修内容的位置、工作量和检修难度,以便于做好各工种、各工序之间的工作协调。 3.2 根据计划工作内容编制详细的检修方案,并报机动部、车间和有关部门批准。同 时,根据工作量合理组织人员和机具,排出检修计划进度表,要每一项检修内容具体落实到班组或个人。 3.3 根据检修计划内容,核实每项施工任务的具体位置和详细情况,对在检修时需要搭设 脚手架和使用吊车的任务逐项统计,列出有关脚手架搭设数量和吊车台班需求情况的明细表,落实施工手段用料和机具需用的数量。 3.4 准备好检修所需的检修施工机具和材料,逐一落实检修所需材料的到货情况、数量 及到货时间,认真做好到货材料、配件的检验和保管。 3.5 检修前,应向所有参加检修施工人员进行详细的技术交底,明确检修的工作内容、 技术要求、质量标准和时间要求。 4. 检修程序 4.1 换热器结构形式 这次检修的换热器类型是浮头式换热器等。 4.2 检修程序 换热器的检修程序按其结构形式分为:浮头式换热器检修程序(壳程压力高 于/ 低于管程压力); 5. 检修要求 5.1 保温、保冷拆除换热器置换、蒸馏合格后,经车间允许方可进行换热器的检修。检

换热器设计开题报告

毕业设计(论文)开题报告设计(论文)题目: 学院:化工装备学院 专业班级:过程装备与控制工程0802 学生: 指导教师: 开题时间:2011年10 月18 日

指导教师评阅意见

一、选题的目的及意义: 换热器的基建投资在一般化工、石化企业中约占设备总投资的20%,其中固定管板式换热器约占换热器的70%。 固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。 特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。 固定管板换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束根据换热器的长度设置了若干块折流板。这种换热器管程可以用隔板分成任何程数。 固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格围广,故在工程上广泛应用。壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。 本课题所设计的冷却器属于固定管板换热器,是针对给定的设计参数,按照相关规定的要求,通过壁厚计算和强度校核等,设计固定管板式换热器产品。熟悉压力容器设计的基本要求,掌握固定管板式换热器的常规设计方法,把所学的知识应用到实际的工程设计中区,为以后的工作和学习打下扎实的基础。 二、国外现状发展及趋势 2.1 国外情况 对国外换热器市场的调查表明,管壳式换热器占64%。虽然各种板式换热器的竞争力在上升,但管壳式换热器仍将占主导地位。随着动力、石油化工工业的发展,其设备也继续向着高温、高压、大型化方向发展。而换热器在结构方面也有不少新的发展。螺旋折流板换热器是最新发展起来的一种管壳式换热器是由美国ABB公司提出的。其基本原理为:将圆截面的特制板安装在“拟螺旋折流系统”中每块折流板占换热器壳程中横剖面的四分之一其倾角朝向换热器的轴线即与换热器轴线保持一定倾斜度。相邻折流板的周边相接与外圆处成连续螺旋状。每个折流板与壳程流体的流动方向成一定的角度使壳程流体做螺旋运动能减少管板与壳体之间易结垢的死角从而提高了换热效率。在气一水换热的情况下传递相同热量时该换热器可减少30%-40%的传热面积节省材料20%-30%。相对于弓形折

换热器的壳体设计毕业设计

换热器的壳体设计毕业设计 目录 第一章换热器概述1 1.1换热器的应用 (1) 1.2换热器的主要分类 (1) 1.2.1换热器的分类及特点 (1) 1.2.2 管壳式换热器的分类及特点 (2) 1.3管壳式换热器特殊结构 (5) 1.4换热管简介 (5) 第二章工艺计算7 2.1设计条件 (7) 2.2换热器传热面积与换热器规格: (8) 2.2.1 流动空间的确定 (8) 2.2.2 初算换热器传热面积'A (8) 2.2.3 传热管数及管程的确定 (9) 2.2.4管心距的计算 (9) 2.2.5换热器型号、参数的确定 (9) 2.2.6壳体径计算 (9) 2.2.7折流板的计算 (10) 2.3换热器核算 (10) 2.3.1传热系数核算 (11)

2.3.2换热器的流体阻力 (13) 2.3.3换热器的选型 (14) 第三章 换热器的结构计算和强度计算 15 3.1换热器的壳体设计 (15) 3.2筒体材料及壁厚 (15) 3.3封头的材料及壁厚 (16) 3.4管箱材料的选择及壁厚的计算 (16) 3.5开孔补强计算 (17) 3.6水压试验及壳体强度的校核 (19) 3.7 换热管 (20) 3.7.1 换热管的排列方式 (20) 3.7.2 布管限定圆L D (20) 3.7.3 排管 (21) 3.7.4 换热管束的分程 (21) 3.8 管板设计 (22) 3.8.1 管板与壳体的连接 (22) 3.8.2 管板计算 (22) 3.8.3 管板重量计算 (26) 3.9 折流板 (26) 3.9.1 折流板的型式和尺寸 (27) 3.9.2 折流板排列 (27) 3.9.3 折流板的布置 (27)

E2118B浮头式换热器检修施工方案

浮头式换热器检修施工方案 装置名称:炼油厂二套常减压装置 设备名称:原油-二级减二线(n)换热器 设备位号:E2118B 工作令号:D05-150680 编制: 审核: 会签: 审批: 二O—五年九月二十日

一、项目名称、概况 二、检修内容 三、施工验收标准、质量管理程序文件 四、施工组织及HSE质量控制体系 五、主要施工工器具 六、施工方法和步骤 七、关键质量控制点及质量验收指标 八、人员配备及相关资质要求 九、检验仪器设备清单 十、HSE措施和注意事项 十一、施工网络进度、施工平面图十二、备品备件表 十三、检修施工危害分析记录表十四、检修施工作业环境因素表十五、应急措施

一、项目名称、概况 1、设备简介 (1)设备名称:原油-二级减二线(n)换热器 (2)设备位号:E2118B (3)设备型号:浮头式换热器 (4)设备参数: 2、概况 E2118B原油-二级减二线(n )换热器是炼油厂二常装置的一台浮头式换热设备,装置经过一个生产周期的运行后计划于今年 10月份进行停车消缺,进行相应抽芯检修及配合容检等。 二、检修内容 1、拆装换热器保温层。 2、拆装设备进出口管道。 3、管箱、外头盖、浮头盖拆装。 4、换热器抽芯。

5、管束抽芯、配合清理容检。 6、检查、修理管箱、浮头盖、外头盖及内附件、接管及其法兰密封面,并更换全部垫片。 7、壳程、管程试压消漏3遍。 8、更换部分紧固件附件复位。 9、壳体保温修补及防腐。 10、设备与管线连接、系统气密。 三、施工验收标准、质量管理程序文件 1、TSG R0004-2009《固定式压力容器安全技术监察规程》 2、GB 150.1 ?150.4-2011《压力容器》 3、GB 151-1999《管壳式换热器》 4、SHS 01009-2004《管壳式换热器维护检修规程》 5、SHS 01004-2004《压力容器维护检修规程》 6、SH/T3542-2007《石油化工静设备安装工程施工技术规程》 7、SH 3501-2011《石油化工剧毒、可燃介质管道工程施工及验收规范》 8、GB 50235-2010《工业金属管道工程施工及验收规范》 9、SH/T 3536-2011《化工工程建设起重施工规范》 10、S H 3505-1999《石油化工施工安全技术规程》 11、Q/YPMC-M01-2012《质量手册》 12、Q/YPMC-QP0 ?33-2012所有相关程序文件和管理制度 四、施工组织及HSE质量控制体系 1、施工组织 2、质量保证体系

浮头式换热器毕业设计说明书

摘要 本次设计为浮头式换热器,浮头式换热器主要由管箱、管板、壳体、换热管、折流板、拉杆、定距管、钩圈、浮头盖等组成。浮头换热器的一端管板与壳体固定,另一端为浮动管板。因此其优点为热应力较小,便于检查和清洗,缺点为结构较为复杂。在传热计算工艺中,包括传热量、传热系数的确定和换热器径及换热管型号的选择,以及传热系数、阻力降等问题。在强度计算中主要讨论的是筒体、管箱、管板厚度计算以及折流板、法兰和接管、支座、分隔板等零部件的设计,还要进行一些强度校核。本设计是按照GB151《管壳式换热器》和GB150《钢制压力容器》设计的。换热器在工、农业的各个领域应用十分广泛,在日常生活中传热设备也随处见,是不可缺少的工艺设备之一。随着研究的深入,工业应用取得了令人瞩目的成果。 关键字:换热器,工艺计算,强度校核

Abstract This design is floating head heat exchanger, it is made up of tube box 、tube sheet、shell、heat exchange tube、baffle plate、draw bar、spacer pipe、hook circle、floating head cover and so on. One tube sheet of the exchanger is connected with shell, and the other tube sheet is floating tube sheet. So it’s easy to check and clean. On the other hand the structure of it complex. In the process of heat transfer calculation, include area computation 、capacity of heat transmission 、the determine of heat transfer coefficient and the choice of the heat exchange tube. About strength calculation, it involve the calculating of shell、tube box、sealing head and so on. This design is according to GB151 << shell-and-tube heat exchanger >> and GB150 << Steel pressure vessel >> to design. Heat exchanger is one of the indispensable process equipment. With the deepening of the research, industrial application made remarkable achievements. Keywords:heat exchanger; Process calculation;strength check

换热器设计论文

上海理工大学成人高等学历教育毕业设计(论文) 第1章绪论 换热器是一种实现物料之间传递热量的节能设备,在石油,化工,动力,食品,轻工等行业应用普遍。在炼油,化工装置中换热器占总设备数量的40%左右,占总投资的30%—45%。近年来随着节能技术的发展,换热器的应用领域不断扩大带来了显著的经济效益。换热器的种类很多,但根据冷,热流体热量交换的原理和方式基本上可分为三大类即:间壁式、混合式和蓄热式。在三大类换热器中,间壁式换热器应用最多。 间壁式换热器又可分为夹套式换热器、沉浸式蛇管换热器、喷淋式换热器、套管式换热器和壳管式换热器。其中壳管式换热器(又称列管式)是最典型的间壁式换热器,它在工业应用有着悠久的历史,而且至今仍在所有换热器中占有主导的地位。 1.1 课题的提出和研究内容 1.1.1 课题背景 管壳式冷凝器所涉及到的原理和它应用的领域都十分广泛,特别在制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的冷凝器,大型中央空调的冷水机组中都有其身影。可以说在民用和工业领域中的重要性不言而喻,所以对其的合理优化设计是非常重要的。 这次的毕业设计是与上海第一冷冻机厂的校企合作项目,上海第一冷冻机厂有限公司始创于1934年,我国第一台活塞式制冷压缩机、第一台离心式压缩机、第一台溴化锂制冷机和第一台螺杆制冷压缩机都诞生在这里!公司现已成为一个集冷冻空调设备研制开发、制造和压力容器制造、压力管道设计及相关工程安装和系统服务于一体的集约化企业。此次的毕业设计正是为企业设计HSG70-2型冷凝器,也是将大学四年所学知识学以致用。 1.1.2课题任务 本课题是按照上海第一冷冻机厂的要求设计HSG70-2型双机头(双回路)管壳式冷凝器。由于这个型号是工厂第一次设计,所以需

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

换热器设计开题报告

换热器设计开题报告 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

理工学院毕业设计(论文)开题报告题目:气-液介质专用换热器设计 学生姓名:石静学号:09L0503216 专业:过程装备与控制工程 指导教师:郭彦书(教授) 2013 年 4月 8 日

1文献综述 绪论 换热设备是化工、炼油、动力、能源、冶金、食品、机械、建筑工业中普遍应用的典型设备。一般换热设备在化工、炼油装置中的建设费用比例达20%~50%因此无论从能源利用,还是从工业的投资来看,合理地选择和设计换热器,都具有重要意义。在各种换热器中,由于管壳式换热器具有单位体积内能够提供较大的传热面积、传热效果好、适应性强、操作弹性大、易制造、成本低、易于检修和清洗等特点,因此应用最广泛。管壳式换热器按结构特点分为固定管板式、U型管式、浮头式、双重管式、填涵式和双管板等几种形式。不同的结构各有优缺点,适用于不同的场合。本文介绍的是板式换热器[1]。 管壳式换热器的特点 管壳式换热器是由一系列具有一定波纹形状的的金属片叠装而成的一种高效换热器。换热器的各板片之间形成许多小流通断面的流道,通过板片进行热量交换,它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多。板式换热器的广泛应用,加速了我国板式换热器行业的迅速发展,但我国板式换热器设计与发达国家之间仍存在着不小的差距。板式换热器是以波纹为传热面,在流道中布满网状触电,流体沿着板间狭窄弯曲、犹如迷宫式的通道流动,其速度大小和方向不断改变,形成强烈的湍流,从而破坏边界层,减少界面膜热阻,并使固体颗粒悬浮,不易沉积,有效地强化了传热,因此,它比管壳式等其他类型换热器具有很多独特的优点。第一,传热系数高,由于换热器的特殊结构及组装方式,使介质在流经相邻两板片间的流道时,流动方向和流速不断变化,在低流速下,形成急剧湍流,强化换热;第二,温差小,由于板式换热器具有较高的传热系数及强烈的湍流,可使热交换器的一、二次流体温度十分接近,温差趋近1~3℃;第三,热损失小,由于板片边缘及密封垫暴露在大气中,所以热损失极小,一般为1%左右,不需采取保护措施。在相同换热面积情况下,板式换热器的热损失仅为管壳式换热器的五分之一,而重量则不到管壳式的一半;第四,结构紧凑,换热板片由薄的不透钢板压制而成,板片间距一般为4mm,板片表面的波纹大大增加了有效换热面积,这样单位容积中可容纳很大的传热面积(每立方米体积可布置250㎡的传热面积),占地面积仅为管壳式的五分之一到十分之一。因此,体积小,节省安装空间。第五,适应性强,可根据产量及工艺要求,方便地增加或减少传热板片,亦可将板片重新排列,改变流程组合;第六,用途广泛,目前已广泛应用于化工、石油、机械、冶金、电力、食品、热水供应、集中供暖等工程领域,完成加热、冷却、蒸发、冷凝、余热回收等工艺过程中截

浮头式换热器检修方案

浮头式换热器检修方案 1. 概述 本次抢修换热器的体积较大、检修的设备重量较重,检修时间紧,并需高度交叉作业,为确保换热器的检修优质、高速、安全顺利的完成,特编制本方案。 2. 编制依据 《石油化工换热器设备施工及验收规范》SH3532-95 《石油化工施工安全技术规程》SH3505-1999 《管壳式换热器》GB151-1999 3. 检修准备 3.1检修前,应根据检修计划会同车间主管人员一起到现场最终确定检修工作内容和计 划工作量,熟悉现场的每一项检修内容的位置、工作量和检修难度,以便于做好各工种、各工序之间的工作协调。 3.2根据计划工作内容编制详细的检修方案,并报机动部、车间和有关部门批准。同 时,根据工作量合理组织人员和机具,排出检修计划进度表,要每一项检修内容具体落实到班组或个人。 3.3根据检修计划内容,核实每项施工任务的具体位置和详细情况,对在检修时 需要搭设脚手架和使用吊车的任务逐项统计,列出有关脚手架搭设数量和吊车台班

需求情况的明细表,落实施工手段用料和机具需用的数量。 3.4准备好检修所需的检修施工机具和材料,逐一落实检修所需材料的到货情 况、数量及到货时间,认真做好到货材料、配件的检验和保管。 3.5检修前,应向所有参加检修施工人员进行详细的技术交底,明确检修的工作内容、 技术要求、质量标准和时间要求。 4. 检修程序 4.1换热器结构形式 这次检修的换热器类型是浮头式换热器等。 4.2 检修程序 换热器的检修程序按其结构形式分为:浮头式换热器检修程序(壳程压力高于/低于管程压力); 5. 检修要求 5.1保温、保冷拆除 换热器置换、蒸馏合格后,经车间允许方可进行换热器的检修。检修前,应按规定办理有关的票证,并按方案要求进行检修施工。 换热器封头及连接管道的保温、保冷应提前进行拆除,拆除时应保持其完整,拆下的保温、保冷结构要编号,要保存好,便于恢复时使用。 5.2管箱拆下 首先,拆下与换热器两端管箱相连的法兰螺栓及妨碍拆卸管箱的管道。 然后,使用倒链或吊车将两端的管箱吊下,拆下的螺栓要保管好并标记,管箱要放支垫固定牢固。 浮头式换热器应先拆卸管箱、后头盖,然后拆下内浮头封头及后钩圈。 5.3抽芯

板式换热器设计毕业论文

板式换热器设计毕业论文 目录 前言 (1) 1章标题 (2) 1.1节标题 (3) 1.1.1小节标题 (4) 1.1.1.1小节子标题 (5) 1.2节标题 (6) 1.2.1小节标题 (7) 1.2.1.1小节子标题 (8) 2章标题 (9) 2.1节标题 (10) 2.1.1小节标题 (11) 2.1.1.1小节子标题 (12) 1绪论 1.1 板式换热器的学术背景及意义 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中,它的发展已有一百多年的历史。 1878年德国人发明了半片式换热器,现在通常都称作板式换热器,它经过了50余年的发展,至20世纪30年代,由薄金属板压制的板片组装而成的板式换热器间世,并将该换热器应用于工业中,显示出了优异的性能,从此就迅速地得到了广泛的推广应用,成为紧凑、高效的换热设备之一。 板式换热器是以波纹板的新型高效换热器。国外早在20世纪20年代就作为工艺设备引入食品工业,40—50年代初开始用于化工领域。近十年来,板式换热器发展很迅速,现已广泛用于食品、制药、合成纤维、石油化工、动力机械、船舶、动力、供热等各行业。目前我国的板式换热器工厂,可制造单板传热面积从0.042m2至1.32m2,波纹形式为水平平直波纹、人字形波纹、球形波纹、锯齿形波纹、竖直形波纹的板式换热器。

由于板式换热器在制造上和使用上都有一些独特之处,所以在工业上一经使用成功之后就发展很快。到本世纪四十年代,已经有几个国家好几个厂生产出许多种不同形状和不同尺寸的板片。至于现在,世界上能生产板式换热器的工厂已经很多了,主要的生产厂不下三、四十个。几个主要生产厂一般都有该厂独特的板片波形。一般一个厂只生产有限几种尺寸的板片。然后组装成换热面积大小不同的换热器。因为从设计到制造成功一定波形的板片需要有较大的投资和较长的时间,所以一般生产工厂不轻易改变板片的波形。 早期的板式换热器大都用于食品工业,如牛奶、蛋液、啤酒等的加工过程中。这是由于早期扳片的单板面积较小,不能组成单台面积较大的换热器,所以只能用于处理物料流量较小的场合,随着单板面积的增大,能组成的单台板式换热器的面积也相应增大。现在各制造厂竞相增大单板面积和组成大型的板式换热器。 板式换热器今后的发展趋势是:提高操作温度和操作压力,加大处理量,扩大使用范围,研制采用新的结构材料的制造工业,而研制新的垫片材料易提高其使用温度和使用压力,将是其中的重点。 虽然板式换热器有很多优点,而其现在发展很快,但它们在结构与制造上尚存在问题。随着科学技术的飞速发展,板式换热器正不断完善,应用也日趋广泛。 21世纪我国的能源形势是紧张的,我国和世界的能源消耗随着人口的增长和工业化的进展将会快速增长;现在我们利用的主要一次能源(煤炭、石油、天然气和核能)之中,除煤炭之外,其余三项已逐渐枯竭,其价格不可避免将持续增长;目前尚没有发现能替代石油、天然气、核能的一次能源,作为有效替补的能源有太阳能和热核反应,但前者成本费高,后者尚有许多实质的问题没有解决,尚不能达到实用阶段;为了控制地球温室效应,化石燃料的使用受到了各国舆论的强烈反对。综上所述,在21世纪的上半个世纪之间,作为解决我国能源和环境问题的重要措施之一是如何有效地利用好一次能源,其中主要研究的内容是从一次能源转移至二次能源、三次能源的高效率化;各阶段利用技术的先进性和效率的提高;需求的平衡和能源的供给、消耗系统的改善等。上述所说内容的实质是热技术,当分析各项技术时,我们将发现,换热技术是关键工艺之一。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片; 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层; 3:研究提高使用压力和使用温度; 4:发展大型板式换热器; 5:研究板式换热器的传热和流体阻力; 6:研究板式换热器提高换热综合效率的可能途径。 1.2 我国设计制造应用情况 我国板式换热器的研究、设计、制造,开始于六十年代。1965年,兰州石油化工机器

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

换热器检修施工方案

1. 概述 华星石化4月份底E401/2抢修。本次抢修换热器的体积较大、检修的设备重量较重,检修时间紧,并需高度交叉作业,为确保换热器的检修优质、高速、安全顺利的完成,特编制本方案。 2. 编制依据 《石油化工换热器设备施工及验收规范》SH3532-95 《石油化工施工安全技术规程》SH3505-1999 《管壳式换热器》GB151-1999 3. 检修准备 3.1检修前,应根据检修计划会同车间主管人员一起到现场最终确定检修工作内容 和计划工作量,熟悉现场的每一项检修内容的位置、工作量和检修难度,以便于做好各工种、各工序之间的工作协调。 3.2根据计划工作内容编制详细的检修方案,并报机动部、车间和有关部门批准。 同时,根据工作量合理组织人员和机具,排出检修计划进度表,要每一项检修内容具体落实到班组或个人。 3.3根据检修计划内容,核实每项施工任务的具体位置和详细情况,对在检修时需 要搭设脚手架和使用吊车的任务逐项统计,列出有关脚手架搭设数量和吊车台班需求情况的明细表,落实施工手段用料和机具需用的数量。 3.4 准备好检修所需的检修施工机具和材料,逐一落实检修所需材料的到货情况、 数量及到货时间,认真做好到货材料、配件的检验和保管。 3.5 检修前,应向所有参加检修施工人员进行详细的技术交底,明确检修的工作内 容、技术要求、质量标准和时间要求。 4. 检修程序 4.1换热器结构形式 这次检修的换热器类型是浮头式换热器等。 4.2 检修程序 换热器的检修程序按其结构形式分为:浮头式换热器检修程序(壳程压力高于/低于管程压力); 浮头式换热器检修程序浮头式换热器检修程

5. 检修要求 5.1 保温、保冷拆除 换热器置换、蒸馏合格后,经车间允许方可进行换热器的检修。检修前,应按规定办理有关的票证,并按方案要求进行检修施工。 换热器封头及连接管道的保温、保冷应提前进行拆除,拆除时应保持其完整,拆下的保温、保冷结构要编号,要保存好,便于恢复时使用。 5.2 管箱拆下

相关文档
最新文档