计量经济学英文版附录B 翻译

合集下载

(将下列每段英文翻译成中文)

(将下列每段英文翻译成中文)

Translation ( Translate each of the following passage into Chinese )翻译(将下列每段英文翻译成中文)Chapter 1 Summary 蔡信杰03391004 陈彬033910051,Public finance ,also known as public sector economics or public economics, focuses on the taxing and spending activities of government and their influence on the allocation of resources and distribution of income.财政学,即公共经济学,焦点是税收和政府支出以及它们在分配资源和分配收入上的影响。

2,Public finance economists analyze both actual policies and develop guidelines for government activities . In the latter role, economists are influenced by their attitudes toward the role of government in society.财政学同时为政府行为分析现有方针和发展知道思路。

在未来作用中,经济受到在社会中有利于政府的关注者的影响。

3,In all organic view of society , individuals are valued only by their contribution to the realization of social goals. These goals are determined by the government.在一种有机的社会观中,个别价值只是由它们对实现政府目标所做出贡献来评价的。

金融计量经济学(双语版)(全套课件)

金融计量经济学(双语版)(全套课件)

• Thus the autocorrelation function will be zero apart from a single peak of 1 at s = 0. • 如果假设yt服从标准正态分布, 则 ˆ s approximately N(0,1/T) • We can use this to do significance tests for the autocorrelation coefficients by constructing a confidence interval. • a 95% confidence interval would be given by 1.96 1 .
5-7
An ACF Example (p234)
• Question: Suppose that we had estimated the first 5 autocorrelation coefficients using a series of length 100 observations, and found them to be (from 1 to 5): 0.207, -0.013, 0.086, 0.005, -0.022. Test each of the individual coefficient for significance, and use both the Box-Pierce and Ljung-Box tests to establish whether they are jointly significant. • Solution: A coefficient would be significant if it lies outside (-0.196,+0.196) at the 5% level, so only the first autocorrelation coefficient is significant. Q=5.09 and Q*=5.26 Compared with a tabulated 2(5)=11.1 at the 5% level, so the 5 coefficients are jointly insignificant. 课件

计量经济学专业英汉词典

计量经济学专业英汉词典

计量经济学专业英汉词典计量经济学专业英汉词典中文英文调整的R^2 (确定系数)adjusted R^2调整系数adjustment coefficient调整系数矩阵adjustment coefficient matrix赤池信息准则(AIC)Akaike’s information criterion (AIC) 阿尔蒙分布滞后模型Almen distributed lag model阿尔蒙滞后Almon lags备择假设alternative hypothesis方差分析analysis of variance辅助变量ancillary variable近似协方差矩阵approximate covariance matrix近似正态分布approximate normal distribution自回归模型AR model自回归过程AR process自回归条件异方差模型ARCH model自回归移动平均模型ARMA model假定assumption渐近χ2分布asymptotic χ2 distribution渐近协方差矩阵asymptotic covariance matrix渐近分布asymptotic distribution渐近有效性asymptotic efficiency渐近性质asymptotic properties渐近抽样特性asymptotic sampling properties渐近设定asymptotic specification渐近标准误差asymptotic standard error渐近检验asymptotic test渐近检验统计量asymptotic test statistic渐近逼近asymptotically approximation渐近有效估计式asymptotically efficient estimator渐近无偏估计式asymptotically unbiased estimatorADF检验,增项(增广)DF检验Augmented Dickey-Fuller test AEG检验,增项(增广)EG检验Augmented Engle-Granger test自相关方程误差autocorrelated equation error自相关autocorrelation自相关函数autocorrelation function自协方差autocovariance自协方差函数autocovariance function自回归autoregression自回归条件异方差autoregressive conditional heteroscedasticity自回归分布滞后模型autoregressive distributed lag (ADL) model自回归单整移动平均(ARIMA)autoregressive integrated moving average process 过程自回归(AR)摸型autoregressive model自回归移动平均(ARMA)过程autoregressive moving-average process自回归算子autoregressive operator辅助回归auxiliary regression平均值average行为方程behavioral equation贝拉-哈尔克(BJ)统计量Bera-Jarque statistic贝努利分布Bernoulli distribution最佳决策best decision最佳线性无偏估计式(BLUE)best linear unbiased estimator (BLUE)最佳线性无偏预测best linear unbiased prediction最佳无偏估计式best unbiased estimator偏倚bias偏倚向量bias vector有偏估计式biased estimator二元选择模型binary choice model二项分布binomial distribution二元正态随机变量bivariate normal random variable自举法,靴襻法bootstrap procedure博克斯-考克斯变换Box-Cox transformation博克斯-詹金斯方法Box-Jenkins approach布罗施-帕甘检验Breusch-Pagan test布朗运动Brownian motion典型相关canonical correlation因果性causality中心极限定理central limit theorem特征方程characteristic equation特征根characteristic root特征向量characteristic vector卡埃方分布chi-square distribution古典统计学classical statistics柯布-道格拉斯生产函数Cobb-Douglas production function 科克伦-奥克特方法Cochrane-Orcutt procedure“概率极限”概念concept of “plim”条件推断conditional inference条件概率conditional probability条件概率密度函数conditional probability density function 置信区间confidence interval一致性consistency一致估计式consistent estimator一致性检验consistent test消费函数consumption function同期相关contemporaneous correlation同期协方差矩阵contemporaneous covariance matrix同期扰动相关contemporaneous disturbance correlation同期独立随机回归自变量contemporaneous independent stochastic regressor 连续映射理论continuous mapping theorem 连续随机变量continuous random variable连续回归函数continuous regression function常规抽样理论conventional sampling theory依概率收敛converge in probability收敛convergence依分布收敛convergence in distribution相关correlation相关系数correlation coefficient相关矩阵correlation matrix相关图correlogram成本cost协方差covariance协方差矩阵covariance matrix协方差矩阵估计式covariance matrix estimator克拉美规则Cramér rule克拉美-拉奥不等式Cramér-Rao inequality克拉美-拉奥下界Cramér-Rao lower bound临界区域critical region临界值critical value截面数据cross-section data累积分布函数cumulative distribution function 数据data数据生成过程(dgp)date generation process数据标准化date normalization盲始模型dead-start model决策decision making决策规则decision rule决策规则选择decision rule choice决策理论decision theory演绎系统deductive system定义方程definitional equation解释程度degree of explanation自由度degree of freedom密度函数density function相依变量dependent variable设计矩阵design matrix检验方法detection methods方阵的行列式determinant of a square matrix确定系数,可决系数determination coefficient诊断校验diagnostic checking对角矩阵diagonal matrix对称矩阵的对角化diagonalization of a symmetric matrix 差分difference差分方程difference equation离散随机变量discrete random variable离散样本空间discrete sample space离散随机过程discrete stochastic process非均衡误差disequilibrium error不相交集disjoint set分布滞后distributed lag分布滞后模型distributed lag model分布distribution分布函数distribution function分布理论distribution theory扰动协方差矩阵disturbance covariance matrix扰动方差disturbance variance位移项drift虚拟变量dummy variable虚拟变量估计式dummy variable estimatorDW(德宾—沃森)统计量Durbin-Watson statisticDW(德宾—沃森)检验Durbin-Watson test动态模型dynamic model动态乘数dynamic multiplier动态回归dynamic regression动态联立方程dynamic simultaneous equation计量经济学,经济计量学econometrics经济变量economic variables经济学economics经济economy有效性efficiencyEG检验EG test特征值eigen value弹性elasticity椭圆ellipse空集empty set内生变量endogenous variableEG两步估计量Engel-Granger (EG) two-step estimate EG两步法Engel-Granger (EG) two-step method 方程误差equation error 方程识别equation identification均衡equilibrium均衡分析equilibrium analysis均衡条件equilibrium condition均衡乘子equilibrium multiplier均衡关系equilibrium relationship均衡状态equilibrium state遍历性ergodicity误差error误差分量error component误差修正机制error correction mechanism误差修正模型error correction model误差修正项error correction term误差平方和error sum of squares误差向量error vector估计量estimate估计estimation估计式estimator欧氏空间Euclidean space外生前定变量exogenous predetermined variable 外生变量exogenous variable期望算子expectation operator期望值expected value试验experiment被解释变量explained variable解释变量explaining variable解释explanation指数分布exponential distributionF分布 F distributionF统计量 F statisticF检验 F test因子分解准则factorization criterion反馈feedback最终形式final form有限分布滞后模型finite distribution lag model有限非奇异矩阵finite nonsingular matrix有限多项式滞后finite polynomial lag有限抽样特性finite sampling property有限方差finite variance一阶自回归模型first-order autoregressive model 一阶条件first-order condition一阶差分算子first-order difference operator 一阶泰勒级数first-order Taylor series拟合值fitted value固定回归自变量fixed regressor预测区间forecast interval预测区域forecast region预测方差forecast variance预测forecasting频数,频率frequency完全信息估计full information estimation完全信息极大似然法full information maximum likelihood method 函数形式function form函数空间function space泛函中心极限定理functional central limit theorem (FCLT)伽玛分布Gamma distribution伽玛函数Gamma function广义自回归条件异方差模型GARCH高斯白噪声Gaussian white noise高斯-马尔可夫定理Gauss-Markov theorem高斯-牛顿算法Gauss-Newton algorithm一般协方差矩阵general covariance matrix一般均衡general equilibrium一般线性假设general linear hypothesis一般线性统计模型general linear statistical model一般随机回归自变量模型general stochastic regressor model“一般到特殊”方法general to special method广义自回归算子generalized autoregressive operator广义最小二乘法generalized least squares广义最小二乘估计generalized least squares estimation 广义最小二乘估计式generalized least squares estimator 广义最小二乘方法generalized least squares procedure 广义最小二乘残差generalized least squares residual广义最小二乘规则generalized least squares rule几何滞后模型估计geometric lag model estimation总体极小值global minimum拟合优度goodness of fit格兰杰因果性Granger causality格兰杰因果性检验Granger causality test格兰杰非因果性Granger noncausality格兰杰定理Granger representation theorem增长率模型growth rate model豪斯曼设定检验Hausman specification test重(厚)尾heavy tail海赛矩阵Hessian matrix异方差误差heteroscedastic error异方差heteroscedasticity同一性homogeneity同方差误差homoscedastic error同方差homoscedasticity假设hypothesis假设检验hypothesis test同分布随机变量identically distributed random variable 识别identification识别规则identification rules单位矩阵identity matrix压缩矩阵,影响矩阵impact matrix影响乘数矩阵impact multiplier matrix非一致性inconsistency错误约束incorrect restriction独立同一分布independent and identical distribution (IID) 独立分布independent distribution独立事件independent event独立随机变量independent random variable独立随机回归自变量independent stochastic regressor独立变量independent variable间接最小二乘法indirect least squares不等式约束inequality restriction推断inference无限分布滞后infinite distributed lag无限累加算子infinite summation operator无限方差infinite variance有影响的观测值influential observation信息矩阵information matrix内积inner product新息过程innovation sequence投入产出关系input-output relationship工具变量instrumental variable工具变量估计instrumental variable estimation 单整integration截距intercept区间估计interval estimation区间预测interval forecast不变性invariance逆矩阵inverse matrix信息矩阵的逆inverse of information matrix可逆性invertibility可逆移动平均过程invertible moving-average process 投资investment迭代方法iterative procedure大折刀方法jackknife procedure雅可比变换Jacobian of the transformation联合置信区间joint confidence interval联合置信区域joint confidence region联合密度函数joint density function联合扰动向量joint disturbance vector联合假设检验joint hypothesis test联合区间估计joint interval estimation联合零(原)假设joint null hypothesis联合概率分布joint probability distribution联合被确定变量jointly determined variable恰好识别方程just identified equation核kernel凯恩斯消费函数Keynesian consumption function 凯恩斯模型Keynesian model克莱因-戈德伯格消费函数Klein-Goldberger consumption克莱因-鲁滨效用函数Klein-Rubin utility function柯依克变换Koyck transformation克罗内克尔积Kronecker product库恩-塔克条件Kuhn-Tucker condition峰度,峭度kurtosis滞后lag滞后长度lag length滞后算子lag operator滞后权数lag weight滞后变量lagged variable拉格朗日乘数Lagrange multiplier拉格朗日乘子检验Lagrange multiplier test拉普拉斯展开Laplace expansion大样本特性large sample properties全概率定律law of total probability前导模型leading indication model最小绝对离差least absolute deviation最小绝对误差估计式least absolute error estimator 最小平方偏倚least squares bias最小平方准则least squares criterion最小平方估计式least squares estimator最小平方法least squares procedure最小平方残差least squares residual最小平方规则least squares rule最小平方方差估计式least squares variance estimator左逆矩阵left-inverse matrix显著性水平level of significance杠杆率leverage似然函数likelihood function似然原理likelihood principle似然比原理likelihood ratio principle似然比统计量likelihood ratio statistic似然比检验likelihood ratio test线性代数linear algebra线性联系linear association线性相依linear dependency线性相依向量linear dependent vector线性等式约束linear equality restriction 线性方程linear equation线性方程系统linear equation system线性估计式linear estimator线性形式linear form线性参数linear in parameter线性无关向量linear independent vector线性不等式假设linear inequality hypothesis 线性不等式约束linear inequality restriction 线性损失函数linear loss function 线性算子linear operator线性概率模型linear probability model线性规划模型linear programming model线性约束linear restriction线性规则linear rule线性联立方程linear simultaneous equation 线性统计模型linear statistical model线性变换linear transformation线性无偏估计式linear unbiased estimator线性linearity局部极小值local minima罗基斯迪随机变量logistic random variable罗基特(Logit)模型logit model对数似然函数log-likelihood function对数线性函数log-linear function长期效应long-run effect损失loss损失函数loss function下三角矩阵lower triangular matrix矩(M)估计式M estimator移动平均模型MA model宏观经济学macroeconomics边缘分布marginal distribution边缘概率密度函数marginal probability density function 边际消费倾向marginal propensity to consume数理经济学mathematical economics数学期望mathematical expectation矩阵matrix矩阵分解matrix decomposition极大似然估计maximum likelihood estimation极大似然估计式maximum likelihood estimator极大似然法maximum likelihood method均值mean均方误差mean square error均方误差准则mean square error criterion均方误差矩阵mean square error matrix均值向量mean vector测量误差measurement error中位数median矩法method of moments极小极大准则minimax criterion使损失最小minimizing loss使风险最小minimizing risk最小绝对离差估计式minimum absolute deviation estimator 最小方差minimum variance最小方差无偏估计minimum variance unbiased estimation 错误设定misspecification混合估计mixed estimation众数mode模型model模型设定model specification模数module复数的模modulus of a complex number矩moment蒙特卡罗Monte Carlo蒙特卡罗数据Monte Carlo data蒙特卡罗试验Monte Carlo experiment蒙特卡罗模拟Monte Carlo simulation移动平均moving average移动平均(MA)模型moving average (MA) model移动平均过程moving average process移动平均表示法moving average representation移动平均季节过滤算子moving average seasonal filter多重共线性multicollinearity多项选择模型multinomial choice models多项分布multinomial distribution多元回归multiple regression多重解multiple solution多重时间序列分析multiple time-series analysis乘法multiplication乘子,乘数multiplier多元分布multivariate distribution多元函数multivariate function多元正态分布multivariate normal distribution多元正态随机变量multivariate normal random variable 多元随机变量multivariate random variable多元t 分布multivariate t distribution互斥集mutually exclusive set自然共轭先验概率密度函数natural conjugate prior probability density function半负定矩阵negative semidefinite matrix嵌套nest牛顿-拉夫森算法和方法Newton-Raphson algorithm and method非线性函数nonlinear function参数非线性nonlinear in the parameter非线性最小平方法nonlinear least squares非线性最小平方估计nonlinear least squares estimation非线性似然函数nonlinear likelihood function非线性极大似然估计nonlinear maximum likelihood estimation 非线性回归nonlinear regression非线性似不相关回归方程nonlinear seemingly unrelated regression equation非线性nonlinearity非负定矩阵nonnegative definite matrix非嵌套模型nonnested models非正态分布nonnormal distribution非正态误差nonnormal error非正定矩阵nonpositive definite matrix非纯量单位协方差矩阵nonscalar identity covariance matrix 非奇异矩阵nonsingular matrix非平稳nonstationary非平稳过程nonstationary process非随机变量nonstochatic variable正态分布normal distribution正态分布理论normal distribution theory正态误差的检验normal error testing正态线性统计模型normal linear statistical model正态概率密度函数的核normal probability density function 正态随机向量normal random vector正态变量normal variable正态向量normal vector标准化常数normalizing constant正态分布随机变量normally distribution random variable 多余参数nuisance parameter零(原)假设null hypothesis零矩阵null matrix空集,零集null set可观测随机变量observable random variable可观测随机向量observable random vector观测值样本observation sample观测上的等价模型observationally equivalent model阶order阶条件order condition普通最小二乘法ordinary least squares正交矩阵orthogonal matrix正交向量orthogonal vector正交orthogonality标准正交线性统计模型orthonormal linear statistical model 离群值outliers过度识别方程overidentified equation参数parameter参数估计parameter estimation参数方差parameter variance参数检验parametric test帕累托分布Pareto distribution局部调整分布滞后模型partial adjustment distributed lag model 偏(局部)调整模型partial adjustment model偏自相关partial autocorrelation偏自相关系数partial autocorrelation coefficient偏自相关函数partial autocorrelation function偏相关partial correlation偏相关图partial correlogram偏导数partial derivative局部均衡partial equilibrium分块逆规则partitioned inverse rule完全多重共线性perfect multicollinearity长期收入假设permanent income hypothesis分段线性回归piecewise linear regression分段回归函数piecewise regression function点估计量point estimate点估计point estimation点估计式point estimator点估计式性质point estimator properties多项式polynomial多项式滞后polynomial lag多项式矩阵polynomial matrix合并数据pooling data合并模型pooling model合并模型选择pooling model selection合并时间序列pooling time series合并时间序列数据pooling time series data总体population正定矩阵positive definite matrix正定对称矩阵positive definite symmetric matrix 半正定矩阵positive semidefinite matrix后验密度posterior density后验密度函数posterior density function后验分布posterior distribution后验信息posterior information后验均值posterior mean后验优势posterior odds后验优势比posterior odds ratio后验概率posterior probability后验概率密度函数posterior probability density function 后验概率区域posterior probability region假设过程postulation process功效函数power function检验功效power of a test前定变量predetermined variable预测误差prediction error随机分量的预测prediction of random components预测精度prediction precision主分量模型principal components model先验协方差矩阵prior covariance matrix先验分布prior distribution先验均值prior mean先验概率prior probability先验概率密度函数prior probability density function先验概率区域prior probability region概率probability概率密度probability density概率分布probability distribution离散随机变量的概率分布probability distribution for discrete random variable概率分布函数probability distribution function概率测度probability measure概率单位(probit)模型probit model积矩product moment积矩量矩阵product moment matrix积算子product operator生产函数production function生产过程production process比例响应模型proportional response model 伪样本数据pseudo sample data二次型quadratic form二次损失函数quadratic loss function二次矩阵quadratic matrix定量选择模型quantitative choice model 定量因素quantitative factors定量信息quantitative information随机系数模型random coefficient model随机分量预测random component prediction 随机误差random error随机试验random experiment随机变量random variable随机向量random vector随机向量分量random vector component随机游走random walk秩rank秩条件rank condition矩阵的秩rank of a matrix简化型reduced form简化型系数reduced form coefficient简化型扰动reduced form disturbance简化型方程reduced form equation简化型估计式reduced form estimator。

计量经济学(英文版)Basic Econometrics-Long.

计量经济学(英文版)Basic Econometrics-Long.
2018/8/6 6
• The Data Types
Chapter 1 Introduction
-- Time-series data data that represent repeated observations of some variable in subsequent time periods. A time-series variable is often subscripted with the letter t. -- Cross-sectional data data that represent a set of observations of some variable at one specific instant over several agents. A crosssectional variable is often subscripted with the letter i. -- Time-series cross-sectional data data that are both time series and cross-sectional. An special case of time-series cross-sectional data is panel data. Panel data are observations of the same set of agents over time.
2018/8/6 2
• The qualitative and quantitative relation among various variables --non-exact quantitative relations:
Q = f (P) Q = a + bP + ; --where f may not represent single relation like linear -- a and b are conditionally exact number, --The term represent those condition under which what are the data of Q and P. ex1. The relation between supply and demand see textbook: coffee ex2. income and consume: multi-relation and no exact sole parameters to determine the relation

英汉对照计量经济学术语

英汉对照计量经济学术语

英汉对照计量经济学术语第一篇:英汉对照计量经济学术语计量经济学术语A 校正R2(Adjusted R-Squared):多元回归分析中拟合优度的量度,在估计误差的方差时对添加的解释变量用一个自由度来调整。

对立假设(Alternative Hypothesis):检验虚拟假设时的相对假设。

AR(1)序列相关(AR(1)Serial Correlation):时间序列回归模型中的误差遵循AR(1)模型。

渐近置信区间(Asymptotic Confidence Interval):大样本容量下近似成立的置信区间。

渐近正态性(Asymptotic Normality):适当正态化后样本分布收敛到标准正态分布的估计量。

渐近性质(Asymptotic Properties):当样本容量无限增长时适用的估计量和检验统计量性质。

渐近标准误(Asymptotic Standard Error):大样本下生效的标准误。

渐近t 统计量(Asymptotic t Statistic):大样本下近似服从标准正态分布的t 统计量。

渐近方差(Asymptotic Variance):为了获得渐近标准正态分布,我们必须用以除估计量的平方值。

渐近有效(Asymptotically Efficient):对于服从渐近正态分布的一致性估计量,有最小渐近方差的估计量。

渐近不相关(Asymptotically Uncorrelated):时间序列过程中,随着两个时点上的随机变量的时间间隔增加,它们之间的相关趋于零。

衰减偏误(Attenuation Bias):总是朝向零的估计量偏误,因而有衰减偏误的估计量的期望值小于参数的绝对值。

自回归条件异方差性(Autoregressive Conditional Heteroskedasticity, ARCH):动态异方差性模型,即给定过去信息,误差项的方差线性依赖于过去的误差的平方。

一阶自回归过程[AR(1)](Autoregressive Process of Order One [AR(1)]):一个时间序列模型,其当前值线性依赖于最近的值加上一个无法预测的扰动。

计量经济学英文课件共35页

计量经济学英文课件共35页
8
One-Sided Alternatives (cont)
Having picked a significance level, a, we look up the (1 – a)th percentile in a t distribution with n – k – 1 df and call this c, the critical value We can reject the null hypothesis if the t statistic is greater than the critical value If the t statistic is less than the critical value then we fail to reject the null
Under the CLM assumptions, conditional on the sample values of the independent variable s
bˆ j ~ Normal b j ,Var bˆ j , so that
bˆ j b j sd bˆ j ~ Normal 0,1
7
t Test: One-Sided Alternatives
Besides our null, H0, we need an alternative hypothesis, H1, and a significance level H1 may be one-sided, or two-sided
because we have to estimate s 2by sˆ 2
Note the degrees of freedom : n k 1
5
The t Test (cont)

计量经济学(英文)重点知识点考试必备

计量经济学(英文)重点知识点考试必备

第一章1. Econo metrics (计量经济学):the social scie nee in which the tools of econo mic theory, mathematics, and statistical inference are applied to the an alysis of econo mic phe nomena.the result of a certain outlook on the role of economics, consists of the application of mathematical statistics to econo mic data to lend empirical support to the models con structed by mathematical econo mics and to obta in nu merical results.2. Econo metric an alysis proceeds along the followi ng lines计量经济学分析步骤1)Creat ing a stateme nt of theory or hypothesi建立一个理论假说2)Collecting data.收集数据3)Specify ing the mathematical model of theory 设定数学模型4)Specify ing the statistical, or econo metric, model of theory设立统计或经济计量模型5)Estimati ng the parameters of the chose n econo metric mod估计经济计量模型参数6)Check ing for model adequacy : Model specificati on test ing 核查模型的适用性:模型设定检验7)Testi ng the hypothesis derived from the mode检验自模型的假设8)Using the model for prediction or forecasting禾U用模型进行预测Step2:收集数据Three types of data三类可用于分析的数据1)Time series(时间序歹U数据):Collected over a period of time, are collected at regular in tervals.按时间跨度收集得到2)Cross-sectional截面数据:Collected over a period of time, are collected at regular in tervals.按时间跨度收集得到3)Pooled data合并数据(上两种的结合)Step3:设定数学模型1. plot scatter diagram or scattergram2. write the mathematical modelStep4:设立统计或经济计量模型CLFPR is depe nde nt variable应变量CUNR is in depe nde nt or expla natory variable独立或解释变量(自变量)We give a catchall variable U to stand for all these neglected factorsIn lin ear regressi on an alysis our primary objective is to expla in the behavior of the depe ndent variable in relati on to the behavior of one or more other variables, allowi ng for the data that the relati on ship betwee n them is in exacts 性回归分析的主要目标就是解释一个变量(应变量)与其他一个或多个变量(自变量)只见的行为关系,当然这种关系并非完全正确Step5:估计经济计量模型参数In short, the estimated regressi on line gives the relati on ship betwee n average CLFPR and CUNR简言之,估计的回归直线给出了平均应变量和自变量之间的关系That is, on average, how the depe ndent variable resp onds to a unit cha nge in the in depe nde nt variable单位因变量的变化引起的自变量平均变化量的多少。

大学伍德里奇计量经济学第三版教师手册-APPENDIX B

大学伍德里奇计量经济学第三版教师手册-APPENDIX B

20XX年复习资料大学复习资料专业:班级:科目老师:日期:APPENDIX BSOLUTIONS TO PROBLEMSB.1 Before the student takes the SAT exam, we do not know – nor can we predict with certainty –what the score will be. The actual score depends on numerous factors, many of which we cannot even list, let alone know ahead of time. (The student’s innate ability, how the student feels on exam day, and which particular questions were asked, are just a few.) The eventual SAT score clearly satisfies the requirements of a random variable.B.2 (i) P(X 6) = P[(X– 5)/2 (6 – 5)/2] =P(Z.5) ≈.692, where Z denotes a Normal (0,1) random variable. [We obtain P(Z£ .5) from Table G.1.](ii) P(X> 4) = P[(X–5)/2 > (4 –5)/2] = P(Z> .5) = P(Z£ .5) .692.(iii) P(|X–5| > 1) = P(X–5 > 1) + P(X–5 < –1) = P(X> 6) + P(X< 4) ≈ (1 –.692) + (1 –.692) = .620XXXX, where we have used answers from parts (i) and (ii).B.3(i) Let Y it be the binary variable equal to one if fund i outperforms the market in year t. By assumption, P(Y it= 1) = .5 (a 50-50 chance of outperforming the market for each fund in each year). Now, for any fund, we are also assuming that performance relative to the market is independent across years. But then the probability that fund i outperforms the market in all 20XXXX years, P(Y i1= 1,Y i2= 1, , Y i,20XXXX= 1), is just the product of the probabilities: P(Y i1= = 1) P(Y i,20XXXX= 1) = (.5)20XXXX= 1/20XXXX0XX4 (which is1)⋅P(Yi2slightly less than .001). In fact, if we define a binary random variable Y i such that Y i= 1 if and only if fund i outperformed the market in all 20XXXX years, then P(Y i= 1) = 1/20XXXX0XX4.(ii) Let X denote the number of funds out of 4,20XXXX0 that outperform the market in all 20XXXX years. Then X= Y1+ Y2+ + Y4,20XXXX0. If we assume that performance relative to the market is independent across funds, then X has the Binomial (n,) distribution with n= 4,20XXXX0 and = 1/20XXXX0XX4. We want to compute P(X≥ 1)= 1 –P(X= 0) = 1 –P(Y1= 0, Y2= 0, …, Y4,20XXXX0 = 0) = 1 – P(Y1 = 0) P(Y2= 0)P(Y4,20XXXX0= 0) = 1 –(20XXXX0XX3/20XXXX0XX4)420XXXX0≈.20XXXX3. This means, if performance relative to the market is random and independent acrossfunds, it is almost certain that at least one fund will outperform the market in all 20XXXX years.(iii) Using the Stata command Binomial(420XXXX0,5,1/20XXXX0XX4), the answer is about .385. So there is a nontrivial chance that at least five funds will outperform the market in all 20XXXX years. B.4 We want P(X .6). Because X is continuous, this is the same as P(X> .6) = 1 –P(X£.6) = F(.6) = 3(.6)2–2(.6)3= .648. One way to interpret this is that almost 65% of all counties have an elderly employment rate of .6 or higher.B.5(i) As stated in the hint, if X is the number of jurors convinced of Sim pson’s innocence, then X~ Binomial(20XXXX,.20XX). We want P(X 1) = 1 – P(X= 0) = 1 – (.8)20XXXX≈ .931.(ii) Above, we computed P(X= 0) as about .20XXXX9. We needP(X= 1), which we obtain from (B.20XXXX) with n= 20XXXX, = .2, and x= 1: P(X= 1) = 20XXXX (.2)(.8)20XXXX≈ .220XXXX. Therefore, P(X 2) ≈ 1 – (.20XXXX9 + .220XXXX) = .725, so there is almost a three in four chance that the jury had at least two members co nvinced of Simpson’s innocence prior to the trial.B.6 E(X ) = 30()xf x dx ⎰ = 320[(1/9)] x x dx ⎰ = (1/9) 330x dx ⎰.But 330x dx ⎰ = (1/4)x 430| = 81/4. Therefore, E(X ) = (1/9)(81/4) = 9/4, or 2.25 years.B.7 In eight attempts the expected number of free throws is 8(.74) =5.92, or about six free throws.B.8 The weights for the two-, three-, and four-credit courses are 2/9, 3/9, and 4/9, respectively. Let Y j be the grade in the j thcourse, j = 1, 2, and 3, and let X be the overall grade point average. Then X = (2/9)Y 1 + (3/9)Y 2 + (4/9)Y 3 and the expected value is E(X ) =(2/9)E(Y 1) + (3/9)E(Y 2) + (4/9)E(Y 3) = (2/9)(3.5) +(3/9)(3.0) + (4/9)(3.0) = (7 + 9 + 20XXXX)/93.20XXXX.B.9 If Y is salary in dollars then Y = 20XXXX00⋅X , and so the expected value of Y is 1,000 times the expected value of X , and the standard deviation of Y is 1,000 times the standard deviation of X . Therefore, the expected value and standard deviation of salary, measured in dollars, are $52,300 and $20XXXX,600, respectively.B.20XXXX (i) E(GPA |SAT = 800) = .70 + .020XXXX(800) = 2.3. Similarly, E(GPA |SAT = 1,400) = .70 + .020XXXX(20XXXX00) = 3.5.The difference in expected GPAs is substantial, but the difference in SAT scores is also rather large.(ii) Following the hint, we use the law of iterated expectations. Since E(GPA|SAT) = .70 + .020XXXX SAT, the (unconditional) expected value of GPA is .70 + .020XXXXE(SAT) = .70 + .020XXXX(20XXXX0XX0) = 2.9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录B复习概率相关概念:学习目标:基于这个附录的材料,你应该能够:1、解释一个随机变量和它的值之间的不同,并给出一个例子。

2、解释离散型随机变量与连续型随机变量之间的不同,并分别给出一个例子。

3、描述离散型随机变量的概率密度函数的特征,并给出一个例子。

4、在给定的离散型概率函数中计算事件的概率。

5、解释下面语句的涵义:在离散型随机变量中取值2时所对应的概率为0.3。

6、解释连续型随机变量的概率密度函数与离散型随机变量的密度函数之间的不同。

7、怎样用代数的方法计算给定的连续型随机变量的概率。

8、直观的解释一个随机变量的均值或者期望值的概念9、结合离散型随机变量的期望值概念,在B.9给定的概率密度函数f(x)和函数g(x)来计算期望。

10、理解离散随机变量的方差的定义,并解释当方差值越大时随机变量取值更分散的意义。

11、运用一个联合概率密度函数(表格)表示两个离散型随机变量并且计算联合事件的概率,并且找到每个单独随机变量的边缘概率密度函数。

12、在给定另外一个离散型随机变量取值和他们的联合密度函数的情况下会找出一个离散型随机变量的条件概率密度函数。

13、给出一个关于两个随机变量相互独立的直观的解释,并且给出两个随机变量独立的条件。

举出两个随机变量相互独立和不独立的实例。

14、定义两个随机变量的协方差和相关性,并且在给定两个离散型随机变量的联合概率函数的情况下计算协方差和相关性。

15、找出随机变量和的均值和方差。

16、结合表1和电脑软件计算正态分布的概率。

关键词:二进制变量自由度众数二进制随机变量离散型随机变量正态分布连续型概分布试验概率条件概率密度函数 F分率分布函数期望值概率密度函数2布概率密度函数条件概率联合概率密度随机变量连续随机变量函数标准差相关性边缘分布标准正态分布协方差均值独立累积分布中数方差我们假定你已经学过一些基本概率统计的课程,在这章附录中我们将复习一些关于概率统计的基本概念,B.1部分我们回顾离散和连续型随机变量;在B.2部分复习概率分布;B.3部分介绍联合概率分布、定义了条件概率和独立的概念;在B.4部分我们将复习概率分布的一些特性,重点复习期望和方差;在B.5部分总结一些重我们常用的概率分布的重要特征:正态分布、t分布、F分布。

B.1 随机变量俗话说世界上只有死亡和纳税是确定的。

虽然不是这句话的本意,但这个观点还是指出我们在生活中遇到的大部分事情是不确定的。

我们不知道我们球队在下一个赛季会赢多少场,你肯定不知道在第一次考试中会得多少分,我们不知道明天的股指是多少。

这些事情或是结果都是不确定的或者说是随机的。

概率给了我们一个讨论可能性结果的方法。

一个随机变量是在观察前取值未知的量,换句话说就是它是不能准确预测的变化量。

每一个随机变量都有一组可能取的值。

如果用W 代表我们球队下赛季赢球的场数,如果最多只有13场比赛的话,那么W 可以取0、1、2、……13。

这是个离散型随机变量,因为它只可取有些可数的实数值。

另外关于离散型随机变量的实例有随机挑选的家庭中拥有电脑的数量以及下一年你看医生的次数。

如果一个试验只有两个结果发生,比如,在电话问卷中,别人问你你是否有大学学历,你的回答只能“是”或者“不是”这样的事件我就说它符合二项分布。

用“1”代表“是”用“0”代表“不是”。

二项分布是离散型的,用来代替性别(男或女)、种族(白人,非白人)等性质、特征。

美国的GNP是另一例随机变量,因为它的数值在观察到之前是不确定的。

在2007年的第二季度,它的值是$138394亿 美元(季度调整的年增长率)。

诚然,GNP是用美元来衡量的,并且可以整美元来计算,但是这个值太过巨大以至于计算个人的美元收入变得毫无意义。

从实际角度看,GNP可以取从零至无限间的任意值,它是一个连续性随机变量。

其他一般的宏观经济随机变量如利率、投资、消费,也看被认作连续性随机变量。

在经济学中,股市指数,像道—琼斯指数一样,也认为是连续的。

使这些变量得以连续的关键特性是它们可以取区间内的任意值。

B.2 概率分布概率通常用试验来定义。

转骰子是一个试验,我们可以得到六种结果。

如果骰子是均匀的,那么每种可能将以1/6的概率出现,假设试验进行无数次的话。

1/6这个概率的得出是因为有六种等可能性的结果。

然而,如果骰子不是均匀的。

设X是当掷骰子时出现的值,那么说X=1的概率就是当大量掷骰子时“一”出现的次数占总数的比重。

总之,一个事件的概率就是“限制性的相对频率”,或说在长期中它发生的比重。

在收集调查数据时,人员的学历常常是感兴趣的项目。

令X=1表示随机被调查者有大学或更高层次学历;令X=0表示相反情况。

在2002年,美国25岁及以上人口中,有27%至少有大学的学历。

因而,在总人口中,X=1的概率为0.27, 写作P(X=1)=0.27。

概率一定是正的并且总和是1,所以P(X=0)=1—P(X=1)=0.73。

在这个例子中随机变量是离散的,因此谈论取某个具体值的概率是有意义的。

我们可以用概率密度函数(pdf )来总和所有概率结果。

离散型随机变量的概率密度函数是指每个可能结果的概率值。

对离散型随机变量X,概率密度f(x)是随机变量X取值x 的概率,f(x)=P(X=x )。

因为f(x)是概率,因此一定有0≤f(x)≤1, 如果X可以取n 个值1x ....,n x ,那它们的总和一定是1。

f(X1)+f(X2)+ +f(Xn)=1.对于离散性随机变量,pdf 可能以表格、公式、或者图表的形式表现,以指明一个人是否拥有大学学历的二项分布,我们可以用像表B.1中的列表来表示。

概率同样可以等式的形式来表示,如:f(x)=x x -1)73.0()27.0( 这样得出f(1)=111)73.0()27.0-(-1 = 0.27, f(0)=010)73.0()27.0-( = 0.73Table B.1 Probabilities of a College DegreeCollege x f(x) DegreeNo 0 0.73Yes 1 0.27如另一个例子,令X表示一年中大学生找到工作的那个季度。

X五个取值的概率是X=0,1,2,3,4, f(x)=0.05, 0.50, 0.10, 0.10, 0.25. 我们可以用柱状图来表示这个离散型随机变量的pdf, 这样我们可以直观地看到各种可能的结果,如表B.1概率分布函数(cdf )是另一种表示概率的方法。

随机变量X的cdf,用F(x)表示,表示X小于或者等于某个特定的值x 。

即:F(x) = P(X ≤x)X的值,pdf, cdf, 如表B.2利用pdf 我们可以计算一个学生工作超过两个季度的概率,P(X>2)=1-P(X≤2)=1- F(2)=1-0.65=0.35对于标准概率分布,统计学软件已经整合cdf 函数,这样计算概率时较为省力。

例如,二项随机变量X是n 次独立试验中成功概率为p 的成功次数。

给定总事件次数n 与成功概率p 的数值,二项分布概率就可以表示如下x n x p p x n x x X P --⎪⎪⎭⎫ ⎝⎛===)1()(f )( 表B-2 概率分布函数和累积分布函数⎪⎪⎭⎫ ⎝⎛x n =)!!(!x -n x n 上式的意思是“n 个联合的数字一次取x 个”,n !读作n 的阶乘,用公式表示即n !=n (n-1)…(2)(1)。

假设有13场比赛,LSU 老虎队比赛相互独立而且每场比赛他们获胜的概率p=0.7。

那么他们一个赛季至少赢8场的概率是多少?答案是P (X ≥8)=∑=138x x f )(=1-p (X ≤7)=1-F (7) 我们可以用表B1强力估计这个概率,但是这太单调。

用Eviews 命令@cbinom 求二项随机分布的累积分布函数,将会非常容易。

1-@cbinom (7,13,0.7)=0.8346别的一些软件也有相似的强有力的功能。

连续随机分布可以取任意一个值,并且可以取无数的数值。

结果任何一个特定值的概率都是0.对于连续随机变量,我们讨论一个某一特定区间的结果。

图B.2描述了连续随机分布X 的概率分布函数f (x )从0取到无穷大。

曲线下边的区域达标X 落在一个区间时的概率。

对于这个分布,P (X ≤20)=0.294以及P (X ≤40)=0.649.然后我们可以估算p (20≤X ≤40)=0.355这些区域是如何获得的?积分给出了曲线下面的区域的表示方法,因此P (20≤X ≤40)=dx x f 4020⎰)(=0.355分布函数是P (X ≤x )=dt t f x -)(⎰∞=F (x )图B.2 一个连续型随机变量的概率密度函数F(x)是X 的累积分布函数。

概率计算结果是P (20≤X ≤40)= F(40)-F(20) = 0.649-0.294=0.355我们不再这本书中计算积分。

我们将用电脑和简单的软件命令来计算累积分布函数值。

B.3 联合,边缘和条件概率分布处理超过一个随机变量需要一个联合概率密度函数。

一个联合概率密度函数描述了变量取值的组合的概率值。

在2002年的美国,有185183000人至少25岁。

假定我们对从这些人中随机选择上过四年大学和在2002年已经有收入的人的概率有兴趣。

定义两个随机变量:X,描述一个人的所获学历,和Y,他们在2002年是否有收入。

1 高中文凭或更低X = 2 一些专科学校3 大学学位4 更高的学位表 B.3 联合概率函数 f (x,y )0 如果在2002年没有收入Y =1 如果在2002年有正向的收入随机选择有这些特征的某人的概率已经由X 和Y 的联合概率密度函数给出了,记作f(x,y),它们由表B.3给出。

随机选择的某个人,他有4年大学学历和在2002年有收入的概率是0.14,即P(X =3,Y =1)=f (3,1)=0.14 和一元随机变量的概率密度函数一样,联合概率的总和是1. ∑∑x y f (x,y )=1.B.3.1 边际分布给定一个联合概率密度函数,我们可以获得各个随机变量的概率分布,也被称为边际分布。

如果X 和Y 是两个离散随机变量,∑=yX y x f x ),()(f对任意的X (B.2) ∑=x),()(f y x f y Y 对任意的Y注意到在(B.2)的和不含另一个随机变量—我们从联合概率密度函数里消除的那个。

这种运算有时叫做在联合概率表里加除不需要的变量。

例如,运用表B.3,(y)f Y =∑=41),(x y x f y =0,1(0)f Y =0.19+0.06+0.04+0.02=0.31联合和边际分布被记述就像在表B.4.如果随机变量是连续的,(B.2)的概念也生效,但是积分号代替了求和符号。

B.3.2 条件概率表 B.4 X 和Y 的边缘分布随机选择一个人,考虑到他有一个四年的本科学历,他有收入的概率是多少呢?这个问题就是求已知X=3时,Y=1的条件概率是多少。

相关文档
最新文档