广西南宁市青秀区第二中学2019年 中考数学模拟试卷(原卷版)
广西南宁市2019年初中九年级数学中考模拟试卷及参考答案(含答案解析)

广西南宁市2019年初中九年级数学中考模拟试卷(含答案)一、选择题1、下列各式计算正确的是( )A .2a 2+3a 2=5a 4B .(﹣2ab)3=﹣6ab3C .(3a+b)(3a ﹣b)=9a 2﹣b 2D .a 3•(﹣2a)=﹣2a 32、下列函数中,y 是x 的一次函数的是( ) ①y=x-6;②y=" -3x" –1;③y=-0.6x ;④y=7-x.A .①②③B .①③④C .①②③④D .②③④ 3、若|m|=3,|n|=5,且m-n >0,则m+n 的值是()A .-2B .-8或8C .-8或-2D .8或-2 4、在正方体的表面画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A 面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是( )A .B .C .D .5、我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留四个有效数字)用科学记数法表示为( )人.A .13.71×108B .1.370×109C .1.371×109D .0.137×10106、在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7、我区某一周的最高气温统计如下表: 则这组数据的中位数与众数分别是( )8、以长为13 cm 、10 cm 、5 cm 、7 cm 的四条线段中的三条线段为边可以画出三角形的个数为( )A .1B .2C .3D .49、已知一次函数y=ax+c 图象如图,那么一元二次方程ax 2+bx+c=0根的情况是( )A .方程有两个不相等的实数根B .方程有两个相等的实数根C .方程没有实数根D .无法判断10、用矩形纸片折出直角的平分线,下列折法正确的是( )A .B .C .D .11、已知关于x 的一元二次方程x 2-5x+p=0(p 是常数)的一个实数根是1,则二次函数y=x 2-5x+p 的图像与x 轴的交点坐标为( )A .(1,0),(-1,0)B .(1,0),(-6,0)C .(1,0),(5,0)D .(1,0) ,(4,0) 12、如图,在△ABC 中,∠ACB=90°,CD ∥AB,∠ACD=35°,那么∠B 的度数为( )A .35°B .45°C .55°D .145°二、填空题13、某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是 。
广西南宁市 2019年九年级中考模拟数学试卷【含答案及解析】(1)

广西南宁市 2019年九年级中考模拟数学试卷【含答
案及解析】
姓名___________ 班级____________ 分数__________
一、单选题
1. 有四包真空包装的火腿肠,每包以标准质量 450g 为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()
A. +2
B. ﹣3
C. +4
D. ﹣1
2. 如图,正三棱柱的主视图为()
A. B. C. D.
3. 据统计部门预测,到2020年武汉市常住人口将达到约14500000人,14500000用科学记数法表示为( )
A. 0.145×108
B. 1.45×107
C. 14.5×106
D. 145×105
4. 由图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
5. 如图,下列条件中,能判定DE∥AC的是()
A. ∠EDC=∠EFC
B. ∠AFE=∠ACD
C. ∠3=∠4
D. ∠1=∠2
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】。
南宁市2019版中考数学模拟试题(II)卷

南宁市2019版中考数学模拟试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm2 . 在数轴上,点 A,B,C 分别表示 a、b、c,若 a+b+c=0 则点 A、B、C 在数轴上的位置不可能的是()A.B.C.D.3 . 已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是()A.外离B.外切C.相交D.内切4 . 如图,是等边内一点,,,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①可以由绕点逆时针旋转得到;②点与的距离为;③四边形的面积为④;⑤.其中正确的结论是()A.②③④⑤B.①③④⑤C.①②③⑤D.①②④⑤5 . 某地连续九天的最高气温统计如上表,则这组数据的中位数与众数分别是()A.24, 25B.24.5, 25C.25, 24D.23.5, 246 . 如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.7 . 在同一坐标系中,函数和的大致图象可能是()A.B.C.D.8 . 如图所示,沿图中虚线旋转一周,能围成的几何体是下面几何体中的()A.B.C.D.二、填空题9 . 一只小球落在数轴上的某点,第一次从向左跳个单位到,第二次从向右跳个单位到,第三次从向左跳个单位到,第四次从向右跳个单位到,若小球从原点出发,按以上规律跳了次时,它落在数轴上的点所表示的数是__________;若小球按以上规律跳了次时,它落在数轴上的点所表示的数恰好是,则这只小球的初始位置点所表示的数是__________.10 . 昆明是我们云南省的省会,享有“春城”之美誉.常住人口约有668万人,请将668万用科学记数法表示为_____.11 . 甲、乙两人同时在计算机上输入一份书稿,后,甲因另有任务,由乙再单独输入完成.已知甲输入的稿件,乙需输入,则甲单独输入完这份稿需要的时间是______.12 . 如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为6cm,无贴纸部分AD的长为2cm,则贴纸部分的面积等于_____cm2.13 . 如图,AB为⊙O的直径,C为圆上(除A、B外)一动点,∠ACB的角平分线交⊙O于D,若AC=8,BC=6,则BD的长为______.14 . 一只不透明的袋子中装有若干个蓝球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,若摸到蓝球的概率是0.8,则袋子中有________个蓝球.三、解答题15 . 如图,AB是的直径,AM和BN是它的两条切线,E为上一点,过点E的直线DC分别交AM,BN 于D,C两点,且 .(1)求证:CD是的切线;(2)若,,求图中阴影部分的面积.16 . 某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?17 . 已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:BM=CM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当矩形ABCD的长和宽满足什么条件时,四边形MENF是正方形?为什么?18 . 如图,△ABC与△ADE中,∠C=∠E,∠1=∠2.求证:DE:BC=AE:AC.19 . (7分)在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数l、2、3、、的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为点P的纵坐标,请用所学的知识求出点P落在△AOB内部的概率.20 . 一些数学问题的研究可以经历观察、探究、发现、证明等过程.下面是对一个问题的部分研究过程:(观察)=,=,是否也能写成分数的形式?(探究1)设=x,由=0.555…可知,10x=5.555…,所以10x﹣x=5.解方程,得x=于是,得=.所以,能写成分数的形式(探究2)仿照上面的方法,尝试将写成分数的形式.(发现).请你完成(探究2)的部分,并用一句话概括你的发现21 . 一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/…50607080…千克)销售量y(千…100908070…克)(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?22 . .如图,在△ABC 中,按以下步骤作图:①分别以点 A、C为圆心,以大于AC的长为半径画弧,两弧相交于 M、N两点;②作直线MN交 BC 于点 D,连接 AD,若∠C=28°,AB=BD;求∠B的度数.23 . (1)解方程(2)计算:24 . 为了解朝阳社区岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.。
【中考模拟】广西南宁市2019年 中考数学模拟试卷 (含答案)

2019年中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各组数中,互为倒数的是( )A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣2.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.3.北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×1064.若一组数据3,4,x,5,6,8的平均数是5,则这组数据的中位数是()A.4B.5C.4.5D.65.下列计算正确的是()A.5a﹣2a=3B.(2a2)3=6a6C.3a•(﹣2a)4=48a5D.a3+2a=2a26.如图所示,的大小关系为( )A. B. C. D.7.不等式组的解集在数轴上表示正确的是()8.有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是()A. B. C. D.9.下列函数中,开口方向向上的是()A.y=ax2B.y=﹣2x2C.D.10.如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A. B. C. D.11.某科普网站从2009年10月1日起,连续登载新中国成立60周年来我国科技成果展,该网站的浏览量猛增.已知2009年10月份该网站的浏览量为80万人次,第四季度总浏览量为350万人次,如果浏览量平均每月增长率为x,则应列方程为( )A.80(1+x)2=350B.80[1+(1+x)+(1+x)2]=350C.80+80×2(1+x)=350D.80+80×2x=35012.如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.若在实数范围内有意义,则x的取值范围是.14.分解因式:xy2﹣9x= .15.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,6,7,x,10,9,已知这组数据的平均数是8,则这组数据的中位数是.16.如图,小明家所在住宅楼楼前广场的宽AB为30米,线段BC为AB正前方的一条道路的宽.小明站在家里点D处观察B,C两点的俯角分别为60°和45°,已知DA垂直地面,则这条道路的宽BC为______米(≈1.732)17.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得:3S-S=39-1,即2S=39-1,∴S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是 .18.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(12,6),反比例函数错误!未找到引用源。
广西南宁市青秀区第二中学2019届九年级中考数学模拟试卷

…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
四、综合题(共 5 题)
10. 一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球 没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字 恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率 ;
A . 10 B . 8 C . 5
D.6
第Ⅱ卷的注释
第Ⅱ卷 主观题
评卷人 得分
一、填空题(共 6 题)
1. 计算: - =
2. 某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,
200,210.这组数据的中位数是
.
3. 如图,小明家所在小区的前后两栋楼 AB、CD,小明在自己所住楼 AB 的底部 A 处,利用对面楼 CD 墙
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
广西南宁市青秀区第二中学 2019 届九年级中考数学模拟试
(完整版)广西南宁市2019-2020学年数学中考二模试卷(含答案)

广西南宁市2019-2020学年数学中考二模试卷(含答案)一、单选题1.下列各数中,比-2小的数是()A. 2B. 0C. -1D. -3【答案】 D【考点】有理数大小比较2.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.【答案】A【考点】简单组合体的三视图3.一粒米的质量是千克,将用科学记数法表示为A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较小的数4.下列图形中既是中心对称图形又是轴对称图形的是( )。
A. B. C. D.【答案】A【考点】轴对称图形,中心对称及中心对称图形5.下列各式计算正确的是A. B. C. D.【答案】 D【考点】整式的加减运算,同底数幂的除法,单项式乘单项式,积的乘方6.如图,内接于,连接OA,OB,若,则的度数是A. B. C. D.【答案】B【考点】等腰三角形的性质,圆周角定理7.不等式的正整数解的个数是为A. 1B. 2C. 3D. 4【答案】B【考点】一元一次不等式的特殊解8.如图,平行四边形ABCD中,AE平分,,,则CE等于A. 6B. 5C. 4D. 3【答案】 D【考点】等腰三角形的性质,平行四边形的性质9.某校新生进行军训打靶演练,分小组进行,某小组五名同学的成绩分别是:9、5、8、7、6环,则该组数据的平均数与中位数分别是A. 6,7B. 6,8C. 7,7D. 7,8【答案】C【考点】平均数及其计算,中位数10.如图,图中是抛物线形拱桥,当拱顶离水面2m时水面宽4m.水面下降1m,水面宽度为()A.2 mB.2 mC.mD.m【答案】A【考点】二次函数的实际应用-拱桥问题11.如图,半径为4的与含有角的直角三角板ABC的边AC切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与相切时,该直角三角板平移的距离为A.2B.C.4D.【答案】 D【考点】等边三角形的判定与性质,平移的性质,锐角三角函数的定义,切线长定理12.如图,已知直线与与双曲线交于A、B两点,连接OA,若,则k的值为A.B.C.D.【答案】B【考点】待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题,三角形的面积,勾股定理,一次函数图像与坐标轴交点问题二、填空题13.一组数据按从小到大的顺序排列为1,2,3,3,4,5,则这组数据的众数是________.【答案】3【考点】众数14.如图,已知,,垂足为E,若,则的度数为________.【答案】40°【考点】平行线的性质,三角形内角和定理15.分解因式:________.【答案】【考点】提公因式法与公式法的综合运用16.如图,在菱形ABCD中,,,则菱形ABCD的周长等于________.【答案】16【考点】含30度角的直角三角形,菱形的性质,锐角三角函数的定义17.如图,下列图形均是由完全相同的点按照一定的规律组成的,第1个图形一共有3个点,第2个图形一共有8个点,第3个图形一共有15个点,,按此规律排列下去,第100个图形中点的个数是________.【答案】10200【考点】探索图形规律18.如图,正方形ABCD边长为6,E是BC的中点,将沿AE折叠,使点B落在点H处,延长EH 交CD于点F,过E作的平分线交CD于点G,则的面积为________.【答案】【考点】全等三角形的判定与性质,勾股定理,正方形的性质三、解答题19.先化简,再求值:,其中.【答案】解:原式,当时,原式.【考点】利用分式运算化简求值20.如图,在平面直角坐标系中,,,.(1)①清画出将向下平移3个单位得到的;②请画出以点O为旋转中心,将逆时针旋转得到的(2)请直接写出、的距离.【答案】(1)解:如图所示,、即为所求(2)解:根据题意得:、的距离为.【考点】勾股定理,作图﹣平移,作图﹣旋转21.如图,在中,,点C为AB的中点,,以点O为圆心,6为半径的圆经过点C,分别交OA、OB于点E、F.(1)求证:AB为的切线;(2)求图中阴影部分的面积注:结果保留,,,【答案】(1)证明:连接OC,如图,,点C为AB的中点,,为的切线(2)解:,,在中,,,,图中阴影部分的面积【考点】等腰三角形的性质,切线的判定,扇形面积的计算,锐角三角函数的定义,几何图形的面积计算-割补法22.荔枝是广西盛产的一种水果,六月份是荔技传统销售旺季去年六月份某水果公司为拓展销售渠道,在实体店的基础上中途增设了网店,公司总销售量吨与销售时间天关系如图所示:(1)请直接写出去年六月份网店每天的销售量,并求出AB的解析式不写取值范围;(2)公司预计,今年六月份实体店的销售量与去年相同,网店的销售量将有所增加,预计今年网店每天的销售量比去年增加,公司六月份的总销售量是去年的倍,求m的值.【答案】(1)解:由题意可得,实体店每天的销售量为:吨,网店每天的销售量为:吨,设AB的函数解析式为,,得,即AB的函数解析式为(2)解:由题意可得,实体店每天的销售量为:吨,网店每天的销售量为:吨,去年六月份的总产量为:吨,则,解得,,即m的值是20【考点】分段函数,待定系数法求一次函数解析式,一元一次方程的实际应用-销售问题,通过函数图像获取信息并解决问题23.计算:.【答案】解:原式【考点】实数的运算,特殊角的三角函数值24.某校英语社团举行了“单词听写大赛”,每位参赛选手共听写单词100个现从参加比赛的男女选手中分别随机抽取部分学生进行调查,对答对的情况进行分组如下:组:,B组:,C组:,D组:,E组:并绘制了如下不完整的统计图:请根据以上信息解答下列问题:(1)本次调查共抽取了多少名学生,并将条形统计图补充完整;(2)求出A组所对的扇形圆心角的度数;(3)若从D、E两组中分别抽取一位学生进行采访,请用画树状图或列表法求出恰好抽到两位女学生的概率.【答案】(1)解:本次调查的学生总人数为人,则B项目中女生人数为,E组男生有人,补全图形如下:(2)解:组所对的扇形圆心角的度数为(3)解:画树状图如下:由树状图知共有12种等可能结果,其中恰好抽到两位女学生的有2种结果,∴恰好抽到两位女学生的概率为【考点】扇形统计图,条形统计图,列表法与树状图法,概率公式25.如图,和都是等腰直角三角形,,,的顶点A在的斜边DE上,AB、CD交于点F,连接BD.(1)求证:≌;(2)求证:;(3)若,AF::3,求线段AB的长.【答案】(1)证明:和都是等腰直角三角形,,,在和中,,≌;(2)证明:≌,,,,,在等腰直角中,,;(3)解:,,∽,,设,则,,由得,,解得,,则.【考点】全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形26.如图1,抛物线经过,两点,抛物线与x轴的另一交点为A,连接AC、BC.(1)求抛物线的解析式及点A的坐标;(2)若点D是线段AC的中点,连接BD,在y轴上是否存一点E,使得是以BD为斜边的直角三角形?若存在,求出点E的坐标,若不存在,说明理由;(3)如图2,P为抛物线在第一象限内一动点,过P作于Q,当PQ的长度最大时,在线段BC 上找一点M使的值最小,求的最小值.【答案】(1)解:把,代入抛物线中得:,解得:,抛物线的解析式为:,当时,,解得:,,(2)解:存在,如图1,,,,设,,,即,,,,或(3)解:,,易得BC的解析式为:,如图2,作直线,设直线l的解析式为:,当直线l与抛物线有一个公共点时,这个公共点为P,此时PQ的长最大,则,,,,,解得:,,过P作轴于N,交BC于M,,,,即的最小值是.【考点】待定系数法求一次函数解析式,两一次函数图像相交或平行问题,待定系数法求二次函数解析式,勾股定理,圆周角定理,二次函数与一次函数的综合应用,二次函数图像与一元二次方程的综合应用。
广西省南宁市2019-2020学年第二次中考模拟考试数学试卷含解析
广西省南宁市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE 于点O,若∠BOC=80°,则∠AOD的度数是()A.70°B.50°C.40°D.35°2.下列计算正确的是()A.5﹣2=3B.4=±2C.a6÷a2=a3D.(﹣a2)3=﹣a63.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是104.计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.245.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x6.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤7.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣18.﹣22×3的结果是()A.﹣5 B.﹣12 C.﹣6 D.129.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.10.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A.55×103B.5.5×104C.5.5×105D.0.55×10511.如图,在矩形纸片ABCD中,已知AB=3,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D 的过程中,则点F运动的路径长为()A.πB.3πC.3πD.233π12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=12S△CEF,其中正确的是()A .①③B .②④C .①③④D .②③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.14.已知关于x 的方程有解,则k 的取值范围是_____. 15.关于x 的方程1101ax x +-=-有增根,则a =______. 16.如图,在菱形ABCD 中,AB=3,∠B=120°,点E 是AD 边上的一个动点(不与A ,D 重合),EF ∥AB 交BC 于点F ,点G 在CD 上,DG=DE .若△EFG 是等腰三角形,则DE 的长为_____.17.若关于x 的方程2222x m m x x++=--的解是正数,则m 的取值范围是____________________ 18.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s (单位:米)与他所用的时间t (单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y 与时间x (0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?20.(6分)如图,ABC △中AB AC =,AD BC ⊥于D ,点E F 、分别是AB CD 、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S21.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A 类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(8分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC .求作:△ABC 的边BC 上的高AD .作法:如图2,(1)分别以点B 和点C 为圆心,BA ,CA 为半径作弧,两弧相交于点E ;(2)作直线AE 交BC 边于点D .所以线段AD 就是所求作的高.请回答:该尺规作图的依据是______.23.(8分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.24.(10分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?25.(10分)P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把PA•PB 的值称为点P 关于⊙O 的“幂值”(1)⊙O 的半径为6,OP=1.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为_____;②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙0的“幂值”的取值范围;(2)若⊙O 的半径为r ,OP=d ,请参考(1)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围_____;(3)在平面直角坐标系xOy 中,C (1,0),⊙C 的半径为3,若在直线3上存在点P ,使得点P 关于⊙C 的“幂值”为6,请直接写出b 的取值范围_____.26.(12分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。
广西南宁市数学中考二模试卷
广西南宁市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分)(2019·浙江模拟) 由5个大小相同的正方体组成的几何体如图所示,它的左视图是()A .B .C .D .2. (1分)王大伯有甲、乙、丙三块不同等级的棉田60亩、20亩、10亩,想估算自己今年的棉花产量,请你给王大伯出个主意()A . 从甲棉田抽出部分进行估算B . 从乙棉田抽出部分进行估算C . 从丙棉田抽出部分进行估算D . 按6:2:1的比例从甲、乙、丙三块棉田抽取进行估算3. (1分)如果不等式组的解集是x>3,则m的取值范围是().A . m≤3B . m≥3C . m=3D . m<34. (1分)如图,在正六边形ABCDEF中,△BCD的面积为4,则△BCF的面积为()A . 16B . 12C . 8D . 65. (1分)的平方根是()A . 9B . 3C . ±9D . ±36. (1分)甲公司前年缴税a万元,去年和今年缴税的年平均增长率均为b,则今年该公司应缴税()万元.A . a(1+b%)2B . a(1+b)2C . a(ab%)2D . a(1﹣b%)27. (1分)(2011·无锡) 已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A . 20cm2B . 20πcm2C . 10πcm2D . 5πcm28. (1分)(2012·营口) 如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B﹣C﹣D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x 之间函数关系的图象大致为()A .B .C .D .二、填空题 (共6题;共6分)9. (1分) (2019六下·黑龙江月考) -3 的倒数是________.10. (1分) (2019八上·柳州期末) 将数字0.0026用科学记数法表示为________.11. (1分)(2017·自贡) 在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为________.12. (1分)(2017·广东模拟) (﹣1.414)0+()﹣1﹣+2cos30°=________.13. (1分) (2019八上·秀洲期中) 如图,是一个钢架结构,已知,在角内部构造钢条,,,且满足则这样的钢条最多可以构造________根.14. (1分) (2017九下·启东开学考) 如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为________.三、解答题 (共9题;共20分)15. (1分)(2017·襄州模拟) 化简求值:(﹣)÷ ,其中x= ﹣1.16. (1分) (2018八上·无锡期中) 如图,已知点B、F、C、E在一条直线上,BF=CE,AB=DE,∠B=∠E.求证:AC∥FD.17. (3分)(2016·深圳) 深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注M0.1B.一般关注1000.5C.不关注30ND.不知道500.25(1)根据上述统计图可得此次采访的人数为________人,m=________,n=________(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有________人.18. (2分)(2018·潮南模拟) 甲、乙两辆汽车沿同一路线赶赴距出发地480km的目的地,乙车比甲车晚出发2h(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(km)与时间x(h)之间的函数关系对应的图象(线段AB表示甲车出发不足2h因故障停车检修).请根据图象所提供的信息,解决以下问题:(1)求乙车所行路程y与时间x之间的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇.(写出解题过程)19. (3分)(2017·黔南) 阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)= .例如:tan15°=tan(45°﹣30°)= = == = =2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔.文峰塔的木塔年久倾毁,仅存塔基.1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁塔的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)20. (3分)(2017·临海模拟) 如图,AB、CD是两个过江电缆的铁塔,塔AB高40米,AB的中点为P,塔底B距江面的垂直高度为6米.跨江电缆因重力自然下垂近似成抛物线形,为了保证过往船只的安全,电缆下垂的最低点距江面的高度不得少于30米.已知:人在距塔底B点西50米的地面E点恰好看到点E、P、C在一直线上;再向西前进150米后从地面F点恰好看到点F、A、C在一直线上.(1)求两铁塔轴线间的距离(即直线AB、CD间的距离);(2)若以点A为坐标原点,向东的水平方向为x轴,取单位长度为1米,BA的延长方向为y轴建立坐标系.求刚好满足最低高度要求的这个抛物线的解析式.21. (2分)(2018·乌鲁木齐模拟) 某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完;商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,售价每台也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?22. (2分)(2018·成都) 如图,在中,,平分交于点,为上一点,经过点,的分别交,于点,,连接交于点 .(1)求证:是的切线;(2)设,,试用含的代数式表示线段的长;(3)若,,求的长.23. (3分)(2017·安陆模拟) 如图,直线l:y=x﹣与x轴正半轴、y轴负半轴分别相交于A、C两点,抛物线y= x2+bx+c经过点B(﹣1,0)和点C.(1)填空:直接写出抛物线的解析式:________;(2)已知点Q是抛物线y= x2+bx+c在第四象限内的一个动点.①如图,连接AQ、CQ,设点Q的横坐标为t,△AQC的面积为S,求S与t的函数关系式,并求出S的最大值;②连接BQ交AC于点D,连接BC,以BD为直径作⊙I,分别交BC、AB于点E、F,连接EF,求线段EF的最小值,并直接写出此时Q点的坐标.参考答案一、单选题 (共8题;共8分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共20分)15-1、16-1、17-1、17-2、17-3、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、。
2019年广西南宁二中、天桃学区中考数学二模考试试卷 解析版
2019年广西南宁二中、天桃学区中考数学二模试卷一.选择题(共12小题)1.下列实数是无理数的是()A.﹣B.0C.D.62.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圈星系M87的中心,距离地球55 000 000光年,其中数据55 000 000科学记数法表示为()A.55×106B.5.5×106C.5.5×107D.0.55×1083.下列事件中,最适合采用普查的是()A.对某班全体学生出生月份的调查B.对全国中学生节水意识的调查C.对某批次灯泡使用寿命的调查D.对山西省初中学生每天阅读时间的调查4.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球5.如图是一个可以自由转动的质地均匀的转盘,被分成7个相同的扇形,指针的位置固定让转盘自由转动,当转盘停止后,指针指向区域内的数(指针指向两个扇形的交线时,当作指向右边的扇形)是偶数的概率是()A.B.C.D.6.下列运算正确的是()A.B.4C.D.7.如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为()A.20°B.50°C.80°D.110°8.函数y=kx﹣2与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.9.如图,用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是()A.SSS B.SAS C.ASA D.AAS10.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5B.﹣=5C.+5=D.﹣=511.关于二次函数y=﹣(x﹣3)2﹣2的图象与性质,下列结论错误的是()A.当x=3时,函数有最大值﹣2B.当x<3时,y随x的增大而增大C.抛物线可由y=﹣x2经过平移得到D.该函数的图象与x轴有两个交点12.如图,四边形ABCD是边长为1的菱形,∠ABC=60°.动点P第1次从点A处开始,沿以B为圆心,AB为半径的圆弧运动到CB延长线,记为点P1;第2次从点P1开始,沿以C为圆心,CP1为半径的圆弧运动到DC的延长线,记为点P2;第3次从P2开始,沿以D为圆心,DP2为半径的圆弧运动到AD的延长线,记为点P3;第4次从点P3开始,沿以A为圆心,AP3为半径的圆弧运动到BA的延长线,记为点P4;…..如此运动下去,当点P运动到P20时,点P所运动的路程为()A.B.C.D.二.填空题(共6小题)13.如果二次根式在实数范围内有意义,那么x的取值范围是.14.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O,∠1=55°,则∠2的度数为.15.若点(a,1)与(﹣2,b)关于原点对称,则a+b=.16.第一个盒子中有2个白球和1个黄球,第二个盒子中有2个白球和2个黄球,这些球除颜色外无其他差别,分别从每个盒子中随机抽取一个球,取出的两个球中至少有一个黄球的概率是.17.小明想要测量水面人工岛上两棵小树CD的距离,如图,已知河岸MN∥CD,小明在河岸MN上点A处测量小树C位于北偏东60°方向,然后沿河岸走了20米,到达点B处,此时测得河对岸小树C位于北偏东30°方向,小树D位于东北方向,则两棵树CD的距离为米.(结果保留根号)18.如图,在△ABC中,AB=AC,点A在y轴上,点C在x轴上,BC⊥x轴,tan∠ACO =.延长AC到点D,过点D作DE⊥x轴于点G,且DG=GE,连接CE,反比例函数y=(k≠0)的图象经过点B,和CE交于点F,且CF:FE=2:1.若△ABE面积为6,则点D的坐标为.三.解答题(共8小题)19.计算:3×(1﹣3)+16÷(﹣2)3﹣(﹣5)20.先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=.21.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标是A(0,﹣2),B(6,﹣4),C(2,﹣6).(1)请画出与△ABC关于x轴对称的△A1B1C1.(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴左侧画出△A2B2C2.(3)在y轴上存在点P,使得△OB2P的面积为6,请直接写出满足条件的点P的坐标.22.在5月31日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“关爱健康,远离香烟”的知识竞赛,两个年级分别有500人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100分)进行调查分析,过程如下:第一步:收集数据七年级:68 88 100 100 79 94 89 85 100 8881 69 98 79 77 94 96 75 92 67八年级:69 97 78 89 98 100 99 100 95 9999 69 75 100 99 78 79 87 85 79第二步:整理、描述数据分数段60≤x<7070≤x<8080≤x<9090≤x≤100七年级人数3458八年级人数25310第三步:分析数据年级平均数中位数众数满分率方差七年级868810015%115.6八年级88.792a15%120第四步:应用数据(1)直接写出a的值和八年级抽取了多少个同学的成绩进行分析(2)在此次测试中,七年级甲学生的成绩为89分,八年级乙学生成绩为90分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.(3)若成绩在90分至99分之间(含90分,99分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.23.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC、AB的延长线交于点E.(1)求证:PC是⊙O的切线.(2)若∠ABC=60°,AB=2,求图中阴影部分的面积.24.某养殖公司准备运送152箱小龙虾到A、B两地销售,该批小龙虾刚好能用大小货车15辆一次运完,已知大货车每辆能装12箱,小货车每辆能装8箱,其中每辆大货车运往A、B两地的运费分别为800元和900元;每辆小货车运往A、B两地的运费分别为400元和600元.(1)求这15辆车中大小货车各有多少辆?(2)现安排其中10辆货车前往A地,其余货车前往B地,设前往A地的大货车为m辆,前往A、B两地总费用为y元,试求出y与m的函数解析式,并写出m的取值范围;(3)在(2)的条件下,若运往B地的费用不高于A地费用的一半,求此时的最低总运费.25.在矩形ABCD中,AB=8,点H是直线AB边上的一个点,连接DH交直线CB的干点E,交直线AC于点F,连接BF.(1)如图①,点H在AB边上,若四边形ABCD是正方形,求证:△ADF≌△ABF;(2)在(1)的条件下,若△BHF为等腰三角形,求HF的长;(3)如图②,若tan∠ADH=,是否存在点H,使得△BHF为等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.26.如图,抛物线y=+bx+c与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OC=2OA=2,点D是直线BC下方抛物线上一动点.(1)求出抛物线的解析式;(2)连接AD和BC,AD交BC于点E,当S△ABE:S△BDE=5:4时,求点D的坐标;(3)点F为y轴上的一点,在(2)的条件下,求DF+OF的最小值.参考答案与试题解析一.选择题(共12小题)1.下列实数是无理数的是()A.﹣B.0C.D.6【分析】无理数就是无限不循环小数,依据定义即可作出判断.【解答】解:A、﹣是无理数,选项正确;B、0是整数、是有理数,选项错误;C、是分数,是有理数,选项错误;D、6是整数,是有理数,选项错误.故选:A.2.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圈星系M87的中心,距离地球55 000 000光年,其中数据55 000 000科学记数法表示为()A.55×106B.5.5×106C.5.5×107D.0.55×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55 000 000=5.5×107,故选:C.3.下列事件中,最适合采用普查的是()A.对某班全体学生出生月份的调查B.对全国中学生节水意识的调查C.对某批次灯泡使用寿命的调查D.对山西省初中学生每天阅读时间的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对某班全体学生出生日期的调查情况适合普查,故此选项符合题意;B、对全国中学生节水意识的调查范围广适合抽样调查,故此选项不符合题意;C、对某批次灯泡使用寿命的调查具有破坏性适合抽样调查,故此选项不符合题意;D、对山西省初中学生每天阅读时间的调查范围广适合抽样调查,故此选项不符合题意;故选:A.4.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选:B.5.如图是一个可以自由转动的质地均匀的转盘,被分成7个相同的扇形,指针的位置固定让转盘自由转动,当转盘停止后,指针指向区域内的数(指针指向两个扇形的交线时,当作指向右边的扇形)是偶数的概率是()A.B.C.D.【分析】由一个转盘被分成7个大小相同的扇形,标有偶数的扇形有3个,直接利用概率公式求解即可求得答案.【解答】解:∵一个转盘被分成7个大小相同的扇形,上面分别标有偶数的扇形有3个,∴指针指向标有偶数所在区域的概率为:.故选:B.6.下列运算正确的是()A.B.4C.D.【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法对B、DC进行判断;根据二次根式的除法法则对C进行判断.【解答】解:A、原式=3,所以A选项的计算错误;A、原式=4﹣3=,所以B选项的计算错误;C、原式==2,所以C选项的计算正确;D、与不能合并,所以D选项的计算错误.故选:C.7.如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为()A.20°B.50°C.80°D.110°【分析】先利用旋转的性质得到∠ACA′=50°,然后利用平行线的性质得到∠1的度数.【解答】解:∵△ABC绕点C顺时针旋转50°,∴∠ACA′=50°,∴∠A′CB=80°,∵l1∥l2,∴∠1=∠A′CB=80°.故选:C.8.函数y=kx﹣2与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.【分析】根据当k>0、当k<0时,y=kx﹣2和y=经过的象限,二者一致的即为正确答案.【解答】解:∵当k>0时,y=kx﹣2过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣2过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.9.如图,用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是()A.SSS B.SAS C.ASA D.AAS【分析】直接利用基本作图方法结合全等三角形的判定方法即可得出答案.【解答】解:用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是:在△DOM和△NCE中,,∴△DOM≌△NCE(SSS),∴∠DOM=∠NCE,∴CN∥OA.故选:A.10.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5B.﹣=5C.+5=D.﹣=5【分析】根据题意给出的等量关系即可列出方程.【解答】解:设原计划每天植树x万棵,需要天完成,∴实际每天植树(x+0.2x)万棵,需要天完成,∵提前5天完成任务,∴﹣=5,故选:A.11.关于二次函数y=﹣(x﹣3)2﹣2的图象与性质,下列结论错误的是()A.当x=3时,函数有最大值﹣2B.当x<3时,y随x的增大而增大C.抛物线可由y=﹣x2经过平移得到D.该函数的图象与x轴有两个交点【分析】根据二次函数的性质可得二次函数y=﹣(x﹣3)2﹣2开口向下,顶点坐标为(3,﹣2),对称轴为x=3,进行分析即可.【解答】解:A、当x=3时,函数有最大值﹣2,说法正确;B、当x<3时,y随x的增大而增大,说法正确;C、抛物线可由y=﹣x2经过平移得到,说法正确;D、该函数的图象与x轴有没有交点,故原题说法错误;故选:D.12.如图,四边形ABCD是边长为1的菱形,∠ABC=60°.动点P第1次从点A处开始,沿以B为圆心,AB为半径的圆弧运动到CB延长线,记为点P1;第2次从点P1开始,沿以C为圆心,CP1为半径的圆弧运动到DC的延长线,记为点P2;第3次从P2开始,沿以D为圆心,DP2为半径的圆弧运动到AD的延长线,记为点P3;第4次从点P3开始,沿以A为圆心,AP3为半径的圆弧运动到BA的延长线,记为点P4;…..如此运动下去,当点P运动到P20时,点P所运动的路程为()A.B.C.D.【分析】利用弧长公式计算即可解决问题.【解答】解:由题意:,点P所运动的路程=+++++…+=(1+3+5+…+19)+(2+4+…+2+20)=•×10+•×10=+=,故选:B.二.填空题(共6小题)13.如果二次根式在实数范围内有意义,那么x的取值范围是x≥2.【分析】根据二次根式有意义的条件可得x﹣2≥0,再解不等式即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.14.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O,∠1=55°,则∠2的度数为35°.【分析】直接利用垂线的定义得出∠EOB=90°,进而利用邻补角的定义得出答案.【解答】解:∵EO⊥AB,∴∠EOB=90°,∵∠1=55°,∴∠2=180°﹣90°﹣55°=35°.故答案为:35°.15.若点(a,1)与(﹣2,b)关于原点对称,则a+b=1.【分析】直接利用关于原点对称点的性质得出a,b的值进而得出答案.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴a=2,b=﹣1,则a+b=2﹣1=1.故答案为:1.16.第一个盒子中有2个白球和1个黄球,第二个盒子中有2个白球和2个黄球,这些球除颜色外无其他差别,分别从每个盒子中随机抽取一个球,取出的两个球中至少有一个黄球的概率是.【分析】画树状图列出所有等可能结果,从中确定取出的两个球中至少有一个黄球的结果数,根据概率公式计算可得.【解答】解:画树状图如下:由树状图知共有12种等可能结果,其中取出的两个球中至少有一个黄球的结果数有8种,所以取出的两个球中至少有一个黄球的概率==,故答案为:.17.小明想要测量水面人工岛上两棵小树CD的距离,如图,已知河岸MN∥CD,小明在河岸MN上点A处测量小树C位于北偏东60°方向,然后沿河岸走了20米,到达点B处,此时测得河对岸小树C位于北偏东30°方向,小树D位于东北方向,则两棵树CD的距离为(10﹣10)米.(结果保留根号)【分析】作CE⊥MN于点E、DF⊥MN于点F,设BE=a,利用三角函数求得CE==a,再由tan∠CAE=列方程求得a=10,据此知BE=10,DF=CE=10,继而由∠DBF=45°知BF=DF=10,从而得出答案.【解答】解:如图所示,过点C作CE⊥MN于点E,过点D作DF⊥MN于点F,设BE=a,在Rt△BCE中,∵∠BCE=30°,∴CE===a,在Rt△ACE中,∵∠CAE=30°,AB=20,∴由tan∠CAE=可得=,解得a=10,∴BE=10,DF=CE=10,在Rt△BDF中,∵∠DBF=45°,∴BF=DF=10,∴CD=EF=BF﹣BE=10﹣10(米),故答案为:(10﹣10).18.如图,在△ABC中,AB=AC,点A在y轴上,点C在x轴上,BC⊥x轴,tan∠ACO =.延长AC到点D,过点D作DE⊥x轴于点G,且DG=GE,连接CE,反比例函数y=(k≠0)的图象经过点B,和CE交于点F,且CF:FE=2:1.若△ABE面积为6,则点D的坐标为(,﹣3).【分析】根据AB=AC,tan∠ACO=,设未知数表示点A、B、C的坐标,根据线段中垂线的性质得CE=CD,进而得到∠ECG=∠DCG=∠ACO,再根据tan∠ECG=tan∠ACO=,再设未知数表示出点E的坐标,进而求出CE的中点F的坐标,把点B、F的坐标代入反比例函数的关系式,进而得出两个未知数之间的关系,再根据S△ABE=6,列方程求出未知数,进而确定点的坐标.【解答】解:过点A作AM⊥BC,垂足为M,∵AB=AC,∴BM=CM,∵tan∠ACO==.∴设OA=2m,OC=3m,则BC=4m,因此点C(3m,0)、B(3m,4m),∵DE⊥x轴于点G,且DG=GE,∴CE=CD,∴∠ECG=∠DCG=∠ACO,∴tan∠ECG==tan∠ACO=,设EG=2n,则CG=3n,因此点E(3m+3n,2n),又∵CF:FE=2:1.即点F是CE的三等分点,∴点F(3m+2n,n),把B(3m,4m)和F(3m+2n,n)代入反比例函数y=得,k=3m•4m=(3m+2n)•n,即(3m﹣2n)(3m+n)=0,∵m>0,n>0,∴n=m,∴点E的坐标为(m,3m),∵S△ABE=6=S梯形ABCO+S梯形BCGE﹣S梯形AOGE,∴(2m+4m)×3m+(4m+3m)×m﹣(2m+3m)×m=6,解得m=1,∴E(,3),∴D(,﹣3)故答案为:(,﹣3).三.解答题(共8小题)19.计算:3×(1﹣3)+16÷(﹣2)3﹣(﹣5)【分析】首先计算乘方,然后计算乘法、除法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:3×(1﹣3)+16÷(﹣2)3﹣(﹣5)=3×(﹣2)+16÷(﹣8)+5=﹣6﹣2+5=﹣320.先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=.【分析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=x2﹣4﹣x2+2x﹣1=2x﹣5,当x=时,原式=1﹣5=﹣4.21.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标是A(0,﹣2),B(6,﹣4),C(2,﹣6).(1)请画出与△ABC关于x轴对称的△A1B1C1.(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴左侧画出△A2B2C2.(3)在y轴上存在点P,使得△OB2P的面积为6,请直接写出满足条件的点P的坐标.【分析】(1)直接利用关于x轴对称点的性质得出对应点坐标进而得出答案;(2)直接利用关于位似图形的性质得出对应点坐标进而得出答案;(3)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:当△OB2P的面积为6时,点P的坐标为:(0,4),(0,﹣4).22.在5月31日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“关爱健康,远离香烟”的知识竞赛,两个年级分别有500人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100分)进行调查分析,过程如下:第一步:收集数据七年级:68 88 100 100 79 94 89 85 100 8881 69 98 79 77 94 96 75 92 67八年级:69 97 78 89 98 100 99 100 95 9999 69 75 100 99 78 79 87 85 79第二步:整理、描述数据分数段60≤x<7070≤x<8080≤x<9090≤x≤100七年级人数3458八年级人数25310第三步:分析数据年级平均数中位数众数满分率方差七年级868810015%115.6八年级88.792a15%120第四步:应用数据(1)直接写出a的值和八年级抽取了多少个同学的成绩进行分析(2)在此次测试中,七年级甲学生的成绩为89分,八年级乙学生成绩为90分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.(3)若成绩在90分至99分之间(含90分,99分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.【分析】(1)根据众数的定义分别进行解答即可;(2)把甲、乙两人的成绩与各自年级的中位数比较即可得到结论;(3)七、八年级的总人数乘以90分至99分之间(含90分,99分)的学生数所占的百分比即可的结论.【解答】解:(1)a=99,八年级抽取了20个同学的成绩进行分析;(2)∵七年级同学的成绩的中位数是88,八年级同学的成绩的中位数是92,∴甲的成绩在自己年级中更靠前;(3)1000×=300人,答:七、八年级一共获得二等奖的学生总人数为300人.23.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC、AB的延长线交于点E.(1)求证:PC是⊙O的切线.(2)若∠ABC=60°,AB=2,求图中阴影部分的面积.【分析】(1)连接OC,如图,根据切线的性质得到∠P AB=90°,再根据垂径定理得到CD=AD,则OD垂直平分AC,所以P A=PC,利用等腰三角形的性质得到∠OCA+∠PCA =∠OAC+∠P AC=90°,然后根据切线的判定方法可判断PC是⊙O的切线;(2)先证明△OBC为等边三角形得到∠BOC=60°,再计算出CE=,然后根据扇形的面积公式,利用图中阴影部分的面积=S△OCE﹣S扇形BOC进行计算.【解答】(1)证明:连接OC,如图,∵P A为⊙O的切线,∴P A⊥OA,∴∠P AB=90°,∵OD⊥AC,∴CD=AD,∴OD垂直平分AC,∴P A=PC,∴∠PCA=∠P AC,而OC=OA,∴∠OCA=∠OAC,∴∠OCA+∠PCA=∠OAC+∠P AC=90°,即∠POC=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:∵OB=OC,∠OBC=60°,∴△OBC为等边三角形,∴∠BOC=60°,∴CE=OC=,∴图中阴影部分的面积=S△OCE﹣S扇形BOC=×1×﹣=﹣.24.某养殖公司准备运送152箱小龙虾到A、B两地销售,该批小龙虾刚好能用大小货车15辆一次运完,已知大货车每辆能装12箱,小货车每辆能装8箱,其中每辆大货车运往A、B两地的运费分别为800元和900元;每辆小货车运往A、B两地的运费分别为400元和600元.(1)求这15辆车中大小货车各有多少辆?(2)现安排其中10辆货车前往A地,其余货车前往B地,设前往A地的大货车为m辆,前往A、B两地总费用为y元,试求出y与m的函数解析式,并写出m的取值范围;(3)在(2)的条件下,若运往B地的费用不高于A地费用的一半,求此时的最低总运费.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱小龙虾,列方程组求解;(2)设前往A地的大货车为x辆,则前往B地的大货车为(8﹣x)辆,前往A地的小货车为(10﹣x)辆,前往B地的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式结合一次函数的性质求使总运费最少的货车调配方案.【解答】解:(1)设大货车x辆,小货车y辆依题意,得,解得,∴大货车8辆,小货车7辆;(2)∵前往A地的大货车为x辆,共有10辆货车前往A地.∴前往A地的小货车为(10﹣x),前往B地的大货车为(8﹣x)辆,小货车为[7﹣(10﹣x)=x﹣3]辆y=800x+400(10﹣x)+900(8﹣x)+600(x﹣3)=800x+4000﹣400x+7200﹣900x﹣1800+600x=100x+9400.(3≤x≤8);(3)依题意,得900(8﹣x)+600(x﹣3)≤[800x+400(10﹣x)]整理得500x≥3400∴x≥,∵0≤x≤8,且x是整数∴x=7或8,∵100>0,∴y=100x+9400是增函数.∴当x=7时,y最小=100×7+9400=10100∴此时的最低总运费是10100元.25.在矩形ABCD中,AB=8,点H是直线AB边上的一个点,连接DH交直线CB的干点E,交直线AC于点F,连接BF.(1)如图①,点H在AB边上,若四边形ABCD是正方形,求证:△ADF≌△ABF;(2)在(1)的条件下,若△BHF为等腰三角形,求HF的长;(3)如图②,若tan∠ADH=,是否存在点H,使得△BHF为等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【分析】(1)根据SAS证明三角形全等即可.(2)想办法证明∠ADH=30°,求出AH即可解决问题.(3)如图②中,可以假设AH=4k,AD=3k,DH=5k,因为△BHF是等腰三角形,∠BHF是钝角,推出HF=BH,设BH=HF=x,构建方程组解决问题即可.【解答】(1)证明:如图①中,∵四边形ABCD是正方形,∴AB=AD,∠F AB=∠F AD=45°,∵AF=AF,∴△ADF≌△ABF(SAS).(2)解:如图①中,∵∠BHF>∠HAD,∴∠BHF是钝角,∵△BHF是等腰三角形,∴BH=FH,∴∠HBF=∠BFH,∵△ADF≌△ABF,∴∠ADF=∠ABF,∵∠AHD=∠HBF+∠BFH,∴∠AHD=2∠ADH,∵∠AHD+∠ADH=90°,∴∠ADH=30°,∴AH=AD•tan30°=,∴BH=HF=8﹣.(3)解:如图②中,存在.理由如下:∵四边形ABCD是矩形,∴AB=CD=8,AB∥CD,∠DAH=90°,∵tan∠ADH==,∴可以假设AH=4k,AD=3k,则DH=5k,∵△BHF是等腰三角形,∠BHF是钝角,∴HF=BH,设BH=HF=x,∵AH∥CD,∴=,∴=①,∵AH+BH=8,∴4k+x=8 ②,由①②可得,x=或(舍弃),∴存在,该三角形的腰长为.26.如图,抛物线y=+bx+c与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OC=2OA=2,点D是直线BC下方抛物线上一动点.(1)求出抛物线的解析式;(2)连接AD和BC,AD交BC于点E,当S△ABE:S△BDE=5:4时,求点D的坐标;(3)点F为y轴上的一点,在(2)的条件下,求DF+OF的最小值.【分析】(1)OC=2OA=2,则点A、C的坐标分别为:(﹣1,0)、(0,﹣2),则c=﹣2,将点A的坐标代入抛物线表达式,即可求解;(2)S△ABE:S△BDE=5:4,则AE:ED=5:4,AM∥HD,则AM:HD=AE:ED=5:4,则HD=2,即可求解;(3)作一条与y轴夹角为α的直线AH,使tan∠HOF==tanα,则sin,过点D作DH⊥AH交AH于点H,交y轴于点F,则点F为所求点,即可求解.【解答】解:(1)OC=2OA=2,则点A、C的坐标分别为:(﹣1,0)、(0,﹣2),则c=﹣2,将点A的坐标代入抛物线表达式并解得:b=﹣,故抛物线的表达式为:y=x2﹣x﹣2;(2)由点B、C的坐标得,直线BC的表达式为:y=x﹣2,S△ABE:S△BDE=5:4,则AE:ED=5:4,分别过点A、D作y轴的平行线分别交BC于点M、H,∴AM∥HD,当x=﹣1时,y=x﹣2=﹣,∵AM∥HD,∴AM:HD=AE:ED=5:4,∴HD=2,设点D(x,x2﹣x﹣2),则点H(x,x﹣2),DH=x﹣2﹣(x2﹣x﹣2)=2,解得:x=2,故点D(2,﹣3);(3)作一条与y轴夹角为α的直线AH,使tan∠HOF==tanα,则sin,过点D作DH⊥AH,交AH于点H,交y轴于点F,则点F为所求点,DF+OF=FD+HF最小,过点D作x轴的平行线交y轴于点N,则∠FDN=α,则直线FD的表达式为:y=﹣x+n,将点D的坐标代入上式并解得:直线DF的表达式为:y=﹣x﹣,故点F(0,﹣),则OF=,DF+OF的最小值=FD+HF=+×=.。
广西省南宁市2019-2020学年中考数学模拟试题含解析
广西省南宁市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.将弧长为2πcm 、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( ) A .2 cmB .22 cmC .23cmD .10 cm2.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6B .8.23×10﹣7C .8.23×106D .8.23×1073.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数4.已知:二次函数y=ax 2+bx+c (a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m (am+b )(m≠-1);④ax 2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A .2个B .3个C .4个D .5个5.已知A (,1y ),B (2,2y )两点在双曲线32my x +=上,且12y y >,则m 的取 值范围是( ) A .m 0>B .m 0<C .3m 2>-D .3m 2<-6.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=7.小苏和小林在如图①所示的跑道上进行450⨯米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间t (单位:s )的对应关系如图②所示.下列叙述正确的是( ).A .两人从起跑线同时出发,同时到达终点B .小苏跑全程的平均速度大于小林跑全程的平均速度C .小苏前15s 跑过的路程大于小林前15s 跑过的路程D .小林在跑最后100m 的过程中,与小苏相遇2次8.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )A .B .C .D .9.一个数和它的倒数相等,则这个数是( ) A .1B .0C .±1D .±1和010. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( ) A .0.8×1011B .8×1010C .80×109D .800×10811.关于x 的不等式21x a --…的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-12.-14的绝对值是( ) A .-4 B .14C .4D .0.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .14.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.15.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.16.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.17.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个.18.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D求二次函数的解析式;写出使一次函数值大于二次函数值的x 的取值范围;若直线BD 与y 轴的交点为E 点,连结AD 、AE ,求ADE ∆的面积; 20.(6分)如图,在▱ABCD 中,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.21.(6分)如图,已知△ABC .(1)请用直尺和圆规作出∠A 的平分线AD (不要求写作法,但要保留作图痕迹); (2)在(1)的条件下,若AB=AC ,∠B=70°,求∠BAD 的度数.22.(8分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a 的值至少是多少?23.(8分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,(1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;(2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;(3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.24.(10分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.25.(10分)计算:4cos30°12+20180+|1326.(12分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?27.(12分)计算:33.14 3.1412cos45π⎫-+÷-⎪⎪⎝⎭o)()12009211-++-.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高. 【详解】解:设圆锥母线长为Rcm,则2π=120180Rπ︒⨯︒,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.2.B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-1.故选B.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C . 【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键. 4.B 【解析】 【分析】根据二次函数的图象与性质判断即可. 【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误; ②Q 对称轴为直线x=-1,12ba∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值, 即a-b+c <2am bm c ++(1m ≠-), 即a ﹣b <m (am+b )(m≠﹣1), 故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确; ⑤由图像可得,当x=2时,y >1, 即: 4a+2b+c >1, 故⑤正确.故正确选项有③④⑤, 故选B. 【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键. 5.D 【解析】 【分析】∵A (1-,1y ),B (2,2y )两点在双曲线32my x+=上, ∴根据点在曲线上,点的坐标满足方程的关系,得1232m 32my y 12++==-,. ∵12y y >,∴32m 32m >12++-,解得3m 2<-.故选D. 【详解】请在此输入详解! 6.B 【解析】 【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程. 【详解】由题意,设金色纸边的宽为xcm , 得出方程:(80+2x )(50+2x )=5400, 整理后得:2653500x x +-= 故选:B. 【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键. 7.D 【解析】 【详解】A.由图可看出小林先到终点,A 错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B 错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C 错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确. 故选D. 8.D 【解析】 【分析】根据中心对称图形的定义解答即可. 【详解】选项A 不是中心对称图形; 选项B 不是中心对称图形; 选项C 不是中心对称图形; 选项D 是中心对称图形. 故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键. 9.C 【解析】 【分析】根据倒数的定义即可求解. 【详解】±1的倒数等于它本身,故C 符合题意.故选:C . 【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 10.B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将800亿用科学记数法表示为:8×1. 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 11.D 【解析】 【分析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-, 解得x<12a -, 由数轴可知1x <-, 所以112a -=-,解得1a=-;故选:D.【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.B【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=1,BC=4,∴AC=2243+=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=5-1=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得3x2 =,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=1.综上所述,BE的长为32或1.故答案为:32或1.14.AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.详解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.16.5 2【解析】【分析】根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.【详解】设AP,EF交于O点,∵四边形ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四边形AEFP是平行四边形.∴S △POF=S △AOE.即阴影部分的面积等于△ABC 的面积.∵△ABC 的面积等于菱形ABCD 的面积的一半,菱形ABCD 的面积=12AC ⋅BD=5, ∴图中阴影部分的面积为5÷2=52. 17.1【解析】 试题解析:∵袋中装有6个黑球和n 个白球,∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为34, ∴6364n =+, 解得:n=1.故答案为1.18.35°【解析】分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.详解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案为35°.点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)()()31y x x =-+-;(2)2x <-或1x >;(3)1.【解析】【分析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x 的取值范围;(3)分别得出EO ,AB 的长,进而得出面积.【详解】(1)∵二次函数与x 轴的交点为()30A -,和()10B , ∴设二次函数的解析式为:()()31y a x x =+-∵()0,3C 在抛物线上,∴3=a(0+3)(0-1),解得a=-1,所以解析式为:()()31y x x =-+-;(2)()()31y x x =-+-=−x 2−2x +3,∴二次函数的对称轴为直线1x =-;∵点C 、D 是二次函数图象上的一对对称点;()0,3C∴()2,3D -;∴使一次函数大于二次函数的x 的取值范围为2x <-或1x >;(3)设直线BD :y =mx +n ,代入B (1,0),D (−2,3)得023m n m n ⎧⎨-⎩+=+=, 解得:11m n -⎧⎨⎩==, 故直线BD 的解析式为:y =−x +1,把x =0代入()()31y x x =-+-得,y=3,所以E (0,1),∴OE =1,又∵AB =1,∴S△ADE=12×1×3−12×1×1=1.【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.20.证明见解析.【解析】【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键. 21.(1)见解析;(2)20°;【解析】【分析】(1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;(2)运用等腰三角形的性质再根据角平分线的定义计算出∠BAD的度数即可.【详解】(1)如图,AD为所求;(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠BDA=90°,∴∠BAD=90°﹣∠B=90°﹣70°=20°.【点睛】考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.22.(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.23.(1)结论:BE=DG,BE⊥DG.理由见解析;(1)AG=(3)满足条件的AG的长为或【解析】【分析】(1)结论:BE=DG,BE⊥DG.只要证明△BAE≌△DAG(SAS),即可解决问题;(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.由A,D,E,G四点共圆,推出∠ADO =∠AEG=45°,解直角三角形即可解决问题;(3)分两种情形分别画出图形即可解决问题;【详解】(1)结论:BE=DG,BE⊥DG.理由:如图①中,设BE交DG于点K,A E交DG于点O.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∴∠AEB=∠AGD,∵∠AOG=∠EOK,∴∠OAG=∠OKE=90°,∴BE⊥DG.(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.∵∠OAG=∠ODE=90°,∴A,D,E,G四点共圆,∴∠ADO=∠AEG=45°,∵∠DAM=90°,∴∠ADM=∠AMD=45°,∴222DM==,∵DG=1DM,∴42=DG,∵∠H=90°,∴∠HDG=∠HGD=45°,∴GH=DH=4,∴AH=1,在Rt△AHG中,222425AG=+=.(3)①如图③中,当点E在CD的延长线上时.作GH⊥DA交DA的延长线于H.易证△AHG≌△EDA,可得GH=AB=1,∵DG=4DM.AM∥GH,∴1,4 DA DMDH DG==∴DH=8,∴AH=DH﹣AD=6,在Rt△AHG中,2262210AG=+=.②如图3﹣1中,当点E在DC的延长线上时,易证:△AKE≌△GHA,可得AH=EK=BC=1.∵AD∥GH,∴1,5 AD DMGH MG==∵AD=1,∴HG=10,在Rt△AGH中,22102226AG.+=综上所述,满足条件的AG的长为210或26【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.24. (1)3;(2)①2,②3【解析】分析:(1)重合部分是等边三角形,计算出边长即可.()2①证明:在图3中,取AB 中点E,证明OEE 'V ≌OBF V ,即可得到,EE BF '=2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE 'V ≌,OBF V 四边形OE BF '的面积等于OEB S V =3. 详解:(1)∵四边形为菱形,120,ADC ∠=︒∴60,ADO ∠=︒∴ABD △为等边三角形∴30,60,DAO ABO ∠=︒∠=︒∵AD//,A O '∴60,A OB ∠=︒'∴EOB △为等边三角形,边长2,OB =∴重合部分的面积:23234⨯= ()2①证明:在图3中,取AB 中点E,由上题知,60,60,EOB E OF ∠=︒∠=︒'∴,EOE BOF ∠=∠'又∵2,60,EO OB OEE OBF '==∠=∠=︒∴OEE 'V ≌OBF V ,∴,EE BF '=∴2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE 'V ≌,OBF V∴四边形OE BF '的面积等于OEB S V .点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.25【解析】【分析】先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.【详解】原式=411-=11=【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.26.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫可设为2x 件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a 元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件. 由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元.由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元)由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.27.π【解析】【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式()3.14 3.141π=--+÷ ()21-+-3.14 3.141π=-+-11π=-π=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学模拟试卷
一、选择题
1. ﹣2的相反数是()
A. -2
B. -
C. 2
D.
2.下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3.下列结论正确的是( )
A. .若a2=b2,则a=b;
B. 若a>b,则a2>b2;
C. 若a,b不全为零,则a2+b2>0;
D. 若a≠b,则a2≠b2.
4.
夷昌中学开展“阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是(■).
A. 50
B. 25
C. 15
D. 10
5.下列运算正确的是( )
A. x8÷x2=x4
B. (x2)3=x5
C. (﹣3xy)2=6x2y2
D. 2x2y•3xy=6x3y2
6.如图,一束光线与水平面成的角度照射地面,现在地面AB上支放一个平面镜CD,使这束光线经过平面镜反射后成水平光线,则平面镜CD与地面AB所成角∠DCB的度数等于( )
A. B.
45° C. 50° D. 60°
7.不等式组的解集在数轴上表示正确的是()
A. B.
C. D.
8.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()
A. 1颗
B. 2颗
C. 3颗
D. 4颗
9.在下列二次函数中,其图象对称轴为x=2的是()
A. y=2x2﹣4
B. y=2(x-2)2
C. y=2x2+2
D. y=2(x+2)2
10.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是()
A. 12cm
B. 6cm
C. cm
D. cm
11. 要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是
A. 5个
B. 6个
C. 7个
D. 8个
12. 如图,在矩形ABCD中,AB=10,BC="5" .若点M、N分别是线段ACAB上的两个动点,则BM+MN 的最小值为()
A. 10
B. 8
C. 5
D. 6
二、填空题
13.计算:-=________.
14.分解因式:3x2-12x+12= .
15.某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是__.
16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是____米.
17.右图为手的示意图,在各个手指间标记字母A、B、C、D.请你按图中箭头所指方向(即
A⇒B⇒C⇒D⇒C⇒B⇒A⇒B⇒C⇒…的方式)从A开始数连续的正整数1,2,3,4…,当数到12时,对应的字母是;当字母C第201次出现时,恰好数到的数是;当字母C第2n+1次出现时(n为正整数),恰好数到的数是(用含n的代数式表示).
18.如图,(n+1)个边长为2的等边三角形△B1AC1,△B2C1C2、△B2C2C3,…,△B n+1C n C n+1有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,△B4D3C3的面积为S3,…,△B n+1D n C n的面积为
S n,则S2016=___.
三、解答题
19.计算:
20.解方程:.
21.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).
(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后得到的△A1B1C1,并写出A1的坐标;(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.
22. 一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率;
(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为,请直接写出的值,并比较,的大小.(2+3+2=7)23.如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,AC与EF交于点H.
(1)求证:△ABE≌△AGF;
(2)若AB=6,BC=8,求△ABE的面积.
24.某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.
(1)有月租的收费方式是________(填“①”或“②”),月租费是________元;
(2)分别求出①,②两种收费方式中y与自变量x之间的函数表达式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
25. 如图,点P是⊙O 外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O 于点C,连接AC交OP于点D.
(1)求证:PC是⊙O的切线;
(2)若PD=cm,AC=8cm,求图中阴影部分的面积;
(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.
26.如图,在平面直角坐标系中,点O为坐标原点,点A在第一象限,点B在x轴正半轴上,AO=AB,OB=4,tan∠AOB=2,点C是线段OA的中点.
(1)求点C的坐标;
(2)若点P是x轴上的一个动点,使得∠APO=∠CBO,抛物线y=ax2+bx经过点A、点P,求这条抛物线的函数解析式;
(3)在(2)的条件下,点M是抛物线图象上的一个动点,以M为圆心的圆与直线OA相切,切点为点N,点A关于直线MN的对称点为点D.请你探索:是否存在这样的点M,使得△MAD∽△AOB?若存在,请直接写出点M的坐标;若不存在,请说明理由.。