相变存储器的工作原理
相变存储器材料研究综述

相变存储器材料研究1相变存储器介绍相变存储器(PCM)是一种非易失存储设备,它利用材料的可逆转的相变来存储信息。
相变存储器有高读写速度、寿命长,存储稳定,、工艺简单,潜力大,所以相变存储器被认为最有可能取代当今主流存储器而成为未来存储器的主流产品。
2相变存储器原理及设备相变存储器利用电能(热量)使相变材料在晶态(低阻)与非晶态(高阻)之间相互转换,实现信息的读取、写入和擦除,工作原理是将数据的写入和读取分为3个过程—分别是“设置(Set)”、“重置(Reset)”和“读取(Read)”。
“Set”过程就是施加一个宽而低的脉冲电流于相变材料上,使其温度升高到晶化温度Tx以上、熔点温度Tm以下,相变材料形核并结晶,此时相变材料的电阻较低,代表数据“1”。
“Reset”过程就是施加一个窄而强的脉冲电流于相变材料上,使其温度升高到熔点温度Tm以上,随后经过一个快速冷却的淬火过程(降温速率>109K/s),相变材料从晶态转变成为非晶态,此时相变材料的电阻很高,代表数据“0”。
“Read”过程则是在器件2端施加低电压,如果存储的数据是“0”,那么器件的电阻较高,因而产生的电流较小,所以系统检测到较小的电流回馈时就判断是数据“0”;如果存储的数据是“1”,那么器件的电阻较低,因而产生的电流较大,所以系统检测到较大的电流回馈时就判断是数据“1”。
图1是相变存储器的工作原理。
图1 相变存储器的工作原理3GST材料相变机理作为相变存储器的存储介质, 相变材料性能的优劣直接关系到器件性能。
相变存储器中最为核心的是以硫系化合物为基础的相变材料。
其中Ge2Sb2Te5(GST) 相变材料是到目前为止使用和研究最广泛的相变材料, 并已经实现了产品应用。
虽然工业界已经将GST作为相变存储器的存储介质实现了产品和应用, 但是对于GST为何在纳秒甚至皮秒量级的时间内实现非晶态和晶态的可逆相变仍然未有统一的结论。
主要原因是非晶态GST中原子排列是无序的,传统晶体学的理论和结构研究方法已不适用,因而对GST的非晶态很难获得一个清晰的认识, 更不能得到可逆相变过程中微观结构的变化。
相变存储器(PCM)技术基础.

相变存储器(PCM)技术基础相变存储器(PCM)技术基础类别:存储器相变存储器技术基础相变存储器(PCM)是一种非易失存储设备,它利用材料的可逆转的相变来存储信息。
同一物质可以在诸如固体、液体、气体、冷凝物和等离子体等状态下存在,这些状态都称为相。
相变存储器便是利用特殊材料在不同相间的电阻差异进行工作的。
本文将介绍相变存储器的基本技术与功能。
发展历史与背景二十世纪五十年代至六十年代,Dr.Stanford 1968年,他发现某些玻璃在变相时存在可逆的电阻系数变化。
1969年,他又发现激光在光学存储介质中的反射率会发生响应的变化。
1970年,他与他的妻子Dr.Iris Intel的Gordon Moore合作的结果。
1970年9月28日在Electronics发布的这一篇文章描述了世界上第一个256位半导体相变存储器。
近30年后,能量转换装置(ECD)公司与Micron Technology前副主席Tyler Lowery建立了新的子公司Ovonyx。
在2000年2月,Intel与Ovonyx发表了合作与许可协议,此份协议是现代PCM研究与发展的开端。
2000年12月,STMicroelectronics(ST)也与Ovonyx开始合作。
至2003年,以上三家公司将力量集中,避免重复进行基础的、竞争的研究与发展,避免重复进行延伸领域的研究,以加快此项技术的进展。
2005年,ST与Intel发表了它们建立新的闪存公司的意图,新公司名为Numonyx。
在1970年第一份产品问世以后的几年中,半导体制作工艺有了很大的进展,这促进了半导体相变存储器的发展。
同时期,相变材料也愈加完善以满足在可重复写入的CD与DVD中的大量使用。
Intel开发的相变存储器使用了硫属化物(Chalcogenides),这类材料包含元素周期表中的氧/硫族元素。
Numonyx的相变存储器使用一种含锗、锑、碲的合成材料(Ge2Sb2Te5),多被称为GST。
通信电子中的相变存储技术

通信电子中的相变存储技术近年来,相变存储技术在通信电子领域得到了广泛应用。
它是一种基于物质相变的新型存储技术,可以提供高速、高密度、低功耗的数据存储解决方案。
相变存储技术的原理是基于材料的相变特性。
所谓相变,是指物质在温度、压力等外部条件改变的情况下会发生相组成和结构的变化。
在相变存储器中,常用的相变材料是锑(Sb)基化合物,它的相变温度在100摄氏度左右。
当相变材料受到电压刺激时,就能够在不同的相态之间进行转换,以此实现数据存储。
相变存储技术相较于传统存储技术的优点在于其操作速度非常快,且功耗低。
这是因为相变存储器中数据的读取和写入都是通过电流来实现的,而电流的变化能够迅速影响相变材料的状态,从而实现数据的操作。
同时,相变存储器的结构非常简单,由于其中不需要复杂的电容或晶体管结构,相变存储器的体积和成本都相对较小。
在通信电子领域,相变存储技术主要应用在芯片级存储器中。
由于相变存储器的高密度和低功耗特性,它可以被应用在手机、智能家居等空间受限的场合,为这些设备提供更高效的存储解决方案。
此外,相变存储技术还可以被应用在存储器的缓存数据中,提高存储器运行速度。
然而,相变存储技术也存在着一些挑战和局限性。
首先,相变材料的寿命问题仍然需要被解决。
由于相变材料在高温下容易耐久度下降,导致数据读取的可靠性受到影响。
其次,由于相变存储技术的应用范围仍然相对较窄,因此更多的研究和测试需要被进行,以使相变存储技术能够被更广泛地应用。
总结起来,相变存储技术在通信电子领域拥有着广阔的应用前景。
它可以提供高速、高密度、低功耗的解决方案,成为传统存储技术的有力补充。
作为一种新型技术,相变存储技术在未来仍然需要不断的改进和完善,才能真正地实现其应用的广阔前景。
相变存储器:基本原理与测量技术

相变存储器:基本原理与测量技术相变存储器(可缩略表示为PCM、PRAM或PCRAM)是一种新兴的非易失性计算机存储器技术。
它可能在将来代替闪存,因为它不仅比闪存速度快得多,更容易缩小到较小尺寸,而且复原性更好,能够实现一亿次以上的擦写次数。
本文将为您介绍相变存储器的基本原理及其最新的测试技术。
何为PCM,它是如何工作的? PCM存储单元是一种极小的硫族合金颗粒,通过电脉冲的形式集中加热的情况下,它能够从有序的晶态(电阻低)快速转变为无序的非晶态(电阻高得多)。
同样的材料还广泛用于各种可擦写光学介质的活性涂层,例如CD和DVD。
从晶态到非晶态的反复转换过程是由熔化和快速冷却机制触发的(或者一种稍慢的称为再结晶的过程)。
最有应用前景的一种PCM材料是GST(锗、锑和碲),其熔点范围为500º–600ºC。
这些合金材料的晶态和非晶态电阻率大小的差异能够存储二进制数据。
高电阻的非晶态用于表示二进制0;低电阻的晶态表示1。
最新的PCM设计与材料能够实现多种不同的值[1],例如,具有16种晶态,而不仅仅是两种状态,每种状态都具有不同的电气特性。
这使得单个存储单元能够表示多个比特,从而大大提高了存储密度,这是目前闪存无法实现的。
非晶态与晶态 简单介绍非晶态与晶态之间的差异有助于我们搞清楚PCM器件的工作原理。
在非晶态下,GST材料具有短距离的原子能级和较低的自由电子密度,使得其具有较高的电阻率。
由于这种状态通常出现在RESET操作之后,我们一般称其为RESET状态,在RESET操作中DUT的温度上升到略高于熔点温。
相变储能器的工作原理

相变储能器的工作原理相变储能器(Phase Change Material Energy Storage,PCMES)是一种新型的热能储存技术,可以有效地储存诸如太阳能热、余热、地热等可再生能源,为可持续发展提供了重要支持。
它的工作原理主要包括相变储能和热交换两个方面。
相变储能是指物质在相变过程中吸收或释放大量的热量。
相变储能器将相变材料作为储热介质,通过控制介质的相变状态来实现热能的储存和释放。
相变材料是指具有相变特性的物质,常见的相变材料有蓄热盐、金属合金和有机相变材料等。
热交换是指热能从一个媒介转移到另一个媒介的过程。
在相变储能器中,热交换是实现热能储存和释放的关键环节。
它通过传热介质(通常是液体或气体)与相变材料进行接触,将热能传递给相变材料或从相变材料中释放出来。
热交换的方式常常采用传热管、换热器等设备来实现,从而提高热交换的效率。
相变储能器的工作过程可以简单地概括为以下几个步骤:1. 储能阶段:当外界有多余热能供给时,传热介质与相变材料接触,将热能传递给相变材料。
相变材料在吸热的同时发生相变,从固态转变为液态或气态,吸收并储存大量的热能。
相变过程中,相变材料的温度保持相对稳定。
2. 储能状态:储存了热能的相变材料在储能状态下保持相对稳定的温度,不会随外界温度变化而改变。
这样可以有效地避免能量的损失和浪费,提高储能效果。
3. 释能阶段:当需要利用储存在相变材料中的热能时,传热介质与相变材料再次接触,将热能从相变材料中释放出来。
相变材料发生相变反应,由液态或气态转变为固态,释放出被储存的热能。
4. 释能状态:释能过程完成后,相变材料回到固态状态,并保持相对稳定的温度。
释能过程中释放出的热能可以用于供暖、浴炉或发电等能源利用领域,实现能源的高效利用。
相变储能器具有诸多优点,使其在可再生能源储存领域得到广泛应用:1. 高效性:相变储能器能够实现高能量密度的热能储存和释放,储能效果较好。
相变过程中,相变材料能够吸收、释放大量的热量,提高能量的转化效率。
相变存储器

相变存储器(phase change memory),简称PCM,利用硫族化合物在晶态和非晶态巨大的导电性差异来存储数据的。
初次听到"相变"这个词,很多读者朋友会感到比较陌生.其实,相(phase)是物理化学上的一个概念,它指的是物体的化学性质完全相同,但是物理性质发生变化的不同状态.例如水有三种不同的状态,水蒸气(汽相),液态水(液相)以及固态水(固相)。
物质从一种相变成另外一种相的过程叫做…相变‟例如水从液态转化为固态。
在很多物质中相变不是大家想象的只有气,液,固,三相那么简单。
例如我们这里介绍的相变存储器就是利用特殊材料在晶态和非晶态之间相互转化时所表现出来的导电性差异来存储数据的。
所以我们称之为相变存储器。
相变材料制作的相变内存无论是在专利布局、芯片试产及学术论文上开始有优异的表现,已开始商业应用,其cell size于201 1年将小于NOR Flash,未来可望大规模取代NOR Flash市场。
NOR和NAND是现在市场上两种主要的非易失闪存技术。
Int el于1988年首先开发出NOR flash技术,彻底改变了原先由EPRO M和EEPROM一统天下的局面。
紧接着,1989年,东芝公司发表了NAND flash结构,强调降低每比特的成本,更高的性能,并且象磁盘一样可以通过接口轻松升级。
但是经过了十多年之后,仍然有相当多的硬件工程师分不清NOR和NAND闪存。
相“flash存储器”经常可以与相“NOR存储器”互换使用。
许多业内人士也搞不清楚NAND闪存技术相对于NOR技术的优越之处,因为大多数情况下闪存只是用来存储少量的代码,这时NOR闪存更适合一些。
而NAND则是高数据存储密度的理想解决方案。
NOR的特点是芯片内执行(XIP, eXecute In Place),这样应用程序可以直接在flash闪存内运行,不必再把代码读到系统RAM中。
N OR的传输效率很高,在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。
相变存储器的研究进展
相变存储器的研究进展随着科技的不断进步和人类对于信息存储的需求不断增加,电子存储器也在不断地进行升级。
其中,相变存储器是一个备受关注的领域,它具有着存储密度高、速度快、可擦写等优点,有望成为未来存储技术发展的重要方向。
本文将对相变存储器的研究进展进行探讨。
相变存储器的工作原理相变存储器利用了物理上的相变过程,实现对信息的存储。
相变存储器中的存储单元由一定数量的材料组成,这些材料能够在经过电场或者光照的作用下,进行相变。
相变过程中,材料的特性会发生较大的变化,并且相变过程具有较高的可逆性。
因此,在相变存储器中,不同相态的状态可以被用作信息的存储。
具体来说,相变存储器中的存储单元可以缩小到10纳米级别,这意味着它可以在物理尺寸和存储密度之间取得相对的平衡。
相变存储器中的存储单元具有较快的读写速度,一般在纳秒级别,因此相比于传统的存储器,相变存储器更适合于高速读写任务。
同时,相变存储器的寿命较长,其存储信息的可靠性也较高。
研究进展和挑战随着相变存储器的研究深入,相关的研究成果也层出不穷。
在新材料的发掘方面,研究人员不断地寻找新的相变材料和更好的电子材料,以提高相变存储器的性能。
同时,在相变存储器的制造和优化方面,也有很多新的进展。
例如,近年来在相变存储器中引入其他功能元素,如变压器和电容器等,可以更好的实现其具有的存储、计算与通讯等多种功能。
同时,研究人员也在探讨如何通过控制相变体系和局部结构调控材料特性,从而达到更好的导电性和抗微观缺陷的性能。
但是,相变存储器的发展仍存在一些挑战。
其中最主要的问题是其可靠性和功耗问题。
由于相变材料内部的结构会随着电流密度的提高而受到破坏,所以相变存储器的可靠性一直是一个重要的问题。
同时,相变存储器的功耗问题也不容忽视。
这主要是因为相变存储器需要较高的电流密度来实现相变,因此其功耗较高。
未来展望与结论相比于传统存储器,相变存储器具有更高的存储密度、更快的读写速度和更好的可擦写性,而这些也正是当前高密度信息存储所需的。
相变存储器的原理和发展
相变存储器的原理和发展相变存储器,作为一种新型存储器,正在逐渐成为人们关注的热门话题。
相比于传统的存储器技术,相变存储器由于具有高密度、高可靠性、低功耗等特点,正在逐渐走向成熟。
在这篇文章中,我们将会探讨相变存储器的原理和发展。
一、相变存储器的原理相变存储器(Phase Change Memory,PCM)是一种通过将物质的状态从一个相转变到另一个相来实现存储和擦除信息的存储器。
它具有非易失性、快速读写、高密度、低功耗等优点,而且不会受到电磁干扰的影响。
相变存储器的基本原理是利用材料的相变来存储信息。
在相变存储器中,通过在材料中通入电流,可以将材料由非晶态(amorphous)转变为结晶态(crystalline),或者由结晶态转变为非晶态,从而实现信息的存储和擦除。
相变存储器由一个导电介质薄膜和一层相变材料薄膜组成。
当通入电流时,相变薄膜的温度会上升,从而引起相变。
相变后,材料的导电性和抗电性会发生明显变化,这种变化被采集和存储在导电介质薄膜中。
从而实现了信息的存储。
相变存储器的最大特点是它可以在非常短的时间内进行快速的写和读操作。
相变薄膜的相变速度很快,写入时间只需要几十纳秒,读取时间也只需要几纳秒。
同时,相变存储器还具有非常高的可靠性,因为相变材料可以进行无限次的相变。
二、相变存储器的发展相变存储器的历史可以追溯到上世纪60年代,但要真正进入实用化的阶段还有很长的路要走。
在过去的几十年中,相变存储器的研究一直处于实验室阶段。
直到近年来,随着存储技术的进一步发展,相变存储器才开始逐渐受到人们的关注。
在过去的几年中,相变存储器已经从实验室阶段进入了产品研发阶段。
英特尔公司已经推出了一款基于相变存储器的高速固态硬盘(SSD),号称可以提供比传统硬盘更快的读写速度和更高的可靠性。
同时,三星、东芝、半导体制造商Micron等公司也在积极推进相变存储器技术的研发。
相比于传统的NAND闪存存储器,相变存储器具有更高的存储密度和更快的访问速度。
相变存储器及其应用研究进展
相变存储器及其应用研究进展一、引言随着信息技术的快速发展,存储器作为计算机硬件的重要组成部分之一,越来越受到人们的关注。
相变存储器由于其存储密度高和功耗低等优点,成为了摆脱传统存储技术瓶颈的解决方案之一。
本文将从相变存储器技术的特点、应用、发展状况等方面进行讨论。
二、相变存储器的特点与原理相变存储器(Phase-change Memory,PCM)属于非易失性存储器。
相变存储器是利用相变物质(如GeSbTe、GeSbSe等)的物理性质,通过在相变物质中引入热脉冲或电脉冲,使相变物质从一种状态转变为另一种状态来实现存储的过程。
相变存储器的主要特点如下:1. 存储密度高。
相变存储器是一种三维存储结构,可以将多个存储单元集成在一个芯片中,从而实现更高的存储密度。
2. 速度快。
相变存储器读写速度可以达到纳秒级别,比传统的闪存存储器快很多。
3. 功耗低。
相变存储器的读写操作不需要外部电源,只需要少量电能激活相变物质即可,因此功耗非常低。
4. 非易失性。
相变存储器存储的数据具有非易失性,可以长期保存且不需要外部电源维持。
相变存储器的原理是通过在相变物质中施加电流或热脉冲,让相变物质的结构发生相变。
相变物质的电阻率随着结构状态的变化而变化,从而记录了数据。
相变材料的相变状态包括两种,一种是无序状态,另一种是有序状态。
在有序状态下,电阻率低,储存为0;在无序状态下,电阻率高,代表储存为1。
不同相变物质的相变状态转换温度不同。
通过控制施加电流或热脉冲的时间和强度,就可以实现相变存储器的读写操作。
三、相变存储器的应用研究进展相变存储器技术的应用潜力非常大,在计算机硬件领域具有广泛的应用前景。
下面将从相变存储器在计算机存储、人工智能和物联网等方面的应用以及相关技术的发展状况进行讨论。
1. 计算机存储相变存储器的高速读写和高存储密度等特点使其成为新一代计算机存储器的重要组成部分。
相变存储器不但可以替代传统磁盘驱动器、闪存盘等存储设备,还能够贡献于新型高速计算机的处理速度。
相变存储器介绍 PPT
金属导电细丝的形成过程
以 Ag/Insulator/Pt 器件的阻变机理为例: 在 Ag 顶电极施加正电压,Ag原子被氧化成 Ag+, Ag → Ag++ e. 当施加的电场足够强时,这些 Ag 离子向 Pt 电极移动,到达 Pt 电极时得到电 子被还原为 Ag 原子,被还原的 Ag 离子在 Pt 电极上不断堆积,金属 Ag 细丝最终到达 Ag 电 极,形成金属导电通道. 与此同时,器件的阻 值急剧降低,器件到达低阻态(ON state),此过 程称为 SET 过程. 需要指出的是,可以通过调 节 SET 过程中的限制电流,得到不同的 LRS, 适当的增大限流,会得到更小的低阻态阻值, 这种低阻态阻值的减小,可以致使金属导电细 丝直径的增大.当施加在顶电极的电压极性反 转为负压时,随着阻变层薄膜里的金属 Ag 细丝 在相反方向的氧化还原反应的作用下断裂或熔 解,器件重新回到高阻态(OFF state),此为 RESET 过程.
忆阻器
——PRAM
PRAM:Phase Change Random Access Memory
研究动机
1.当代计算机性能提升最重要的一大障碍在于处理器从大容量存储中获 取数据花费的时间。(存储墙问题) 2.用户希望存储器能同时具有 DRAM 的高速度、高寿命和 FLASH 的低 成本、非易失的优点。
十字交叉阵列结构中发生电流串扰示意图
为了解决这种串扰问题,提出了三种结构:1T1R,1D1R和具有自整流特性 的 1R 结构,图 11 所示为此三种结构的 3D 示意图. 1T1R 结构单元的最 小尺寸是由选择晶体管的尺寸来决定,这种集成结构的单元面积大,可缩 小性受到晶体管的限制,并且这种平面集成方式不利于 3D 的堆叠,而 1D1R 结构和 1R 结构都没有这样的缺陷,被认为是解决串扰现象理想的 结构.因此,选用适当的堆叠结构,再利用其他改善性能的方法,可以制 备出性能优越的阻变存储器器件.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相变存储器的工作原理
相变存储器是一种新型的非易失性存储器,具有电阻式随机存取存储器(Resistive Random-Access Memory,RRAM)或相变存储(Phase-Change Memory,PCM)的别名。
相较于传统的存储器,它具有更高的存储密度、更快的读写速度
和更低的功耗,被广泛认为是未来存储器的发展方向之一。
本文将详细介绍相变存储器的工作原理,并从相变材料、电阻调制和读取操作三个方面进行阐述。
一、相变材料
相变存储器采用了特定的相变材料,最常见的是硫化锌(ZnS)和掺硅锗
(Ge2Sb2Te5)。
这类材料是一种非晶态和结晶态之间可逆转变的物质,能够在电
流的刺激下发生相变。
相变材料的特殊结构和成分决定了存储器的工作性能。
二、电阻调制
相变存储器的工作原理基于相变材料在不同电阻状态下的相变特性,通过改变
相变材料的电阻来实现数据的写入和存储。
具体来说,当相变材料处于非晶态时,其电阻较高,表示存储位为逻辑“0”;而当相变材料转变为结晶态时,其电阻较低,表示存储位为逻辑“1”。
这种电阻的调制过程是可逆的,能够实现多次读写操作。
三、读取操作
相变存储器的读取操作是通过测量存储位的电阻来实现的。
一般来说,读取操
作是非破坏性的,即不会改变存储位的状态。
通过在相变存储器上施加一定的电压,可以测量存储位的电阻大小,从而确定其状态。
例如,当读取操作的电压小于设定阈值时,可将存储位判定为逻辑“0”;反之,当读取操作的电压大于设定阈值时,
可将存储位判定为逻辑“1”。
四、应用前景
相变存储器具有许多优点,使其在未来的存储器应用中具有广阔的前景。
首先,相变存储器的存储密度非常高,可以将更多的存储单元集成在一个芯片上,提高存储器的容量。
其次,相变存储器的读写速度快,可以实现更快的数据传输和处理。
再次,相变存储器的功耗低,比传统存储器更加节能环保。
此外,相变存储器还具备较长的存储寿命和较高的工作温度范围,适用于各种场景的应用。
综上所述,相变存储器是一种具有广泛前景的新型存储器,其工作原理基于相
变材料的特殊性质和电阻的调制。
通过改变相变材料的电阻状态来实现数据的存储和读取操作。
相变存储器具有高存储密度、快速的读写速度、低功耗等优点,被广泛应用于各种存储器设备中。
我们对相变存储器的研究和发展将为未来的存储技术提供重要的支持和发展方向。