《金属材料》教案-第三章-金属的塑性变形与再结晶知识讲解
第三章金属的塑性变形与再结晶 工程材料课件

一、塑性变形的基本形式 1、单晶体的变形 a. 滑移
2、多晶体的变形 a. 晶界和晶粒位向的影响
b. 多晶体的塑性变形过程
第二节 塑性变形对金属组织 和性能的影响
纤维组织
加工硬化
第三节 变形金属在加热时的组织 和性能的变化
一、回复 二、再结晶
一、热加工概念 金属的热加工和冷加工的界限是以再结晶
温度来区分。 T再温度以上为热加工
T再温度以下为冷加工
二、热加工对金属组织和性能的影响 组织致密形成纤维组织,机械性能提高。
第五节 超 塑 性 为10% 0-100% 0,称为超塑性。
T再=0.4T熔
几种纯金属的再结晶温度与退火温度
金属
Fe Cu Al
熔点(0C)
1535 1083 660
最低再结晶 温度(0C)
450
269
100
再结晶退火 温度(0C) 600-700
400-450
250-300
三、影响再结晶晶粒度的因素 1、加热温度的影响 2、变形度的影响
第四节 金属的热加工
金属的塑性变形与再结晶

➢热加工流线的利用
➢纵向(沿纤维方向),塑性、韧性增加 横向(垂直纤维方向),塑性、韧性降低 但抗剪切能力显著增强。
➢纵向具有最大的抗拉强度,横向具有最大 的抗剪切强度.
57
热加工流线的合理利用
➢流线沿零件轮廓分布不中断 ➢最大拉应力方向沿流线 ➢最大剪应力方向垂直于流线
58
√
59
带状组织
➢(2)杂质与合金元素
杂质元素与微量溶 质原子与晶界产生交互 作用,阻碍晶界迁移。
微量杂质元素含量 越高,晶界迁移越慢
42
➢(3)第二相(分散相)质点
阻碍晶界移动,降低晶粒长大速度
φ:分散相粒子所占的体积分数。 r:粒子的半径
43
第二相颗粒所占体积分数一定时, 颗粒愈细,其数量愈多,则晶界迁移所 受到的阻力也愈大,晶粒正常长大速度 越小。
驱动力:晶界能的降低。
47
48
49
小结:
冷变形在金属材料内部产生了储存能,退 火过程中原子活动能力增强,储存能逐渐释放。 材料内部发生回复、再结晶与晶粒长大。
退火温度较低时,产生回复。储存能部分 释放,材料中的宏观残余应力基本消除,力学性 能及显微组织均保持变形后的特点。
退火温度较高时,产生再结晶。储存能完全 释放,材料重新软化,晶粒为细小的等轴晶。
➢形变金属有回到变形前组织与性能状态 的趋势
3
7.1 形变金属及合金在退火过程中的变化
➢ 回复、再结晶、晶粒长大是形变金属退火时 经历的基本过程
➢1. 显微组织变化
4
2. 储存能释放与性能变化
➢ 经过回复与再结晶, 材料的储存能释放完 毕,材料的组织与性 能能够逐渐恢复变形 前的状态。
5
金属材料的塑性变形与再结晶课件

KEEP VIEW
金属材料的塑性变形 与再结晶课件
目 录
• 金属材料的塑性变形 • 金属材料的再结晶 • 金属材料塑性变形与再结晶的应用 • 金属材料塑性变形与再结晶的实验研究方法 • 金属材料塑性变形与再结晶的理论模型
PART 01
金属材料的塑性变形
塑性变形的基本概念
塑性变形
金属材料在受到外力作用时发生的不可逆的形状变化。
END
THANKS
感谢观看
KEEP VIEW
再结晶的定义
再结晶是指在金属加工过程中,由于温度变化或外力作用,使得 金属内部发生晶格重构的过程。
再结晶的基本类型
包括静态再结晶、动态再结晶等,不同类型的再结晶过程对金属的 性能有不同的影响。
再结晶过程的驱动力
理论模型能够解释再结晶过程的驱动力,从而预测再结晶发生的条 件和过程,指导金属的加工和热处理过程。
石油化工设备如压力容器、管道等需 要承受高压和腐蚀介质,因此需要使 用经过塑性变形和再结晶处理的金属 材料。
航空航天
飞机和火箭等航空航天器的制造过程 中,需要使用经过塑性变形和再结晶 处理的金属材料,以确保其轻量化和 高强度。
金属材料塑性变形与再结晶的发展趋势
新材料的研发
随着科技的发展,新型金属材料 不断涌现,如高强度轻质合金、 纳米材料等,为金属材料的塑性 变形和再结晶提供了更多可能性。
实验原理
基于金属材料的物理和化学性质,利用各种实验手段观察和分析 金属材料在塑性变形和再结晶过程中的行为。
实验步骤
选择合适的金属材料,进行塑性变形和再结晶实验,收集实验数 据,进行结果分析和解释。
金属材料塑性变形的实验研究方法
拉伸实验 通过拉伸实验可以测量金属材料的屈服强度、抗拉强度和 延伸率等力学性能指标,同时观察金属材料在拉伸过程中 的变形行为。
《金属材料与热处理》第三章金属的塑性变形对组织性能

重冷塑性变形的金属,经1小时加热后能完全再结晶的 最低温度来表示。
最低再结晶温度:
T再=0.4T熔点 式中温度单位为绝对温度(K)。
8
学习情境三:金属的塑性变形对组织性能的影响 3.2
(3)再结晶温度影响因素:
1)变形程度 ➢2)金金属属再纯结度晶前:塑纯性度变越形高的, 最相低对再变结形晶量温称度为也预就先越变低形 度➢。3)预;加先热变速形度越大, 金属的晶体缺陷就越多, 组织越不 稳➢➢杂再定质结, 最和晶低合是再金一结元扩晶素散温(过度高程也熔, 需就点一越元定低素时;)间阻才碍能原完子成扩;散和晶 ➢界➢当提迁预高移先加, 可变热显形速著度度提达会高一使最定再低大结再小晶结后在晶,较最温高低度温再;度结下晶发温生度;趋于某 一➢高原稳纯始定度晶值铝粒。(越99粗.9大9,9再%结)最晶低温再度结越晶高温。度为80 ℃; ➢工业纯铝(99.0%)最低再结晶温度提高到290 ℃。
3
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、热加工晶粒大小控制措施
(1).控制较低的加工终了温度 (2).控制较大的变形程度 (3).控制较快的冷却速度
0
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、产生残余内应力 ➢定义:外力去除后,金属内部残留下来的应力。
产生原因:金属发生塑性变形时,内部变形不均匀, 位错、空位等晶体缺陷增多,会产生残余内应力。
➢1)宏观内应力 ➢2)微观残余应力 ➢3)晶格畸变应力
1
学习情境三:金属的塑性变形对组织性能的影响 3.2
3
学习情境三:金属的塑性变形对组织性能的影响 3.1
第一节 金属的塑性变形
金属的塑性变形与再结晶1

6.4 塑性变形对金属组织与性能的影响
3.形变织构 是指随塑性变形进行,各个晶粒在空间取向上
逐渐趋于一致的组织状态。
58
不同的晶体结构,有不同的形变织构取向
59
织构的利与弊:各向异性的避免或利用
制耳
60
6.4 塑性变形对金属组织与性能的影响
4.残余应力 变形功一部分转变为储存能,以各类残余应力 的形式表现
72
不可变形粒子阻碍变形的Orowan机制
➢ 受阻—弯曲—绕过—位错环—反作用于位错源
克服线张力作用使位错
线弯曲到曲率半径
R的切应力为:
Gb
2R 能够绕过粒子继续运动
需要克服的临界切应力
为:
Gb ( : 粒子间距)
73
小结:
不可变形粒子的强化作用与粒子间距λ成 反比,粒子愈多,粒子间距愈小,强化作用 愈明显。
强化的理解与运用 ➢塑性变形对合金组织与性能的影响与分
析运用 ➢塑性变形中用 的理解
80
通常有害,应予以消除 也可有特殊的强化效应——表面残余压应力提 高疲劳强度
61
残余应力的分类
➢ (1)宏观残余应力(第一类内应力): 由宏观变形不均匀性引起的,易导致工件变形
➢ (2)微观残余应力(第二类内应力) 由晶粒或亚晶粒之间的变形不均匀性引起,易导致 工件开裂。
➢ (3)点阵畸变(第三类内应力): 由点阵缺陷(如空位、间隙原子、位错等)引起的, 引起晶体的强化并使之处于热力学不稳定状态。
(2)是一种均匀切变。 (3)孪晶有对称关系。
在一定范围内改变了晶体的取向。
39
40
41
111 000
孪晶形貌的衍衬像
孪晶的选区电子衍射花样
《材料成型技术与基础》全套PPT电子课件教案-第03章 单晶体与多晶体的塑性变形等

拉拔时金属应力状态
第三章金属材料的塑性变形
本章小结
锻造、轧ቤተ መጻሕፍቲ ባይዱ、挤压、冲压等都是塑性变形。这些 塑性变形的目的不仅是为了得到零件的外形和尺寸, 更重要的是为了改善金属的组织和性能。
塑性变形的主要形式是滑移和孪生,是在切应力 的作用下进行的,塑性变形将产生形变强化,形成纤 维组织,具有各向异性。塑性变形后的 金属加热时会 产生回复或再结晶及晶粒长大,其形变强化现象消除。
滑移特点:①滑移是在切 应力作用下完成的;②滑 移时移动的距离是原子间 距的整数倍;③滑移的同 时由于正应力组成的力偶 作用,推动晶体转动,力 图使滑移面转向与外力一 致的方向。④滑移的实质 是位错运动的结果。因此 滑移的实际临界切应力远 远大于理论临界切应力。
第三章金属材料的塑性变形
单晶体滑移变形示意图
定义:经冷变形的金属当加热到T再时,会在变形最激 烈的区域自发形成新的细小等轴晶粒,叫做再结 晶这一过程实质上也是一个形核和长大的过程, 但晶格类型不变,只是改变了晶粒外形. T再T熔
※金属再结晶后,消除了残余应力和形变强化现象 晶粒长大 冷变形和热变形 金属纤维组织及其应用
第三章金属材料的塑性变形
第三章金属材料的塑性变形
单晶体和多晶体的塑性变形 金属的形变强化 塑性变形金属在加热时组织和性能的变化 塑性加工性能及影响因素 本章小结
第三章金属材料的塑性变形
单晶体的塑性变形 1.滑移 2.孪生 1.晶粒取向对塑性变形的影响 2.晶界对塑性变形的影响
第三章金属材料的塑性变形
锌单晶体的滑移变形示意图
第三章金属材料的塑性变形
未变形 弹性变形 弹塑性变形 塑性变形
位错运动引起的滑移变形示意图
第三章金属材料的塑性变形
金属材料的塑性变形与再结晶教学PPT讲义
经表面处理后 的表面层
19
§ 4-0-2 其他载荷作用下材料的机械性能 1. 冲击韧性
冲击韧性αk是指在冲击载荷下材料抵抗变形和断裂的能力。 αk=冲击破坏所消耗的功Ak/标准试样断口截面积S (J/m2)
锤头 试样
橡胶夹头
多次冲击弯曲实验示意图
20
Titanic沉没原因
21
由于早年的Titanic 号采用了含硫高的钢板,韧 性很差,特别是在低温呈脆性。所以,冲击试样 是典型的脆性断口。近代船用钢板的冲击试样则 具有相当好的韧性。
条件疲劳极限:
经受107应力循环而不致断裂的最大应力值。
24
§4-1 金属材料的塑性变形特性
§Байду номын сангаас-1-1 金属材料变形特性
金属经熔炼浇注成铸锭以后,通常要进行各种塑性加工,如 轧制、挤压、冷拔、锻压、冲压等,以获得具有一定形状、 尺寸和力学性能的型材、板材、管材或线材,以及零件毛坯或 零件,并可以消除铸造过程中的某些缺陷。
单晶体受力后,外力在 任何晶面上都可分解为 正应力和切应力。 正应力只能引起弹性变 形。只有在切应力的作 用下,金属晶体才能产 生塑性变形。产生滑移 的最小切应力称临界切 应力。
压力加工的实质就是塑性变形。
25
§4-1-2 单晶体的塑性变形
塑性变形有两种形式:滑移和孪生。在多数情况下, 金属的塑性变形是以滑移方式进行的。
(1) 滑移
滑移是指晶体的一部分沿一定的晶面(滑移面)和 晶向(滑移方向)相对于另一部分发生滑动位移的 现象。
26
①滑移变形的特点
(A)滑移只能在切应力的作用下发生。
h1-h0
13
定义:每0.002mm相当于洛氏1度
第三章金属的塑性变形与再结晶PPT学习教案
第三节 回复与再结晶
金属冷塑性变形后,产生了加工硬化现象, 结果金属晶体中缺陷密度增加,内能升高, 这种处于不稳定状态的组织有自发恢复到 变形前的组织状态的倾向。
在常温下,这种转变一般不易进行。如果 对金属进行加热,随着加热温度的升高, 其组织会相继发生回复、再结晶和晶粒长 大三个阶段的变化。
第24页/共68页
2. 亚结构的形成
金属在塑性变形时,除了产生滑移之外,晶粒内部还破碎成许多 位向差小于1°的小晶块,这种小晶块称为亚晶粒,这种结构被称 为亚结构。
亚晶粒的边界堆积有大量的位错,而亚晶粒内部的晶格则相对地 比较完整。塑性变形程度愈大,形成的亚晶粒愈多,亚晶界也就 愈多,位错密度随之增大。
由于回复过程温度比较低,金属的晶粒大 小和形状不会发生明显变化,所以金属加 工硬化后的强度、硬度和塑性等力学性能 基本不变,但残余内应力和电阻显著下降, 应力腐蚀现象也基本消除。
因此,冷变形金属若要在消除残余内应力 的同时仍保持冷变形强化状态的话,就可 以采取回复处理,进行一次250~300℃的 低温退火。
由于相邻晶粒之间存在位向差,当一个晶粒发生变形时,周围的晶粒如不发 生塑性变形,则必须产生弹性变形来与之协调。这样,周围晶粒的弹性变形 就成为该晶粒继续塑性变形的阻力。所以,由于晶粒间相互约束,多晶体金 属抗塑性变形的能力就大大提高。而且晶粒越细,相同体积内晶粒越多,晶 粒位向对金属塑性变形的影响就越显著。
第39页/共68页
一、回复、再结晶和晶粒长大
1. 回 复 当冷变形金属的加热温度不太高时,内部
原子活动能力尚不大,只能作短距离扩散, 这一过程称为回复。 在回复这一阶段,金属的某些力学性能、 物理性能和亚结构发生变化,但没有新的 晶粒出现。 内部的“多边化”过程
第三章金属的结晶变形与再结晶
1.金属滑移的机理; 2.加工硬化的位错理论。
§ 3-1 纯金属的结晶
一、几个概念
1、结晶:物质从液态冷却转变为固态的过程叫凝
固。若凝固后的固体为晶体称为结晶。
凝固后是否形成晶体与液体的粘度和冷却速度有关。 粘度大,液体粘稠,相对运动困难,凝固时极易形 成无规则结构。
冷却速度直接关系到原子或分子的扩散能力。当冷 却速度大于107ºC/S时,可阻止金属及合金的结晶, 获得非晶态金属材料。
晶粒大小与金属强度的关系
五、金属的同素异晶转变
同素异晶转变:固态下,随温度的改变,金属由一 种晶格类型转变为另一种晶格类型的现象。
与结晶过程相似,同素异晶转变也是一个重结晶过 程。遵循着结晶的一般规律。只是同素异晶转变在 固态下进行,原子的扩散较难,转变时需要较大的 过冷度。若转变时晶格的致密度有改变,将引起晶 体体积的变化,使其产生较大的内应力。
大多数金属没有同素异晶转变,而铁、锰、锡等金 属有同素异晶转变。如铁
在金属晶体中,铁的同素 异晶转变最为典型,也是 最重要的。纯铁的冷却曲 线如右图所示。
-Fe、-Fe、 -Fe是铁 在不同温度下的同素异构 体。 -Fe和-Fe都是体 心立方晶格,分别存在于 熔点至1394℃之间及 912℃以下。-Fe是面心 立方晶格,存在于 1394℃~912℃之间。
纯铁的同素异晶转变
§3-2 金属材料的塑性变形特性
金 属与合金的铸态组织中往往具有晶粒粗大不均匀、组织不 致密和成分偏析等缺陷,因此金属材料经冶炼浇注后大多要 进行各种压力加工,如轧制、锻造、挤压、拉拔等,制成型 材和工件再予使用。
金属经压力加工,不仅改变了外形,而且也使材料内部的组 织和性能发生很大变化,讨论金属的塑性变形规律和塑变后 加热转变具有重要的意义,压力加工的实质就是塑性变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《金属材料》教案-第三章-金属的塑性变形与再结晶程,不防先看一下单晶体是怎样发生塑性变形的。
一、单晶体的滑移变形金属单晶体的塑性变形有“滑移”与“孪生”等不同方式,但一般大多数情况下都是以滑移方式进行的。
下面我们具体看一下单晶体塑性变形的基本方式——滑移。
1.滑移的表象发生了滑移的金属试样从表面上看是什么样?图3-1 滑移如果将一个单晶体金属试样表面抛光后,经过伸长变形,再在光学显微镜下观察,可以看到试样表面出现许多条纹,这些条纹就是晶体在切应力的作用下,一部分相对于另一部分沿着一定的晶面(滑移面)和一定的晶向(滑移方向)滑移产生的台阶,这些条纹称为“滑移线”,在更高倍的电子显微镜下观察,一个滑移台阶实际上是一束滑移线群的集合体,称为“滑移带”。
同时还能看到滑移带在晶体上的分布是不均匀的,如图3-1所示。
所以说,单晶体变形时,滑移只在晶体内有限的晶面上进行,是不均匀的。
因此单晶体金属的塑性变形在表面上看出现了一系列的滑移带,其塑性变形就是众多大小不同的滑移带的综合效果在宏观上的体现。
2.滑移的机理前面分析已经知道,晶体的塑性变形是晶体内相邻部分滑移的综合表现。
但晶体内相邻两部分之间的相对滑移,不是滑移面两侧晶体之间的整体刚性滑动,而是由于晶体内存在位错,因位错线两侧的原子偏离了平衡位置,这些原子有力求达到平衡的趋势。
当晶体受外力作用时,位错(刃型位错)将垂直于受力方向,沿着一定的晶面和一定的晶向一格一格地逐步移动到晶体的表面,形成一个原子间距的滑移量,如图3-2所示。
一个滑移带就是上百个或更多位错移动到晶体表面所形成的台阶。
图3-2 滑移机理示意图3.晶体的滑移面、滑移方向及滑移系 前面的分析知道,晶体上的滑移带分布是不均匀的,即塑性变形时,位错只沿一定的晶面和一定的晶向移动,(并不是沿所有的晶面和晶向都能移动的),这些一定的晶面和晶向分别称为滑移面和滑移方向,并且这些晶面和晶向都是晶体中的密排面和密排方向,因为密排面之间和密排方向之间的原子间距最大,其原子之间的结合力最弱,所以在外力作用下最易引起相对的滑动。
不同金属的晶体结构不同,其滑移面和滑移方向的数目和位向不同,一个滑移面和在这个滑移面上的一个滑移方向组成一个“滑移系”,所以不同晶体结构的金属,其滑移系的数目不同,如体心立方12个,面心立方12个,密排六方12,且滑移系的数目越多则金属的塑性愈好,反之滑移系数愈少,塑性不好,且相同滑移系数目相同时,滑移方向数越多,越易滑移,塑性越好。
每种晶体中都有不止一个的滑移系,受力以后哪个滑移系先滑动呢?研究表明,只有与外力接近45°取向的滑移系,才具有较大的切应力,这样的滑移系在外力作用下易于优先产生滑移,通常把这种处于有利的滑移位向称为“软取向”,反之,远离45°的滑移系称为“硬取向”。
4.晶体在滑移过程中的转动可见在滑移过程中,由于晶体的转动,晶体的位向会发生变化,原来处于软取向滑移系,逐渐转向硬取向,使滑移困难,这种现象“取向硬化”,相反,原单晶体试样在拉伸实验时(如图3-3),除了沿滑移面产生滑移外,晶体还会产生转动。
因为晶体在拉伸过程,当滑移面上、下两部分发生微小滑移时,试样两端的拉力不再处于同一直线来的硬向的滑移系,将逐步趋于软位向,易于滑移,称为“取向软化”。
可见在滑移过程中“取向软化”和“取向硬化”是同时进行的。
二、多晶体金属的塑性变形工程上使用的金属材料大多为位向、形状、大小不同的晶粒组成的多晶体,因此多晶体的变形是许多单晶体变形的综合作用的结果。
多晶体内单晶体的变形仍是以滑移和孪生两种方式进行的,但由于位向不同的晶粒是通过晶界结合在一起的,晶粒的位向和晶界对变形有很大的影响,所以多晶体塑性变形较单晶体复杂。
多晶体金属的塑性变形与单晶体比较,并无本质的差别,即每个晶粒的塑性变形仍以滑移等方式进行。
但由于晶界的存在和每个晶粒中晶格位向不同,故在多晶体中的塑性变形比单晶体复杂得多。
1.晶界和晶粒位向的影响图3-4 拉伸试样变形示意图有人利用仅由两个晶粒构成的试样来进行拉伸试验,经过变形后会出现明显的所谓“竹节”现象(如图3-4),即试样在远离夹头和晶界的晶粒中部会出现明显的缩颈,而在晶界附近则难以变形。
该明晶界附近变形抗力大。
原因在于晶界附近为两晶粒晶格位向的过渡之处,晶格排列紊乱,加之该处的杂质原子也往往较多,也增大其晶格畸变,因而使该处在滑移时位错运动的阻力较大,难以发生变形。
此外,不仅晶界的存在会增大滑移抗力,而且因多晶体中各晶粒晶格位向的不同,也会增大其滑移抗力,因为其中任一晶粒的滑移都必然会受到它周围不同晶格位向晶粒的约束和障碍,各晶粒必须相互协调,相互适应,才能发生变形。
因此多晶体金属的变形抗力总是高于单晶体。
可见,金属的塑性变形抗力,不仅与其原子间的结合力有关,而且还与金属的晶粒度有关,即金属的晶粒愈细,金属的强度便愈高。
因为金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大。
此外,金属的晶粒愈细不仅强度愈高,而且塑性与韧性也较高,因为晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量使可分散在更多的晶粒中发生,产生较均匀的变形,而不致造成局部的应力集中,引起裂纹的过早产图3-5 含碳0.3%的钢冷加工后机械性能的变化图3-6 冲压示意图金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。
另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提高钢丝的强度的。
3.织构现象的产生随着变形的发生,不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,即出现了所谓“织构现象”。
由于织构现象的出现会使金属的性能发生怎样的变化呢?单晶体金属:晶格取向一致,各个晶面和晶向上的原子排列不尽相同,使得沿各不同排列的晶面和晶向上的晶体性能不同,具有“各向异性”的特点。
多晶体金属:由许多不同取向的小晶体(晶粒)组成,虽然每个晶粒具有“各向异性”的特点,但在整个多晶体的性能就是不同取向的晶粒性能的综合表现,不具备“各向异性”的特点,各个方向上性能相同。
由于织构现象的产生,使多晶体金属出现了晶格取向趋于大体一致的现象,导致出现各向异性的特点,这在大多数情况下都是不利的,而且变形织构甚至在退火时也难以消除。
4.残余内应力在冷压力加工过程中由于材料各部分的变形不均匀或晶粒内各部分和各晶粒间的变形不均匀,金属内部会形成残余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定,如冷轧钢板在轧制中就经常会因变形不均匀所残留的内应力使钢板发生翘曲等等。
此外,残余内应力还会使金属的耐腐蚀性能降低,所以金属在塑性变形之后,通常都要进行退火处理,以消除残余内应力。
第三节变形金属在加热时的组织和性能变化高,再结晶温度也越高。
3.影响再结晶粒大小的因素影响因素重要有:变形度、加热温度和时间、成分、杂质、原始的晶粒度等。
这里重点讨论加热温度和变形度的影响。
1)变形度影响当变形量很小时,由于晶格畸变很小,不足以引起再结晶,故加热时无再结晶现象,晶粒度仍保持原来的大小,当变形度达到某一临界值时,由于此时金属中只有部分晶粒变形,变形极不均匀,再结晶晶核少,且晶粒极易相互吞并长大,因而再结晶后晶粒粗大,这变形度即为临界变形度,当变形度大于临界变形度时,随变形量的增加,越来越多的晶粒发生了变形,变形愈趋均匀,晶格畸变大,再结晶的晶核多,再结晶后晶粒愈来愈细,可见冷压加工应注意避免在临界变形度范围内加工,以免再结晶后产生粗晶粒。
如图3-8冷加工变形度对再结晶后晶粒大小的影响(纯铝片拉伸)。
图3-7 变形度对晶粒大小的影响图3-8 冷加工变形度对再结晶后晶粒大小的影响(纯铝片拉伸) 2)再结晶温度的影响3% 6% 9% 12% 15%再结晶是在一个温度范围内进行的,若温度过低不能发生再结晶;若温度过高,则会发生晶粒长大,因此要获得细小的再结晶晶粒,必须在一个合适的温度范围内进行加热。
再结晶退火温度必须在再T 以上,生产上实际使用的再结晶温度通常是比再T 高150-250℃,这样就既可保证完全再结晶,又不致使晶粒粗化。
如图3-9所示的工业纯铁在不同再结晶温度的显微组织比较能够进一步的得到再结晶温度对组织的影响。
图3-9 工业纯铁60%变形时不同再结晶温度的组织三、晶粒长大再结晶结束后,若在继续升高温度或延长加热时间,便会出现大晶粒吞并小晶粒的现象,即晶粒长大,晶粒长大对材料的机械性能极不利,强度、塑性、韧性下降。
且塑性与韧性下降的更明显。
为了保证变形金属的再结晶退火质量,获得细晶粒,有必要了解影响再结晶晶粒大小的因素。
图3-10综合了回复、再结晶和晶粒长大三个阶段组织与性能之间的关系。
工业纯铁60%变形450℃退火 工业纯铁60%变形500℃退火 工业纯铁60%变形600℃退火工业纯铁60%变形800℃退火工业纯铁60%变形700℃退度过高,晶粒粗大,若温度过低,引起加工硬化残余内应力等,还会形成带状组织使性能变坏。
图3-11 锻件剖面的流线分布示意图第五节超塑性超塑性合金是指那些具有超塑性的金属材料。
超塑性是一种奇特的现象。
具有超塑性的合金能像饴糖一样伸长10倍、20倍甚至上百倍,既不出现缩颈,也不会断裂。
金属的超塑性现象,是英国物理学家森金斯在1982年发现的,他给这种现象做如下定义:凡金属在适当的温度下(大约相当于金属熔点温度的一半)变得像软糖一样柔软,而应变速度10毫米秒时产生本身长度三倍以上的延伸率,均属于超塑性。
最初发展的超塑性合金是一种简单的合金,如锡铅、铋锡等。
一根铋锡棒可以拉伸到原长的19.5倍,然而这些材料的强度太低,不能制造机器零件,所以并没有引起人们的重视。
60年代以后,研究者发现许多有实用价值的锌、铝、铜合金中也具有超塑性,于是前苏联、美国和西欧一些国家对超塑性理论和加工发生了兴趣。
特别在航空航天上,面对极难变形的钛合金和高温合金,普通的锻造和轧制等工艺很难成形,而利用超塑性加工却获得了成功。
到了70年代,各种材料的超塑性成型已发展成流行的新工艺。
现在超塑性合金已有一个长长的清单,最常用的铝、镍、铜、铁、合金均有10~15个牌号,它们的延伸率在200~2000%之间。
如铝锌共晶合金为1000%,铝铜共晶合金为1150%,纯铝高达6000%,碳和不锈钢在150~800%之间,钛合金在450~1000%之间。
实现超塑性的主要条件是一定的变形温度和低的应变速率,这时合金本身还要具有极为细小的等轴晶粒(直径五微米以下),这种超塑性称为超细晶粒超塑性。