人教版八年级数学上册勾股定理
人教版八年级上册数学各章节核心概念总结

人教版八年级上册数学各章节核心概念总结第一章线性方程组与二元一次方程- 线性方程组:包含多个线性方程的方程组。
- 二元一次方程:具有两个变量、各项次数为1的方程。
第二章比例与相似- 比例:两个量之间的比较关系。
- 相似:形状和大小相同或相似的物体。
第三章平方根与立方根- 平方根:一个数的平方等于给定数的正平方根。
- 立方根:一个数的立方等于给定数的正立方根。
第四章下册中心与离差- 中心:数据的中心倾向,包括平均数、中位数和众数。
- 离差:数据离开中心的程度。
第五章进一法与退一法- 进一法:四舍五入到一个更大的整数。
- 退一法:四舍五入到一个更小的整数。
第六章母线与棱台、棱锥- 母线:棱台或棱锥底面上两个对顶顶点的连线。
- 棱台:底面是一个多边形,侧面是三角形的多面体。
- 棱锥:底面是一个多边形,侧面是三角形的多面体。
第七章勾股定理- 勾股定理:直角三角形中,直角边的平方等于两直角边上的两个小正方形的面积之和。
第八章统计- 统计:收集、整理、分析和解释数据的过程。
- 数据图:用图形的方式展示数据分布、趋势和关系。
第九章多边形的面积- 多边形:由线段组成的封闭图形。
- 面积:一个平面图形或曲面所包含的单位正方形的个数。
第十章随机事件与概率- 随机事件:在相同条件下可能发生的事件。
- 概率:某个事件发生的可能性。
第十一章三角形的面积- 三角形:三条边围成的封闭图形。
- 面积:三角形所包含的单位正方形的个数。
第十二章分式方程与分式不等式- 分式方程:含有分数的方程。
- 分式不等式:含有分数的不等式。
第十三章平行线与比例线段- 平行线:在同一平面内永远不相交的两条直线。
- 比例线段:在两个或多个相交直线上的线段之间的比。
第十四章三角形的相似- 三角形相似:两个或多个三角形的内角相等,对应边成比例。
第十五章平面直角坐标系- 平面直角坐标系:由两个互相垂直的直线和他们的交点确定的坐标系。
第十六章图形的相似与投影- 图形相似:两个图形形状相同或相似。
第一章勾股定理复习课教案

(五)总结回顾(用时5分钟)
今天的学习,我们回顾了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在解决实际问题时能够灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例解释:
-对于实际问题,教师需设计不同难度的题目,如斜边未知、一条直角边未知或者需要用到勾股定理的变形等,帮助学生克服在应用中遇到的困难。
-在证明难点上,教师应详细解释每种证明方法的思路,如几何拼贴法中如何通过面积相等来推导出勾股定理,代数推导法中如何利用平方差公式等。
-对于勾股数的创造性应用,教师可以通过提供不完整的直角三角形信息,让学生尝试用勾股数去补全信息,锻炼学生的思维能力和创新意识。
4.学生小组讨论环节,大家积极分享自己的观点和想法,有助于提高他们的表达能力和思维能力。但在今后的教学中,我需要关注每个学生的参与程度,鼓励他们大胆发表自己的见解,使讨论更加全面和深入。
5.总结回顾环节,学生对勾股定理的理解和掌握程度得到了巩固。但在今后的教学中,我应加强对学生的引导,帮助他们从多个角度理解和运用勾股定理,提高他们的综合运用能力。
五、教学反思
在今天的勾股定理复习课中,我尝试了多种教学方法,希望能够帮助学生更好地理解和掌握这一数学概念。通过教学实践,我发现以下几点值得反思:
1.导入新课环节,以生活中的实际例子引导学生思考,激发了他们的学习兴趣。然而,在今后的教学中,我应更加注重引导学生从实际问题中发现数学规律,提高他们的问题意识。
3.提升学生的数学建模素养,将勾股定理应用于解决实际问题,建立数学模型,提高解决实际问题的能力。
数学八年级上册知识点第一章

数学八年级上册知识点第一章数学八年级上册知识点第一章1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
八年级数学上册知识点:勾股定理

八年级数学上册知识点:勾股定理八年级数学上册知识点:勾股定理一、勾股定理:1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
4.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法(1)直接考查勾股定理及其逆定理;(2)应用勾股定理建立方程;(3)实际问题中应用勾股定理及其逆定理。
最新人教版八年级数学第17章勾股定理教案

最新人教版八年级数学第17章勾股定理教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最新人教版八年级数学第17章勾股定理教案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最新人教版八年级数学第17章勾股定理教案的全部内容。
第十七章勾股定理教案课题:17。
1勾股定理(1) 课型:新授课【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理.2.培养在实际生活中发现问题总结规律的意识和能力.【学习重点】:勾股定理的内容及证明。
【学习难点】:勾股定理的证明。
【学习过程】一、课前预习1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:2、(1)、同学们画一个直角边为3cm 和4cm 的直角△ABC ,用 刻度尺量出AB 的长。
(2)、再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长问题:你是否发现+与,+和的关系,即+ ,+ , 二、自主学习 思考:(图中每个小方格代表一个单位面积) (2)你能发现图1-1中三个正方形A ,B,C 的面积之间有什么关系吗?图1-2中的呢? (3)你能发现图1-1中三个正方形A ,B ,C 围成的直角三角形三边的关系吗?(4)你能发现课本图1-3中三个正方形A ,B ,C 围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1。
6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。
由此我们可以得出什么结论?可猜想:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c,那么__________________ _____________________________________________________________________。
初二数学上册讲义

八年级上讲义第一章 勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果用,a b 和c 分别表示直角三角形的两直角边和斜边,那么222a b c +=。
第二章 实数一、 基本概念1. 实数:有理数与无理数统称为实数。
其中无限不循环小数叫做无理数。
2. 算术平方根:一般地,如果一个正数x 的平方等于a ,即2a x =,那么这个正数x 就叫做a ,读作“根号a ”。
特别的,0的算术平方根是0。
一个正数有两个平方根;0只有一个平方根,负数没有平方根。
立方根:. 一般地,如果一个正数x 的立方等于a ,即3a x =,那么这个正数x 就叫做a 的立方根,也叫做三次方根。
正数的立方根是正数,0的立方根是0,负数的立方根是负数。
0,0)a b ≥≥ 0,0)a b =≥> 二、中考题1.(08太原)在函数y =x 的取值范围是 。
2.(09太原)计算2的结果等于 .3.(091=的根是 x=2第三章 四边形性质探索一、 基本概念1. 平行四边形的性质:平行四边形的对边相等,平行四边形的对角相等;平行四边形的对角线互相平方。
平行四边形的判别:○1两条对角线互相平分的四边形是平行四边形 ○2一组对边平行且相等的四边形是平行四边形。
○3两组对边分别相等的四边形是平行四边形○4两组对边分别平行的四边形是平行四边形。
2.菱形菱形:一组邻边相等的平行四边形叫做菱形。
菱形性质:菱形的四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形的判别方法:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形。
3.矩形、正方形有一个内角是直角的平行四边形叫做矩形。
矩形的对角线相等,四个角都是直角。
矩形判别方法:对角线相等的平行四边形是矩形。
正方形:一组邻边相等的矩形叫做正方形。
正方形具有平行四边形、矩形、菱形的一切性质。
4.梯形梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。
八年级数学上册教学课件《勾股定理的应用》
解:如图所示 在Rt△ABC中,利用勾股定理可得, AB 2=AC2+BC2 =20 2+102 =500
10
10
10
所以AB2=500.
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?
D
A. B. C. D.
2.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300 m,公园到医院的距离为400 m,若公园到超市的距离为500 m,则公园在医院的 ( )A.北偏东75°的方向上 B.北偏东65°的方向上C.北偏东55°的方向上 D.无法确定
B
3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.
解:因为出发2小时,A组行了12×2=24(km), B组行了9×2=18(km), 又因为A,B两组相距30km, 且有242+182=302, 所以A,B两组行进的方向成直角.
以小组为单位,研究蚂蚁在圆柱体的A点沿侧面爬行到B点的问题.
讨论 1.蚂蚁怎样沿圆柱体侧面从A点爬行到B点? 2.有最短路径吗?若有,哪条最短?你是怎样找到的?
B
A
我要从A点沿侧面爬行到B点,怎么爬呢?大家快帮我想想呀!
利用勾股定理解答最短路径问题
想一想 蚂蚁走哪一条路线最近?
在Rt△ABC中,AC===5,在△ACD中,AC2+CD2=52+122=169=AD2,所以△ACD是直角三角形,且∠ACD=90°.所以S四边形ABCD=SRt△ABC+SRt△ACD=6+30=36.
1.1.2探索勾股定理(教案)
(二)新课讲授(用时10分钟)
在学生小组讨论环节,我尽量让自己成为一个引导者和协助者,让学生们充分发表自己的观点。从讨论成果来看,学生们对于勾股定理在实际生活中的应用有了更深入的认识。但同时,我也发现有些学生在讨论中较为沉默,可能是因为缺乏自信或者不敢表达自己的看法。针对这个问题,我打算在以后的教学中多关注这部分学生,鼓励他们积极参与讨论。
(3)学会运用勾股定理解决实际问题,例如计算直角三角形的斜边长度或已知斜边长度求直角边的长度。
举例:在讲解勾股定理时,可以引用教材中的例子,如一个直角三角形,两直角边分别为3和4,求斜边长度。通过计算3²+4²=9+16=25,然后开方得到斜边长度为5,使学生理解并掌握勾股定理的应用。
2.教学难点
(1)理解并证明勾股定理:对于部分学生来说,理解直角三角形两条直角边与斜边之间的数量关系可能存在困难。因此,教师需要采用生动形象的方法,如实物操作、动画演示等,帮助学生突破这一难点。
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力,通过探索勾股定理的过程,让学生理解数学结论的严谨性,提高他们的逻辑思维水平;
2.培养学生的空间想象力和几何直观,通过观察和分析直角三角形的性质,发展学生对图形的认识和处理能力;
3.培养学生的数学建模素养,使学生能够运用勾股定理解决实际问题,建立数学模型,感受数学与现实生活的紧密联系;
1.1 .2探索勾股定理(教案)
人教版2020八年级数学上册 第14章 勾股定理 14.1 勾股定理 14.1.2 直角三角形的判定教案 (新版)
C.直角三角形D.钝角三角形
4.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )
A.直角三角形B.锐角三角形
C.钝角三角形D.不能确定
图14-1-
5.如图14-1-:四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.(连接AC)
AC=b=A′C′,
AB=c=A′B′,
∴△ABC≌△A′B′C′.
∴.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
教学重点
通过边长判断一个三角形是否是直角三角形,熟悉几组勾股数,并会辨析哪些问题应用哪个结论.
教学难点
解勾股定理的逆定理是通过数的关系来反映形的特点.
授课类型
新授课
课时
第一课时
教具
多媒体课件、四个全等的直角三角形图片
教学活动
教学步骤
师生活动
设计意图
回顾
1.上节课的勾股定理内容是什么?画出图形,写出表达式.
②[讲授效果反思]
注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想、验证及证明的过程,同时遵循由“特殊→一般→特殊”的发展规律.
③[师生互动反思]
________________________________________________________________________
④[习题反思]
好题题号 当堂训练1,2,5
错题题号 例1
人教版八年级上册数学知识点汇总
第一章勾股定理1.勾股定理o直角三角形两直角边的平方和等于斜边的平方,即a2+b2=c2(其中a、b为直角边,c为斜边)。
o应用:用于直角三角形中的边长计算、证明等。
2.一定是直角三角形吗o如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形一定是直角三角形。
3.勾股定理的应用o应用于解决实际问题中的直角三角形边长计算。
第二章实数1.认识无理数o有理数:可以表示为有限小数或无限循环小数的数。
o无理数:无限不循环小数,如2、π等。
2.平方根o算数平方根:一个正数x的平方等于a,则x是a的算数平方根。
o平方根:一个数x的平方等于a,则x是a的平方根,正数有两个平方根,互为相反数;0的平方根是0本身;负数没有平方根。
3.立方根o立方根:一个数x的立方等于a,则x是a的立方根。
o每个数都有一个立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数。
4.估算与开方o估算:对复杂小数进行近似计算。
o用计算机开平方或立方。
5.实数o实数是有理数和无理数的统称,可以在数轴上表示。
第三章位置与坐标1.确定位置o在平面内,确定一个物体的位置一般需要两个数据(横坐标和纵坐标)。
2.平面直角坐标系o由两条互相垂直且有公共原点的数轴组成。
o通常地,两条数轴分别置于水平位置(x轴)与竖直位置(y轴),取向右与向上的方向分别为正方向。
3.轴对称与坐标变化o关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
第四章一次函数1.函数o如果在一个变化过程中有两个变量x和y,且对于x的每一个值,y都有唯一确定的值,则称y是x的函数。
2.一次函数o形式为y=kx+b(k、b为常数,k ≠ 0)的函数称为一次函数。
o当b = 0时,称为正比例函数y=kx。
3.一次函数的图像及性质o图像是一条直线,经过点(0, b)和(−kb,0)。
o当k > 0时,y随x的增大而增大;当k < 0时,y随x的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章 勾股定理
17.1 勾股定理
第1课时 勾股定理
学习目标:1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用
面积法来证明勾股定理,体会数形结合的思想;
2.会用勾股定理进行简单的计算.
重点:用面积法来证明勾股定理,体会数形结合的思想.
难点:会用勾股定理进行简单的计算.
一、知识回顾
1.网格中每个小正方形的面积为单位1,你能数出图中的正方形A 、B 的面积吗?你又能想到什么方法算出正方形C 的面积呢?
一、要点探究
A
B C C B A 探究点1:勾股定理的认识及验证
想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A ,B 和C 面积之间的关系,你能想到是什么关系吗?
2.右图中正方形A 、B 、C 所围成的等腰直角三角形三边之间有什么特殊关系?
3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A 、B 、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)
4.正方形A 、B 、C 所围成的直角三角形三条边之间有怎样的特殊关系?
思考 你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?
猜测:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么________.
活动2 接下来让我们跟着以前的数学家们用拼图法来
证明活动1的猜想.
证法 利用我国汉代数学家赵爽的“赵爽弦图”
要点归纳:
勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.
公式变形: 222222--.a c b b c a c a b +, ,
探究点2:利用勾股定理进行计算
典例精析
例1如图,在Rt △ABC 中, ∠C =90°.
(1)若a =b =5,求c ;
(2)若a =1,c =2,求b .
变式题1 在Rt △ABC 中, ∠C =90°.
(1)若a :b =1:2 ,c =5,求a ;
(2)若b =15,∠A =30°,求a,c.
方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.
变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.
方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易漏解.
例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.
方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.
注意1.在直角三角形中
2.看清哪个角是直角
3.已知两边没有指明是直角边还是斜边时一定要分类讨论
1.下列说法中,正确的是()
A.已知a,b,c是三角形的三边,则a2+b2=c2
B.在直角三角形中两边和的平方等于第三边的平方
C.在Rt△ABC中,∠C=90°,所以a2+b2=c2
D.在Rt△ABC中,∠B=90°,所以a2+b2=c2
2.右图中阴影部分是一个正方形,则此正方形的面积为_____________.
3.在△ABC中,∠C=90°.
(1)若a=15,b=8,则c=_______.
(2)若c=13,b=12,则a=_______.
4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.
5.求斜边长17cm、一条直角边长15cm的直角三角形的面积.
6.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.
能力提升:
7.如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,求△ABE 及阴影部分的面积.。