高二(上)期末模拟考试卷
2023-2024学年辽宁省沈阳市郊联体高二上学期期末数学质量检测模拟试题(含解析)

2023-2024学年辽宁省沈阳市高二上册期末考试数学模拟试题一、单选题1.抛物线214y x =的焦点到准线的距离为()A .18B .14C .1D .2【正确答案】D【分析】根据抛物线的标准方程进行求解即可.【详解】由214y x =⇒242x y p =⇒=,焦点到准线的距离是2p =,故选:D.2.下列式子错误的是()A .2577C =C B .323544C =C +C C .333553A =C A D .4356A =4A 【正确答案】D【分析】根据排列和组合数的公式即可求出答案.【详解】对于A ,B ,由组合数公式:()1*1,,,,m n m m m m n n n n n C C C C C m n m n N --+==+≤∈知,2577C =C ,323544C =C +C ,所以A 、B 正确;对于C ,因为m m n nm mA C A =得m m n n m m A C A =,所以333553A =C A ,所以C 正确.对于D ,455432120A =⨯⨯⨯=,36654120A =创=,4356A 4A ≠,所以D 不正确.故选:D.3.圆()()22341x y -+-=与圆2236x y +=的位置关系为()A .相离B .内切C .外切D .相交【正确答案】B【分析】根据圆心距与21r r -的关系求得正确答案.【详解】圆()()22341x y -+-=的圆心为()3,4A ,半径11r =;圆2236x y +=的圆心为()0,0O ,半径26=r ,圆心距215OA r r ==-,所以两圆的位置关系是内切.故选:B4.已知二项式1nx ⎛⎫ ⎪⎝⎭的展开式中,所有项的系数之和为32,则该展开式中x 的系数为()A .405-B .405C .81-D .81【正确答案】A【分析】根据二项式定理,写出通项公式,求出指定项的系数.【详解】令1x =,可得所有项的系数之和为2325n n =⇔=,则11(5)(52)5522155(1)3C (1)3C r r r r rr rr rr r Txxx------+=-=-,由题意5312r-=,即1r =,所以展开式中含x 项的系数为4153C 405-=-.故选:A .5.如图所示,在正三棱柱111ABC A B C -中,12AA AB ==,则1AC 与平面11BCC B 所成角的正弦值为()A B C D 【正确答案】B【分析】过点1A 作111A D B C ⊥,证明1A D ⊥平面11BCC B ,根据线面角的定义确定1AC 与平面11BCC B 所成角的平面角,解三角形求其正弦值即可.【详解】过点1A 作111A D B C ⊥,连接CD ,由已知1CC ⊥平面111A B C ,1A D ⊂平面111A B C ,所以11A D CC ⊥,因为1111B C CC C = ,11B C ⊂平面11BCC B ,1CC ⊂平面11BCC B ,所以1A D ⊥平面11BCC B ,所以1A CD ∠为1AC 与平面11BCC B 所成角的平面角,因为1A D ⊥平面11BCC B ,CD ⊂平面11BCC B ,所以1A D CD ⊥,所以1A CD △为直角三角形,由已知111A B C 为等边三角形,且112A B AB ==,所以1A D =,在11Rt A C C 中,112CC AA ==,112AC =,所以1A C =,在1Rt ACD中,1A C =,1A D =,所以111sin A D A CD A C ∠===,所以1AC 与平面11BCC B故选:B.6.已知点A 是抛物线2y x =上的动点,焦点为F ,点(1,2)B ,则||+||AB AF 的最小值为()A .74B .2C .94D .52【正确答案】C【分析】由抛物线的定义转化后,当三点共线时取得最小值.【详解】∵2y x =,则2x y =,∴焦点1(0,4F ,准线l 方程14y =-,点(1,2)B 在抛物线上方,设过A 作l 的垂线,垂足为E ,∴由抛物线的定义知,||||AF AE =,如图所示,∴||||||||||AB AF AB AE BE +=+≥,当且仅当B 、A 、E 三点共线时取等号,当B 、A 、E 三点共线时,19||244BE =+=,故||+||AB AF 的最小值为94,故选:C.7.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有A .90种B .180种C .270种D .540种【正确答案】D【详解】分两个步骤:先分配医生有336A =种方法,再分配护士有422364233390C C C A A =,由分步计数原理可得:422336423333690540C C C A A A ⨯=⨯=,应选答案:D .本题中旨在考查排列数组合数及两个计数原理的综合运用.解答本题的关键是先分步骤分别考虑医生、护士的分配,再运用分步计数原理进行计算.但在第二个步骤中的分配护士时,可能会因为忽视平均分配的问题而忘记除以33A 而致错,解答这类平均分组时,应引起足够的注意.8.设12,F F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,若双曲线右支上存在一点P ,使得()220OP OF F P +=,其中O 为坐标原点,且122PF PF = ,则该双曲线的离心率为A .3B 1CD 【正确答案】D【分析】由()220OP OF F P += ,得2OP OF =,取2PF 中点M ,可得12PF PF ⊥,利用双曲线的定义结合勾股定理解出该双曲线的离心率.【详解】由()220OP OF F P += ,得2OP OF =,取2PF 中点M ,则2OM PF ⊥,1//OM PF ,所以12PF PF ⊥,设2PF m =,则12PF m =,且122PF PF a m -==,因此222(4)(2)(2)a a c +=,解得ce a==故选:D .二、多选题9.已知双曲线22:14x C y -=,则()A .双曲线CB .双曲线C 的焦点到渐近线的距离为1C .双曲线C 的渐近线方程12y x =±D .双曲线C 左支上的点到右焦点的最短距离为4【正确答案】ABC【分析】根据双曲线的基本几何量运算即可.【详解】解:双曲线22:14x C y -=中,224,1a b ==,所以2225c a b =+=,则2,1,a b c ===所以双曲线C的离心率为c aA 正确;双曲线的焦点为()到渐近线12y x =±1=,故B 正确,C 正确;双曲线C 左支上的点P 到右焦点2F的距离为22PF c a ≥++2,故D 不正确.故选:ABC.10.已知点()0,2F 为圆锥曲线C 的焦点,则C 的方程可能为()A .28y x=B .218x y=C .()221044x y m m m+=<<-D .()221044y x m m m -=<<-【正确答案】BC分别计算四个选项中圆锥曲线的焦点,即可得正确选项.【详解】对于选项A :28y x =中,4p =,所以22p=,可得焦点坐标为()2,0,故选项A 不正确;对于选项B :由218x y =可得28x y =,所以4p =,所以22p =,可得焦点坐标为()0,2,故选项B正确;对于选项C :2214x y m m+=-,因为04m <<,所以40m -<,所以原方程可化为2214y x m m-=-表示焦点在y 轴上的双曲线,由2a m =,24b m =-,所以22244c a b m m =+=+-=,所以焦点坐标为()0,2±,所以()0,2F 为圆锥曲线()221044x y m m m+=<<-的焦点,故选项C 正确;对于选项D :2214y x m m -=-中,因为04m <<,所以40m -<,原方程可化为:2214y x m m+=-,当4m m =-即2m =时,22122y x +=表示圆,没有焦点当4m m >-即m>2时,2214y x m m+=-表示焦点在y 轴上的椭圆,2a m =,24b m =-,()222424c a b m m m =-=--=-,焦点为(0,,不符合题意,当4m m <-即02m <<时,2214y x m m+=-表示焦点在x 轴上的椭圆,24a m =-,2b m =,()222442c a b m m m =-=--=-,焦点为(),不符合题意,故选项D 不正确;故选:BC.11.已知圆C 的方程为()()22114x y -+-=,直线l 的方程为20x my m +--=,下列选项正确的是()A .直线l 恒过定点()2,1B .直线与圆相交C .直线被圆所截最短弦长为D .存在一个实数m ,使直线l 经过圆心C 【正确答案】ABC【分析】化简直线l 的方程为2(1)0x m y -+-=,结合方程组的解,可判定A 正确;求得圆心到定点()2,1的距离,得到点P 在圆内,进而得到直线与圆相交,可判定B 正确;根据圆的性质,得到当直线和直线PC 垂直时,此时截得的弦长最短,求得最短弦长,可判定C 正确;将圆心坐标代入直线l 的方程,可判定D 不正确.【详解】对于A 项:由直线l 的方程20x my m +--=,可化为2(1)0x m y -+-=,联立方程组2010x y -=⎧⎨-=⎩,解得2,1x y ==,即直线l 恒经过定点()2,1P ,所以A 正确;对于B 项:由圆C 的方程()()22114x y -+-=,可得圆心(1,1)C ,半径2r =,又由12PC r =<=,可得()2,1P 在圆内,所以直线与圆相交,所以B 正确;对于C 项:由1PC =,根据圆的性质,可得当直线和直线PC 垂直时,此时截得的弦长最短,最短弦长为==C 正确;对于D 项:将圆心(1,1)C 代入直线l 的方程20x my m +--=,可得1210m m +--=-≠,所以不存在一个实数m ,使得直线l 过圆心C ,所以D 不正确.故选:ABC.12.已知椭圆1C :22221x y a b+=(0a b >>)的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为P ,且12PF F △的面积为2b .双曲线2C 和椭圆1C 焦点相同,且双曲线2C 的离心率为2e ,M 是椭圆1C 与双曲线2C 的一个公共点,若123F MF π∠=,则下列说法正确的是()A .21e e =B .1234e e =C .22122e e +=D .221232e e -=【正确答案】AC设双曲线的标准方程为221122111(0)x y a b a b -=>>,半焦距为c ,由12PF F △的面积为2b ,可得b c =,可求得1e ,设12,MF m MF n ==,利用定义可得,12,2m n a m n a +=-=,则22221()()4m n m n mn a a +--==-,在12MF F △中,由余弦定理可得222242cos ()33c m n mn m n mn π=+-=+-,代入化简,利用离心率公式可求出2e 【详解】解:设双曲线的标准方程为221122111(0)x y a b a b -=>>,半焦距为c ,因为椭圆1C 的上顶点为P ,且12PF F △的面积为2b 。
2023-2024学年河南省平顶山市高二上学期期末考试数学质量检测模拟试题(含解析)

2023-2024学年河南省平顶山市高二上册期末考试数学模拟试题一、单选题1.直线50x +=的倾斜角为()A .30︒B .60︒C .120︒D .150︒【正确答案】D【分析】求出直线的斜率,然后根据斜率的定义即可求得倾斜角.【详解】直线50x +=可化为33y x =--,则斜率tan 3k α==-,又倾斜角α,满足0180α≤<︒,所以倾斜角为150︒.故选:D2.下列有关数列的说法正确的是()A .数列1,0,1-,2-与数列2-,1-,0,1是相同的数列B .如果一个数列不是递增数列,那么它一定是递减数列C .数列0,2,4,6,8,…的一个通项公式为2n a n =D ,…的一个通项公式为n a =【正确答案】D【分析】根据数列的定义和表示方法,逐一判断,即可得到本题答案.【详解】对于选项A ,数列1,0,-1,-2与数列-2,-1,0,1中的数字排列顺序不同,不是同一个数列,故A 错误;对于选项B ,常数数列既不是递增数列,也不是递减数列,故B 错误;对于选项C ,当1n =时,120a =≠,故C 错误;对于选项D ,因为123a a ===4a =…,所以数列的一个通项公式为n a =D 正确.故选:D3.已知直线l 过点()3,4-且方向向量为()1,2-,则l 在x 轴上的截距为()A .1-B .1C .5-D .5【正确答案】A【分析】先根据方向向量求得直线的斜率2k =-,然后利用点斜式可求得直线方程,再令0y =,即可得到本题答案.【详解】因为直线l 的方向向量为()1,2-,所以直线斜率2k =-,又直线l 过点()3,4-,所以直线方程为42(3)y x -=-+,即220x y ++=,令0y =,得=1x -,所以l 在x 轴上的截距为-1.故选:A4.已知m ∈R ,“直线1:0l mx y +=与22:910l x my m +--=平行”是“3m =±”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】C【分析】根据平行的成比例运算即可求解.【详解】直线1:0l mx y +=与22:910l x my m +--=平行则210=91m m m ≠--,所以29m =,解得3m =±,经检验,3m =±均符合题意,故选:C.5.已知等差数列{}n a 中,5a ,14a 是函数232()=--x x x f 的两个零点,则381116a a a a +++=()A .3B .6C .8D .9【正确答案】B【分析】由等差数列的性质进行计算即可.【详解】由已知,函数232()=--x x x f 的两个零点,即方程2320x x --=的两根1x ,2x ,∴51412331a a x x -+=+=-=,∵数列{}n a 为等差数列,∴3168115143a a a a a a +=+=+=,∴3811166a a a a +++=.故选:B.6.已知圆221:230C x y x ++-=关于y 轴对称的圆2C 与直线x m =相切,则m 的值为()A .1-B .3C .1-或3D .1或3-【正确答案】C【分析】先求出关于y 轴对称的圆2C 的标准方程,然后利用圆心到切线的距离等于半径,列出方程求解,即可得到本题答案.【详解】由圆221:230C x y x ++-=,可得标准方程22(1)4x y ++=,圆心为(1,0)-,半径2r =,故关于y 轴对称的圆2C 的圆心为(1,0),半径2r =,则其标准方程为22(1)4x y -+=,又因为圆2C 与直线x m =相切,所以圆心到切线的距离等于半径,即12m -=,解得1m =-或3m =.故选:C7.已知数列{}n a 满足13n n a a +=,且11a =-,则数列{}2n a n +的前5项和为()A .151-B .91-C .91D .151【正确答案】B【分析】由等比数列的定义判断出数列{}n a 为等比数列,再使用分组求和法求解即可.【详解】∵数列{}n a 满足13n n a a +=,且11a =-,∴数列{}n a 是首项为1-,公比为3的等比数列,∴11133n n n a --=-⨯=-,∴数列{}2n a n +的前5项和为,()()()()()01234532343638310S =-++-++-++-++-+()()0123433333246810=-----+++++()()51132105132-⨯-+⨯=+-12130=-+91=-.故选:B.8.已知椭圆22221(0)x y a b a b +=>>过点()3,2-且与双曲线22132x y -=有相同焦点,则椭圆的离心率为()A .6B C D 【正确答案】C【分析】由题可得225a b -=,22941a b+=,联立方程可求得22,a b ,然后代入公式e =,即可求得本题答案.【详解】因为椭圆与双曲线22132x y -=有相同焦点,所以椭圆两个焦点分别为12(F F ,则2225c a b =-=①,又椭圆过点()3,2P -,所以22941a b +=②,结合①,②得,2215,10a b ==,所以3e =,故选:C9.已知圆221:2220C x y x y +-+-=与圆222:20(0)C x y mx m +-=>的公共弦长为2,则m 的值为()A .62B .32C D .3【正确答案】A【分析】根据圆的圆心和半径公式以及点到直线的距离公式,以及公共线弦方程的求法即可求解.【详解】联立222220x y x y +-+-=和2220x y mx +-=,得(1)10m x y -+-=,由题得两圆公共弦长2l =,圆221:2220C x y x y +-+-=的圆心为(1,1)-,半径r 2,圆心(1,1)-到直线(1)10m x y -+-===,平方后整理得,2230m -=,所以2=m 或m =(舍去);故选:A.10.“斐波那契数列”又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,…,即斐波那契数列{}n a 满足121a a ==,21++=+n n n a a a ,设其前n 项和为n S ,若2021S m =,则2023a =()A .1m -B .mC .1m +D .2m【正确答案】C【分析】由斐波那契数列{}n a 满足12121,1,n n n a a a a a --===+,归纳可得21m m a S +=+,令2021m =,即可求得本题答案.【详解】因为斐波那契数列{}n a 满足12121,1,n n n a a a a a --===+,所以321a a a =+,432211a a a a a =+=++,5433211a a a a a a =+=+++,……21122111m m m m m m m a a a a a a a a S ++--=+=++++++=+ ,则2023202111a S m =+=+.故选:C11.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,13D D =,M ,N 分别是11B C ,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为()A .304B 2305C .302D .3305【正确答案】D【分析】建立空间直角坐标系,设出点P 的坐标,根据两点距离公式表示MP ,利用二次函数求值域,即可得到本题答案.【详解】以点D 为坐标原点,分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.因为底面ABCD 是边长为2的正方形,13D D =,所以(1,2,3)M ,∵点P 在xOy 平面上,∴设点P 的坐标为()[],,0,0,1x y y ∈,∵P 在DN 上运动,∴2AD x y AN==,∴2x y =,∴点P 的坐标为(2,,0)y y ,∴()()()22222454122305814555MP y y y y y ⎛⎫=-+-+-=-+=-+ ⎪⎝⎭∵[]0,1y ∈,∴当45y =时,MP 3305故选:D12.已知双曲线C :2221(0)y x b b-=>l 与C 相交于A ,B 两点,若线段AB 的中点为()1,2N ,则直线l 的斜率为()A .1-B .1C D .2【正确答案】B【分析】先利用题目条件求出双曲线的标准方程,然后利用点差法即可求出直线l 的斜率.【详解】因为双曲线的标准方程为2221(0)y x b b-=>,所以它的一个焦点为(,0)c ,一条渐近线方程为0bx y -=,所以焦点到渐近线的距离d =,化简得2222(1)b c b =+,解得22b =,所以双曲线的标准方程为2212y x -=,设1122(,),(,)A x y B x y ,所以221112y x -=①,222212y x -=②,①-②得,222212121())02x x y y ---=,化简得121212121()()()()02x x x x y y y y +--+-=③,因为线段AB 的中点为()1,2N ,所以12122,4x x y y +=+=,代入③,整理得1212x x y y -=-,显然1212,x x y y ≠≠,所以直线l 的斜率12121y y k x x -==-.故选:B 二、填空题13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则xy=___________.【正确答案】2.【详解】试题分析:由三点共线得向量AB 与AC 共线,即ABk AC = ,(3,4,8)(1,2,4)k x y -=-+,124348x y -+==-,解得12x =-,4y =-,∴2xy =.空间三点共线.14.已知抛物线22(0)x py p =>的焦点为F ,直线2x =与抛物线交于点M ,且2MF =,则p =_______.【正确答案】2【分析】先求点M 的纵坐标,然后根据抛物线的定义,列出方程,即可求得p 的值.【详解】把2x =代入抛物线标准方程22(0)x py p =>,得2(2,)M p,根据抛物线的定义有,222p MF MH p==+=,化简得,244p p +=,解得2p =.故215.已知点(1,1)--P ,点M 为圆22:1C x y +=上的任意一点,点N 在直线OP 上,其中O 为坐标原点,若|||MP MN =恒成立,则点N 的坐标为______.【正确答案】11,22⎛⎫-- ⎪⎝⎭【分析】设N 和M的坐标,由|||MP MN =,列等式,利用点M 在圆上,点N 在直线OP 上,化简得恒成立的条件,求得点N 的坐标.【详解】易知直线OP 的方程为0x y -=,由题意可设00(,)N x x ,设(,)M x y '',则可得221x y ''+=,由||||MP MN =,可得22222200||(1)(1)||()()MP x y MN x x y x ''+++==''-+-2002()322()12x y x x y x ''++=''-+++,则2002()322()12x y x x y x ''''⎡⎤++=-+++⎣⎦,化简得200(24)()41x x y x ''++=-,即[]00(12)2()(12)0x x y x ''+++-=,若|||MP MN =恒成立,则0120x +=,解得012x =-,故11,22N ⎛⎫-- ⎪⎝⎭.故11,22⎛⎫-- ⎪⎝⎭16.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,其中2F 与抛物线28y x =的焦点重合,点P 在双曲线C 的右支上,若122PF PF -=,且1260F PF ∠=︒,则12F PF △的面积为_______.【正确答案】【分析】结合题目条件与余弦定理,先算出12PF PF ⋅的值,然后代入三角形的面积公式1212121sin 2F PF S PF PF F PF =⋅∠ ,即可得到本题答案.【详解】由双曲线右焦点2F 与抛物线28y x =的焦点重合,可得2(2,0)F ,所以124F F =,设1122,PF r PF r ==,则122r r -=,因为22212121212||||2cos F F PF PF PF PF F PF =+-⋅⋅∠,所以22121212162r r r r +-⨯=,则21212()16r r r r -+=,解得1212r r =,所以,12121sin 602F PF S r r =︒=.故三、解答题17.已知数列{}n a 满足11a =,且点111,n n a a +⎛⎫⎪⎝⎭在直线2y x =+上.(1)求数列{}n a 的通项公式;(2)设1n n n b a a +=,求数列{}n b 的前n 项和n T .【正确答案】(1)121n a n =-(2)21n n +【分析】(1)先求出数列1n a ⎧⎫⎨⎬⎩⎭的通项公式,从而可得到数列{}n a 的通项公式;(2)根据(1)中数列{}n a 的通项公式,可写出数列{}n b 的通项公式,再利用裂项相消的方法即可求得前n 项和n T .【详解】(1)由题意得1112n na a +=+,即1112n n a a +-=,所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为2的等差数列,故1112(1)21n n n a a =+-=-,即121n a n =-.(2)由(1)知11111(21)(21)22121n n n b a a n n n n +⎛⎫===- -+-+⎝⎭,所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭111111123352121n n ⎛⎫=⨯-+-++- ⎪-+⎝⎭ 111221n ⎛⎫=- ⎪+⎝⎭21nn =+.18.已知ABC 的顶点坐标分别是()3,0A ,()1,2B ,()1,0C -.(1)求ABC 外接圆的方程;(2)若直线l :3480x y +-=与ABC 的外接圆相交于M ,N 两点,求MCN ∠.【正确答案】(1)22(1)4x y -+=(2)60MCN ∠=︒【分析】(1)设出圆的一般方程,代入点,,A B C ,求出方程组的解,即可得到本题答案;(2)先求出圆心到直线MN 的距离,即可得到30PMN ∠=︒,然后求出MPN ∠,即可得到本题答案.【详解】(1)设圆的一般方程为:220x y Dx Ey F ++++=,22(40)D E F +->,代入点(3,0),(1,2),(1,0)A B C -得,9+30142010D F DEF D F +=⎧⎪++++=⎨⎪-+=⎩,解得203D E F =-⎧⎪=⎨⎪=-⎩,所以圆的一般方程为:22230x y x +--=,标准方程为.22(1)4x y -+=(2)圆心(1,0)P 到直线:3480l x y +-=的距离1d ==,又因为2PM =,在等腰PMN 中,30PMN ∠=︒,所以圆心角260120MPN ∠=⨯︒=︒,则60MCN ∠=︒.19.如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,AB BC ⊥,且1AB AP BC ===,2AD =.(1)求证:CD ⊥平面PAC ;(2)若E 为PC 的中点,求PD 与平面AED 所成角的正弦值.【正确答案】(1)证明见解析(2)1010【分析】(1)先证AC CD ⊥,PA CD ⊥,由此即可证得CD ⊥平面PAC ;(2)建立空间直角坐标系,求出(0,2,1)PD =- ,平面AED 的一个法向量为()1,0,1n =- ,然后利用公式sin cos ,n PD n PD n PDθ⋅==⋅ ,即可求得本题答案.【详解】(1)作CF AD ⊥,垂足为F ,易证,四边形ABCF 为正方形.所以1CF AF DF ===,222CD CF DF =+又222AC AB BC =+=因为222AC CD AD +=,所以AC CD ⊥.因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥.又AC PA A ⋂=,AC ⊂平面PAC ,PA ⊂平面PAC ,所以CD ⊥平面PAC .(2)以点A 为坐标原点,以,,AB AD AP 所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()0,0,0A ,()0,0,1P ,()1,1,0C ,()0,2,0D ,111,,222E ⎛⎫ ⎪⎝⎭.则(0,2,0)AD = ,(0,2,1)PD =- ,111(,,)222AE = .设平面AED 的法向量为(),,n x y z = ,由00n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩ ,得11102220x y z y ⎧++=⎪⎨⎪=⎩,令1z =,可得平面AED 的一个法向量为()1,0,1n =- .设PD 与平面AED 所成角为θ,则110sin cos ,1025n PD n PD n PDθ⋅-===⨯⋅ .20.已知抛物线C :22y px =(0p >)的焦点为F ,过C 上一点P 向抛物线的准线作垂线,垂足为Q ,PQF △是面积为43.(1)求抛物线C 的方程;(2)过点()1,0M -作直线l 交C 于A ,B 两点,记直线FA ,FB 的斜率分别为1k ,2k ,证明.120k k +=【正确答案】(1)24y x=(2)证明见解析【分析】(1)由等边三角形的面积可以求出边QF 的长,再求出Rt FQN 中FN 的长,即可求出p 的值,从而求出抛物线的标准方程;(2)设过M 的直线方程,与抛物线方程联立,借助A ,B 坐标表示12k k +,化简证明即可.【详解】(1)如图所示,PQF △的面积21sin 602PQF S PQ PF =︒== ∴4PF PQ QF ===,设准线与x 轴交于点N ,则在Rt FQN 中,906030FQN ∠=︒-︒=︒,∴122p FN QF ===,∴抛物线C 的方程为24y x =.(2)由题意知,过点()1,0M -的直线l 的斜率存在且不为0,∴设直线l 的方程为l :()1y k x =+(0k ≠),直线l 的方程与抛物线C 的方程联立,得2(1)4y k x y x =+⎧⎨=⎩,消去y 整理得,()2222240k x k x k +-+=,当()2242440k k ∆=-->,即()()1,00,1k ∈-⋃时,设()11,A x y ,()22,B x y ,则212224k x x k=-+-,121=x x ,由第(1)问知,()1,0F ,∴直线FA 的斜率1111y k x =-,直线FB 的斜率2221y k x =-,∴()()()()()()()()()12112121212121221121011111111x x k x x y y k x k x x k k x x x x x -++--+=+===------+.∴原命题得证.21.已知数列{}n a 满足12n n a a +=,且12314++=a a a .(1)求{}n a 的通项公式;(2)设2n n b n a =⋅,数列{}n b 的前n 项和为n T ,若对任意的n *∈N ,不等式()2224844n n T n n λ++-≥-恒成立,求实数λ的取值范围.【正确答案】(1)2nn a =(2)3,128⎡⎫+∞⎪⎢⎣⎭【分析】(1)由12n n a a +=,可得数列{}n a 为等比数列,公比2q =,代入到12314++=a a a ,算出1a ,即可得到本题答案;(2)根据错位相减的方法求得n T ,然后将不等式()2224844n n T n n λ++-≥-,逐步等价转化为2112n n λ-≥,再利用单调性求出2112n nn c -=的最大值,即可得到本题答案.【详解】(1)因为12n n a a +=,所以{}n a 是公比为2的等比数列,所以1231112414a a a a a a ++=++=,故12a =,故2n n a =.(2)1222n n n b n n +=⋅=⋅,则23411222322n n T n +=⨯+⨯+⨯++⨯ ,所以()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯= ,两式相减得,()()2234122221222222212412n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅-- ,因此2(1)24n n T n +=-⋅+.由()2224844n n T n n λ++-≥-,可得222844n n n n λ+⋅≥-,所以2112nn λ-≥,该式对任意的n *∈N 恒成立,则max2112n n λ-⎛⎫≥ ⎪⎝⎭.令2112n n n c -=,则()1112111211132222n n n n n n n n c c ++++----=-=,当6n ≤时,10n n c c +->,即数列{}n c 递增,当7n ≥时,10n n c c +-<,即数列{}n c 递减,所以当7n =时,()max 3128n c =,所以实数λ的取值范围是3,128⎡⎫+∞⎪⎢⎣⎭.22.已知椭圆M :22221(0)x y a b a b +=>>的短轴长为(1)求椭圆M 的方程;(2)若过点()1,1Q -的两条直线分别与椭圆M 交于点A ,C 和B ,D ,且,AB CD 共线,求直线AB 的斜率.【正确答案】(1)22193x y +=(2)13【分析】(1)由短轴长可求出23b =可求出29a =,由此即可求得本题答案;(2)设点()()()()11223344,,,,,,,A x y B x y C x y D x y ,因为,AB CD 共线,可设,AQ QC BQ QD λλ== ,可得13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩,24241(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩,代入椭圆方程,然后相减,即可得到本题答案.【详解】(1)因为短轴长为b =23b =,因为离心率e 2222213c b a a =-=,所以2213b a =,可得29a =,所以椭圆M 的方程为22193x y +=.(2)设()()()()11223344,,,,,,,A x y B x y C x y D x y .设AQ QC λ= ,则13131(1)1(1)x x y y λλ-=-⎧⎨--=+⎩,即13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩,代入椭圆方程,得()()22112211193x y λλλλ+-++⎡⎤⎡⎤⎣⎦⎣⎦+=,即()()221141211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭①同理可得()()222241211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭②由②-①,得11229393x y x y -=-,所以()12123y y x x -=-,所以直线AB 的斜率121213y y k x x -==-.思路点睛:把,AB CD 共线这个条件,转化为,AQ QC BQ QD λλ== ,是解决此题的关键.。
2023-2024学年上海南洋模范化学高二上期末质量检测模拟试题含解析

2023-2024学年上海南洋模范化学高二上期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共包括22个小题。
每小题均只有一个符合题意的选项) 1、葡萄糖(CH 2OH(CHOH)4CHO )中手性碳原子的数目是 A .3 B .4 C .5 D .62、空气中汽油含量的测量仪,其工作原理如图所示(用强酸性溶液作电解质溶液)。
下列说法中不正确的是A .石墨电极作正极,发生还原反应B .铂电极的电极反应式为C 8H 18+16H 2O -50e -=8CO 2↑+50 H + C .H +由质子交换膜左侧向右侧迁移D .每消耗5.6 L O 2,电路中通过1 mol 电子 3、下列过程表达式中,属于电离方程式的是A .32HCO H O-+23H CO OH -+B .32·NH H O 4NH OH +-+C .34NH H NH +++=D .2323HCO OH H O CO ---+=+4、原子半径的比较中错误的是 A .B>C B .C1>A1C .Na>MgD .S>O5、pH 值为3的CH 3COOH 和pH 为11的NaOH 溶液等体积混合,混合后溶液pH 为( ) A .pH <7B .pH > 7C .pH =7D .无法判断6、下列条件下,对应离子一定能大量共存的是 A .中性溶液中:Mg 2+ 、Fe 3+ 、SO 32- 、Cl -B .使甲基橙变红的溶液中:NH 4+ 、Al 3+、SO 42﹣、Mg 2+C.25℃时,水电离出的c(H+)=1×10-13mol/L:K+、Ba2+、NO3-、S2-D.c(H+)/c(OH-) = 1×1012的溶液中:Fe2+、NO3-、HCO3-、Na+7、25℃时,向20mL0.1mol·L-1H3PO2溶液中滴加0.1mol·L-1的NaOH溶液,滴定曲线如图1,含磷微粒物质的量浓度所占分数(δ)随pH变化关系如图2。
(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)

(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)题号一二三四总分得分一、单选题(本大题共8小题,共40.0分)1.直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b满足的条件为()A. k>0,b>0B. k<0,b<0C. k>0,b<0D. k<0,b>02.已知F为双曲线C:的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为()A. 11B. 22C. 33D. 443.“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知抛物线x2=2py和-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,),若|PQ|=|PF|,则抛物线的方程是()A. x2=4yB. x2=2yC. x2=6yD. x2=2y5.已知m,n是两条不重合的直线,α,β是不重合的平面,则下列说法正确的是()A. 若m⊥α,n∥β,α⊥β,则m⊥nB. 若m⊥n,m⊥α,n∥β,则α⊥βC. 若m∥n,m∥α,n∥β,则α∥βD. 若m⊥α,n⊥α,则m∥n6.直线l:y=x与圆x2+y2-2x-6y=0相交于A,B两点,则|AB|=()A. 2B. 4C. 4D. 87.椭圆5x2+ky2=5的一个焦点为(0,2),那么k的值为()A. B. 2 C. D. 18.直线y=-2x-3与曲线的公共点的个数为()A. 1B. 2C. 3D. 4二、多选题(本大题共4小题,共20.0分)9.矩形ABCD中,AB=4,BC=3,将△ABD沿BD折起,使A到A′的位置,A′在平面BCD的射影E恰落在CD上,则()A. 三棱锥A′-BCD的外接球直径为5B. 平面A′BD⊥平面A′BCC. 平面A′BD⊥平面A′CDD. A′D与BC所成角为60°10.设O为坐标原点,F1,F2是双曲线-=1(a>0,b>0)的左、右焦点.在双曲线的右支上存在点P满足∠F1PF2=60°,且线段PF1的中点B在y轴上,则()A. 双曲线的离心率为B. 双曲线的方程可以是-y2=1C. |OP|=aD. △PF1F2的面积为11.在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,∠A1AB=∠A1AD,则有()A. A1M∥B1QB. AA1⊥PQC. A1M∥面D1PQB1D. PQ⊥面A1ACC112.已知抛物线C:y2=4x的焦点为F,准线为l,过点F的直线与抛物线交于两点P(x1,y1),Q(x2,y2),点P在l上的射影为P1,则()A. |PQ|的最小值为4B. 已知曲线C上的两点S,T到点F的距离之和为10,则线段ST的中点横坐标是(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)4C. 设M(0,1),则|PM|+|PP1|≥D. 过M(0,1)与抛物线C有且仅有一个公共点的直线至多有2条三、单空题(本大题共4小题,共20.0分)13.已知A(0,1),B(1,0),C(t,0),点D在直线AC上,若|AD|≤|BD|恒成立,则t的取值范围是______.14.直线2x+y-1=0的倾斜角是______.15.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下一个直径为12cm,深为2cm的空穴,则该球的半径为______ cm,表面积是______ .16.已知双曲线C:的右焦点为F,O为坐标原点.过F的直线交双曲线右支于A,B两点,连结AO并延长交双曲线C于点P.若|AF|=2|BF|,且∠PFB=60°,则该双曲线的离心率为______ .四、解答题(本大题共6小题,共70.0分)17.已知圆的圆心在直线上,且与轴交于两点,.(I)求圆的方程;(II)过点的直线与圆交于两点,且,求直线的方程.18.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m为何值时,直线l恒过定点;(2)求直线l被圆C截得的弦长最小时的方程.19.如图,为圆的直径,点.在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)求四棱锥的体积.20.在平面直角坐标系中,直线l与抛物线y2=2x相交于A,B两点.求证:“如果直线l过(3,0),那么=3”是真命题.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)21.如图,四棱锥中,底面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,,是侧棱上的一点,且∥平面,求三棱锥的体积.22.(本题满分16分)已知椭圆的两焦点分别为 , 是椭圆在第一象限内的一点,并满足,过作倾斜角互补的两条直线分别交椭圆于两点.(1)求点坐标;(2)当直线经过点时,求直线的方程;(3)求证直线的斜率为定值.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)1.【答案】B【解析】解:要使直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b 满足的条件,故选:B.由题意利用确定直线的位置的几何要素,得出结论.本题主要考查确定直线的位置的几何要素,属于基础题.2.【答案】D【解析】由双曲线C的方程,知a=3,b=4,c=5,∴点A(5,0)是双曲线C的右焦点,且|PQ|=|QA|+|PA|=4b=16,由双曲线定义,|PF|-|PA|=6,|QF|-|QA|=6.∴|PF|+|QF|=12+|PA|+|QA|=28,因此△PQF的周长为|PF|+|QF|+|PQ|=28+16=44,选D.3.【答案】A【解析】解:若a=2.则两条直线的方程为2x+4y-1=0与x+2y+3=0满足两直线平行,即充分性成立.当a=0时,两直线等价为4y-1=0与x+3=0不满足两直线平行,故a≠0,若“l1:ax+4y-1=0与l2:x+ay+3=0平行”,则,解得a=2或a=-2,即必要性不成立.故“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的充分不必要条件,故选:A(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)根据直线平行的等价条件,利用充分条件和必要条件的定义即可得到结论.本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件是解决本题的关键.4.【答案】B【解析】解:如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF∵|PQ|=|PF|,在Rt△PQE中,sin,∴,即直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)由消去y得.则△1=8m2-24=0,解得m=-,即PQ:y=由得,△2=8p2-8p=0,得p=.则抛物线的方程是x2=2y.故选:B.如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF可得直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)再依据直线PQ与抛物线、双曲线相切求得p.本题考查了抛物线、双曲线的切线,充分利用圆锥曲线的定义及平面几何的知识是关键,属于中档题.5.【答案】D【解析】解:当m⊥α,n∥β,α⊥β时,直线m与n可能异面不垂直,故选项A错误;当m⊥n,m⊥α,n∥β时,比如n平行于α与β的交线,且满足m⊥n,m⊥α,但α与β可能不垂直,故选项B错误;当m∥n,m∥α,n∥β时,比如m与n都平行于α与β的交线,且满足m∥n,m∥α,但α与β不平行,故选项C错误;垂直于同一个平面的两条直线平行,故选项D正确.故选:D.直接利用空间中线、面之间的关系进行分析判断即可.本题考查了空间中线面位置关系的判断,此类问题一般都是从反例的角度进行考虑,属于基础题.6.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系的应用,掌握直线和圆相交的弦长公式是解决本题的关键,属于基础题.根据直线和圆相交的弦长公式进行求解即可.【解答】解:圆的标准方程为(x-1)2+(y-3)2=10,圆心坐标为(1,3),半径R=,则圆心到直线x-y=0的距离d=,则|AB|===4.故选C.7.【答案】D【解析】【分析】本题考查椭圆的简单性质,是基础题.把椭圆化为标准方程后,找出a与b的值,然后根据a2=b2+c2,表示出c,并根据焦点坐标求出c的值,两者相等即可列出关于k的方程,求出方程的解即可得到k的值.【解答】解:把椭圆方程化为标准方程得:x2+=1,因为焦点坐标为(0,2),所以长半轴在y轴上,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则c==2,解得k=1.故选D.8.【答案】B【解析】解:当x≥0时,曲线的方程为,一条渐近线方程为:y=-x,当x<0时,曲线的方程为,∴曲线的图象为右图,在同一坐标系中作出直线y=-2x-3的图象,可得直线与曲线交点个数为2个.故选:B.分x大于等于0,和x小于0两种情况去绝对值符号,可得当x≥0时,曲线为焦点在y轴上的双曲线,当x<0时,曲线为焦点在y轴上的椭圆,在同一坐标系中作出直线y=-2x-3与曲线的图象,就可找到交点个数.本题主要考查图象法求直线与曲线交点个数,关键是去绝对值符号,化简曲线方程.9.【答案】AB【解析】解:对于A,取BD中点E,连接A′E,CE,则A′E=BE=DE=CE==.∴三棱锥A′-BCD的外接球直径为5,故A正确;对于B,∵DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,∴BC⊥A′F,又A′F∩CD=F,A′F、CD⊂平面A′CD,∴BC⊥平面A′CD,∵A′D⊂平面A′CD,∴DA′⊥BC,∵BC∩BA′=B,∴DA′⊥平面A′BC,∵DA′⊂平面A′BD,∴平面A′BD⊥平面A′BC,故B正确;对于C,BC⊥A′C,∴A′B与A′C不垂直,∴平面A′BD与平面A′CD不垂直,故C错误;对于D,∵DA∥BC,∴∠ADA′是A′D与BC所成角(或所成角的补角),∵A′C==,∴A′F=,DF==,AF==,AA′==3,∴cos∠ADA′==0,∴∠ADA′=90°,∴A′D与BC所成角为90°,故D错误.故选:AB.对于A,取BD中点E,连接A′E,CE,推导出A′E=BE=DE=CE=,从而三棱锥A′-BCD 的外接球直径为5;对于B,推导出DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,BC⊥A′F,BC⊥平面A′CD,DA′⊥BC,DA′⊥平面A′BC,从而平面A′BD⊥平面A′BC;对于C,A′B与A′C不垂直,从而平面A′BD与平面A′CD不垂直;对于D,由DA∥BC,得∠ADA′是A′D与BC所成角(或所成角的补角),推导出A′D与BC所成角为90°.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力等数学核心素养,是中档题.10.【答案】AC【解析】解:如图,F1(-c,0),F2(c,0),∵B为线段PF1的中点,O为F1F2的中点,∴OB∥PF2,∴∠PF2F1=90°,由双曲线定义可得,|PF1|-|PF2|=2a,设|PF1|=2m(m>0),则|PF2|=m,,∴2m-m=2a,即a=,又,∴c=,则e=,故A正确;,则b=,双曲线的渐近线方程为y=,选项B的渐近线方程为y=,故B错误;对于C,∵O为F1F2的中点,∴,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则,即=,即,①而|PF1|-|PF2|=2a,两边平方并整理得,,②联立①②可得,,,即|PO|=,故C正确;=,故D错误.故选:AC.由已知可得∠PF2F1=90°,设|PF1|=2m(m>0),再由已知结合双曲线定义可得a,b,c 与m的关系,即可求得双曲线的离心率及渐近线方程,从而判断A与B;由O为F1F2的中点,得,两边平方后结合双曲线定义联立求得|PO|判断C;进一步求出△PF1F2的面积判断D.本题考查双曲线的几何性质,考查运算求解能力,是中档题.11.【答案】BCD【解析】解:连接MP,可得MP AD A1D1,可得四边形MPA1D1是平行四边形∴A1M∥D1P,又A1M⊄平面DCC1D1,D1P⊂平面DCC1D1,A1M∥平面DCC1D1,连接DB,由三角形中位线定理可得:PQ DB,DB D1B1,可得四边形PQB1D1为梯形,QB1与PD1不平行,因此A1M与B1Q不平行,又A1M∥D1P,A1M⊄平面D1PQB1,D1P⊂平面D1PQB1,∴A1M∥平面D1PQB1.故A不正确,C正确;连接AC,由题意四边形ABCD是菱形,∴AC⊥BD,∵P,Q分别为棱CD,BC的中点,∴PQ∥BD,∴PQ⊥AC,∵平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,∴直线AA1在平面ABCD内的射影是AC,且BD⊥AC,∴AA1⊥BD,∴AA1⊥PQ,故B正确;∵AA1∩AC=A,∴PQ⊥面A1ACC1,故D正确.故选:BCD.连接MP,推导出四边形MPA1D1是平行四边形,从而A1M∥D1P,连接DB,推导出四边形PQB1D1为梯形,A1M与B1Q不平行,推民出A1M∥平面D1PQB1;连接AC,推导出四边形ABCD是菱形,AC⊥BD,从而PQ⊥AC,由平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,推志出AA1⊥PQ,从而PQ⊥面A1ACC1.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.【答案】ABC【解析】解:对于A,设直线PQ的方程为x=ty+1,联立解方程组,可得y2-4ty-4=0,x1x2==1,|PQ|=x1+x2+p=x1+x2+2+2=4,故A正确;对于B,根据抛物线的定义可得,|SF|+|TF'|=x S+x T+p=10,则x S+x T=8,则线段ST的中点横坐标是=4,故B成立;对于C,M(0,1),|PM|+|PP1|=|MP|+|PF|≥|MF|=,所以C正确;对于D,过M(0,1)相切的直线有2条,与x轴平行且与抛物线相交且有一个交点的直线有一条,所以最多有三条.所以D不正确;故选:ABC.设出直线方程与抛物线联立,利用弦长公式判断A,结合抛物线的定义,判断B;利用抛物线的性质判断C;直线与抛物线的切线情况判断D.考查抛物线的性质,抛物线与直线的位置关系的应用,是中档题.13.【答案】(-∞,0]【解析】解:设D(x,y),由D在AC上,得+y=1,即x+ty-t=0,由|AD|≤|BD|得≤•,化为(x-2)2+(y+1)2≥4,依题意,线段AD与圆(x-2)2+(y+1)2=4至多有一个公共点,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)∴≥2,解得:t≤0,则t的取值范围为(-∞,0],故答案为:(-∞,0].先设出D(x,y),得到AD的方程为:x+ty-t=0,由|AD|≤|BD|得到圆的方程,结合点到直线的距离公式,解不等式即可得到所求范围.本题考查直线与圆的方程,考查点到直线距离公式的运用,考查学生分析解决问题的能力,属于中档题.14.【答案】π-arctan【解析】解:直线2x+y-1=0的斜率为,设直线2x+y-1=0的倾斜角为θ(0≤θ<π),则tan,∴θ=.故答案为:π-arctan.由直线方程求直线的斜率,再由斜率等于倾斜角的正切值求解.本题考查由直线方程求直线的斜率,考查直线的斜率与倾斜角的关系,是基础题.15.【答案】10;400π【解析】解:设球的半径为r,依题意可知36+(r-2)2=r2,解得r=10,∴球的表面积为4πr2=400π故答案为10,400π先设出球的半径,进而根据球的半径,球面上的弦构成的直角三角形,根据勾股定理建立等式,求得r,最后根据球的表面积公式求得球的表面积.本题主要考查了球面上的勾股定理和球的面积公式.属基础题.16.【答案】【解析】【分析】本题考查双曲线的定义以及几何性质的应用,余弦定理的应用,考查转化思想以及计算能力.属于中档题.设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,推出∠F'AB=60°.在△F'AB 中,由余弦定理求解.结合双曲线的定义,求出,.在△F'AF中,由余弦定理推出a,c关系,得到离心率即可.【解答】解:设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,所以|AF'|=2a+2t,|BF'|=2a+t.由对称性可知,四边形AF'PF为平行四边形,故∠F'AB=60°.在△F'AB中,由余弦定理得(2a+t)2=(2a+2t)2+(3t)2-2×(2a+2t)×3t×cos60°,解得.故,.在△F'AF中,由余弦定理得,,解得:.故答案为:.17.【答案】解:(I)因为圆与轴交于两点,,所以圆心在直线上,由,得,即圆心的坐标为.半径,所以圆的方程为;(II)若直线的斜率不存在,则直线的方程为,此时可得,不符合题意;(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)当直线的斜率存在时,设直线的方程为:,即,过点作于点,则D为线段MN中点,∴,∴,即点C到直线l的距离,解得或k=-3;综上,直线的方程为x-3y+3=0或3x+y-11=0.【解析】本题考查圆的标准方程,直线与圆的位置关系,属于中档题.(I)根据题意,即可得解;(II)分类讨论,进行求解即可.18.【答案】(1)证明:将直线化为直线束方程:x+y-4+(2x+y-7)=0.联立方程x+y-4=0与2x+y-7=0,得点(3,1);将点(3,1)代入直线方程,不论m为何值时都满足方程,所以直线l恒过定点(3,1);(2)解:当直线l过圆心与定点(3,1)时,弦长最大,代入圆心坐标得m=.当直线l垂直于圆心与定点(3,1)所在直线时弦长最短,斜率为2,代入方程得m=此时直线l方程为2x-y-5=0,圆心到直线的距离为,所以最短弦长为.【解析】(1)通过直线l转化为直线系,求出直线恒过的定点;(2)说明直线l被圆C截得的弦长最小时,圆心与定点连线与直线l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦长.本题考查直线系方程的应用,考查直线与圆的位置关系,考查平面几何知识的运用,考查计算能力,属于中档题.19.【答案】(1)证明详见解析;(2).【解析】试题分析:(1)要证平面,根据直线与平面平行的判定定理可知只需证与平面内一直线平行即可,设的中点为,则为平行四边形,则,又平面,不在平面内,满足定理所需条件;(2)过点作于,根据面面垂直的性质可知平面,即正的高,然后根据三棱锥的体积公式进行求解即可.试题解析:(1)设的中点为,则又,∴∴为平行四边形∴又平面,平面∴平面(2)过点作于平面平面,∴平面,即正的高∴∴∴.考点:1.空间中的平行关系;2.空间中的垂直关系;3.棱锥的体积计算.20.【答案】证明:设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2).当直线l的钭率不存在时,直线l的方程为x=3,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)此时,直线l与抛物线相交于点A(3,)、B(3,-).∴=3当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0,由得ky2-2y-6k=0⇒y1y2=-6,又∵x1=y12,x2=y22,∴x1x2=9,∴=x1x2+y1y2=3,综上所述,命题“如果直线l过点T(3,0),那么=3”是真命题;综上,命题成立.【解析】设出A,B两点的坐标根据向量的点乘运算求证即可得到:“如果直线l过(3,0),那么=3”是真命题.本题考查了真假命题的证明,抛物线的简单性质,向量数量积,是抛物线与平面向量的综合应用,难度中档.21.【答案】(1)证明:∵底面是菱形,∴.又平面.又又平面.(2)连接,∵SB平面,平面,平面平面,SB∥平面APC,∴SB∥OP.又∵是的中点,∴是的中点.由题意知△ABD为正三角形..由(1)知平面,∴.又,∴在Rt△SOD中,.∴到面的距离为.【解析】主要考查了线面垂直的判定和三棱锥的体积.(1)要证明线面垂直,证明SO与平面ABCD中两条相交直线垂直即可,应用已知条件与等腰三角形的三线合一即可得到证明;(2)由SB∥平面APC的性质定理证明得SB∥OP,由(1)得高为PO,利用三棱锥的体积公式即可求出结果.22.【答案】(1)(2)(3),证明略.【解析】解:(1)设P((x,y),由题意可得,解得,∴P.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(2)∵,两条直线PA,PB倾斜角互补,∴k PA+k PB=0,解得k PB=1.因此直线PA,PB,的方程分别为,,化为,.联立,解得(舍去),,即A.同理解得B.∴k AB= = ,∴直线AB的方程为,化为.(3)S设A(x 1,y 1),B(x 2,y 2),设直线PA的方程为:,则直线PB 的方程为.联立,解得A.同理B,∴k AB= = .即直线AB的斜率为定值.。
广东省大湾区联合模拟考试高二上册语文期末试卷

2023广东省大湾区联合模拟考试高二上册语文期末试卷学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
一、二、现代文阅读(一) ( 10 分 )1、阅读下面的文字,完成下列各题。
生态民生问题是一个关涉人类生存与发展的重大理论和实践问题。
从系统工程寻求新的生态环境保护治理之道、全方位全地域全过程推进生态文明建设、以道德法治和规章制度保障生态民生建设等,所有这些既体现了顶层设计层面的战略构想,又展现了具体实践层面的操作规范。
应当说,在新时代推进生态民生建设的具体实践中,协同性是必须特别关注和重点把握的显性特点。
这种协同的特性不仅来自于客观对象本身所具有的普遍联系的品质,也来自于人类解决生态环境问题的自觉选择。
任何单一方式、举措,都无法使复杂的生态民生问题得到最终的解决。
与人的生存和发展紧密关联的自然生态,是一个由诸多生态要素构成的“生命共同体”,具有整体性、系统性和功能性特征。
在这一“生命共同体”中,各要素之间的生态过程既相互影响与制约,又互为依托与基础。
正如习近平所言:“人的命脉在田,田的命脉在水,水的命脉在山,山的命脉在土,土的命脉在林和草。
”这些不同的生态要素共同构成了一个彼此关联、不可分割的有机整体。
显然,对于这样的生态系统,只有进行整体的谋划并切实保障和实现其良性运转,才能使其生态功能得以完整实现。
这样的特性也就决定了生态环境的保护与治理,必须从系统性、整体性、全面性的角度出发,有效统筹组成自然生态的各要素,以寻求系统性的解决方案、全链条的治理对策。
这样才能真正实现对自然生态的整体保护、系统修复和综合治理。
将生态环境保护与治理理念落到实处,最重要的是努力实现各种保障措施的协同推进。
2023-2024学年广东省广州市高二上学期期末考试英语模拟试题(含答案)

2023-2024学年广东省广州市高二上学期期末考试英语模拟试题第一部分听力(共两节,每小题1分,满分15分)第一节(共5小题:每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.When does the man usually practise yoga?A.At 5:30.B.At 6:00.C.At 6:30.2.What is the woman probably doing?A.Preparing for her tests B.Planning her holiday. C.Reading a book.3.Where does the conversation take place?A.At home. B.At a supermarket.C.At the man’s office. 4.Why is the boy's father against the trip?A.Canada is too far away.B.The trip may be meaningless.C.The time of the trip is unsuitable.5.What is the main reason for doctors to recommend bike riding?A.It can make legs slim.B.It can make you put on weight.C.It can build up the body.第二节(共10小题: 每小题1分,满分10分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
2024届安徽省怀宁中学高二上数学期末统考模拟试题含解析

20.(12 分)已知椭圆 C: x2 a2
y2 b2
1a
b 0
短轴长为 2,且点 M
2, 2
3 2
在
C
上
的 (1)求椭圆 C 的标准方程;
(2)设 F1 、 F2 为椭圆的左、右焦点,过 F2 的直线 l 交椭圆 C 与 A、B 两点,若 ABF1 的面积是 6 ,求直线 l 的方 2
__________
14.如图,把正方形纸片 ABCD 沿对角线 AC 折成直二面角,则折纸后异面直线 AB , CD 所成的角为___________.
15.已知数列{an}满足 an+2=an+1-an(n∈N*),且 a1= 2,a2= 3,则 a2022 的值为_________.
16.设正方形 ABCD 的边长是 2 ,在该正方形区域内随机取一个点,则此点到点 A 的距离大于 2 的概率是_____
当在 ABC 中, sin A sin B 2Rsin A 2Rsin B a b , 反之 a b 2Rsin A 2Rsin B sin A sin B ,故为充要条件,故 C 错; 当 a 3时, loga 3 loga a , loga 3 1 , loga 9 2 , 充分条件,
则 A(0,0,0), D(0, 4,0),C(4, 4,0), P(0,0,6) , E(0, 2,3) , CE (4, 2,3) , AD (0, 4,0)
设直线 EC 与平面 PAB 所成角为 ,又由题可知 AD 为平面 PAB 的一个法向量, 则 sin cos CE, AD CE AD 2 4 2 29
3. (x 1)10 的二项展开式中,二项式系数最大的项是.5 D.5 和 7
2023_2024学年河北省衡水市高二上学期期末考试英语模拟测试卷(有答案)

2023_2024学年河北省衡水市高二上学期期末考试英语检测卷第一部分 听力(共两节,满分30分)第一节 (共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A 、B 、C 三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. When will the flowers come out according to the woman?A. In February.B. In March.C. In May.2. What is the weather like now?A. Snowy.B. Rainy.C. Cloudy.3. Why does the man refuse to buy a new phone now?A. He’s waiting for the latest iPhone.B. He is unwilling to change a phone.C. The price of the phone is too high.4. How will the speakers go to the cinema?A. By taxi.B. By subway.C. By bus.5. What time is it now?A. 8:45.B. 9:00.C. 9:15.第二节 (共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A 、B 、C 三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料。
回答第6、7题。
6. What has the girl taken?A. Some beef.B. Some bread.C. Some tomatoes.7. What does the man advise her daughter to do?A. Take a part-time job.B. Be serious about her training.C. Have a rest at times.听第7段材料,回答第8、9题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二(上)期末模拟考试卷
一、选择题(下列各题中的四个选项中,至少有一个选项是符合题目要求的,
每小题4分,共计48分)
1.如图所示,有一束电子正在y轴上向y轴正方向移动,则它在z轴上某点A
处产生的磁场方向为()
A.沿x轴的正方向 B.沿x轴的负方向
C.沿z轴的正方向 D.沿z轴的负方向
2. 如图所示是表示磁场磁感应强度B、负电荷运动方向v和磁场对电荷洛伦兹力F的相互关系图,这
、、两两垂直)()
四个图中正确的是(B v F
3. 关于电场力与洛伦兹力,以下说法正确的是()
A.电荷只要处在电场中,就会受到电场力,而电荷静止在磁场中,也可能受到洛伦兹力
B.电场力对在电场中的电荷一定会做功,而洛伦兹力对在磁场中的电荷却不会做功
C.电场力与洛伦兹力一样,受力方向都在电场线和磁感线上
D.只有运动的电荷在磁场中才会受到洛伦兹力的作用
5. 穿过闭合回路的磁通量 随时间t变化的图象分别如图所示,下列关于回路中产生的感应电动势的论述,正确的是()
A.图①中回路产生的感应电动势恒定不变
B.图②中回路产生的感应电动势一直在变大
D .图④中回路产生的感应电动势先变小再变大
6、如图所示是由基本逻辑电路构成的一个公路路灯自动控制电路,图中虚线框内M 是一只感应元件,虚线框N 中使用的是门电路.则( ) A.M 为光敏电阻,N 为与门电路 B.M 为光敏电阻,N 为非门电路 C.M 为热敏电阻,N 为非门电路 D.M 为热敏电阻,N 为或门电路
7. 电源的效率η定义为外电路电阻消耗的功率与电源的总功率之比.在测电源电动势和内电阻的实验中得到的实验图线如图所示,图中U 为路端电压,I 为干路电流,a b 、为图线上的两点,相应状态下电源的效率分别为a b ηη、.由图可知a b ηη、的值分别为( )
A .31
44、 B .
1233
、 C .1122、
D .2133
、
9. 如图甲是某电场中的一条电场线,A B 、是这条电场线上的两点,若将一负电荷从A 点自由释放,负电荷沿电场线从A 到B 运动过程中的v t -图象如图乙所示,比较A B 、两点电势的高低和电场场强的大小可知( ) A .A B ϕϕ> B .A B ϕϕ< C .A B E E >
D . A B
E E <
10. 如图所示电路,改变可变电阻R 的阻值,使电压表○V 的示数增大U ∆,在这个过程中( )
A .通过1R 的电流增加,增加量一定等于1/U R ∆
B .可变电阻R 的阻值一定增大
C .路端电压增加,增加量一定等于U ∆
D .通过2R 的电流一定减小
11. 如图所示的虚线区域内,充满垂直纸面向里的匀强磁场和竖直向下的匀强电场,一带电粒子a (不计重力)以一定的初速度由左边界的O 点射入磁场、电场区域,恰好沿直线由区域右边界的O '点(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b (不计重力)仍以相同初速度由O 点射入,从区域右边界穿出,则粒子b ( ) A .穿出位置一定在O '点下方 B .穿出位置一定在O '点上方 C .在电场中运动时,电势能一定减小 D .在电场中运动时,动能一定减小
12、如图所示,水平放置的平板MN 的上方是足够宽的匀强磁场区域,磁感应强度的大小为B ,磁场方向垂直于纸面向里。
许多质量为m 、带电量为+q 的粒子,以相同的速率v ,沿位于纸面内的各个不同方向,由小孔射入磁场区域。
不计重力,不计粒子间的相互影响。
则带电粒子可能经过的区域的面积是( )
A.223⎪⎪⎭⎫ ⎝⎛qB mv π
B.2
21⎪⎪⎭⎫
⎝⎛qB mv π C.2
⎪⎪⎭
⎫
⎝⎛qB mv π
D.22
⎪⎪⎭
⎫
⎝⎛qB mv π
二、实验题(按要求作答,共16分)
图,应选( )
(2)本实验中若被测小灯泡标识为“2.5V ,1W “,实验室为你提供了两种规格的滑动变阻器:(甲)总电阻10Ω 额定电流2A ;(乙)总电阻50Ω 额定电流1.5A ,为顺利完成实验你应该选择 .(填“甲”或“乙”)
14.(8分)(1)某同学用多用电表进行了两次测量,指针的位置分别如图中a 和b 所示。
若多用表的选择开关处在以下表格中所指的档位,请在表格中填写a 和b 的相应读数。
(要求标注单位)
(2)某同学用多用电表的“10Ω⨯”档判断一只二极管的极性。
当电表红表笔接二极管a 端,黑表笔接b 端时,电表示数较小;当改为电表黑表笔接二极管a 端,红表笔接b 端时。
电表示数很大,由此可以判断:该二极管 端(填a 或b )为正极,理由是多用电表在使用时电流总是从 (填“红”或“黑”)表笔流入电表的。
三、计算题(本题共4小题,共46分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位。
) 15.(10分)长50l =cm 、重0.1G =N 的金属杆ab 静止在光滑的金属框架上,框架平面与水平面夹角0
30α=,如图所示,流过ab 的电流
1I = A.整个装置处于竖直向下的匀强磁场中,求此磁场的磁感应强度B 的大小.
16.(10分)矩形线圈在一匀强磁场中绕垂直于磁场方向的中心轴匀速转动,产生的交变电动势表达式为311sin314e t =(V ),试求: (1)电动势的有效值和频率;
(2)若矩形线圈是100匝,线圈平面面积为0.02m 2
,匀强磁场的磁感应强度B 是多少? (3)当线圈平面从中性面开始转过4
3π
时,电动势的瞬时值是多大?
17.(12分)如图所示,质量4110m -=⨯kg 的小球,带有4
510q -=⨯C 的正电荷,套在一根与水平方向成0
37θ=角的足够长绝缘杆上。
小球可以沿杆滑动,与杆间的动摩擦因数0.4μ=,这个装置放在磁感应强度0.5B =T 的匀强磁场中,求小球无初速释放后沿杆下滑的最大加速度和最大速度。
(g=10m/s 2
)
18.(12分)如图所示,在虚线所示宽度范围内,用场强为E 的匀强电场可使初速度是0v 的某种正离子偏转θ角.在同样宽度范围内,若改用方向垂直纸面向外的匀强磁场,使该离子穿过该区域,并使偏转角也为θ,(不计离子的重力)求: (1)匀强磁场的磁感应强度是多大? (2)离子穿过电场和磁场的时间之比是多大?
高二物理答案
一、选择题 1 2 3 4 5 6 7 8 9 10 11 12 B
ABC
D
B
D
B
D
B
BC
ABD
C
A
二、实验题
13.(1) C (2) 甲 14.(1)① 11.5V ±0.2V ② 40.0V ±0.1V
③ 50×102
Ω
④ 3.2×102
Ω
(2) b ; 红 三、计算题
15.解:导体棒受力如图所示,由平衡条件可得:
0cos30N F G ⋅= ……………………① 0sin 30N F BIl ⋅=……………………②
解出:0tan 303
0.11515
G B Il ⋅=
==T
16. 解析:(1)将t e 314sin 311=(V ) 跟t e ωεsin max =对应比较,可知311max =εV 有效值:
2
3112
max
=
=
εεV =220V
频率: 14
.32314
2⨯=
=
πωf Hz =50Hz (2)由S NB ωε=max 得02.0314100311
max ⨯⨯==S N B ωεT =0.5T
(3)线圈从中性面转过43π,即43πω=⋅t 4
3sin 311π
=e V =311×0.707V=220V
17.解:开始阶段小球速度小,洛伦兹力较小,杆对球支持力垂直杆斜向上,且逐渐减小,当速度达到某值后,支持力N F 为零,杆对球的摩擦力也减为零,此时球的加速度最大.
2max sin 6/a g m s θ==…………………………①
此后杆对球的支持力垂直于杆向下且随速度增大而增大,当摩托力sin f mg θ=时达到最大速度,根据牛顿第二定律得:
cos m N qV B mg F θ⋅=+…………………②
且N f F μ= ……………………④ 由②③④解出:9.2/m V m s =
18.解:(1)设粒子的质量m ,电荷量q ,场区宽度L ,粒子在电场中做类平抛运动
L
t v =
……………………① qE
a m
=
………………………② 0
tan at
V θ=
…………………③ 由①②③得:2
tan q L
mv θE =
……………………④ 粒子在磁场中做匀速圆周运动
mV R qB
=
…………………………⑤ sin L
R
θ=
…………………………⑥ 由⑤⑥解得:0sin qBL
m v θ=
⋅ …………………………⑦ 由④⑦式解得:0
cos E B v θ
=
(2)粒子在电场中运动时间: 10
L
t V =
……………………⑧ 在磁场中运动时间: 2m
t qB
θ=
……………………⑨
而: 0
sin mV L qB
θ=
⋅…………………………⑩ 由⑧⑨⑩解出:12/sin /t t θθ=。