热电偶传感器
热电偶传感器

E AB (T1,T2 ) EAC (T1,T2 ) EBC (T1,T2 )
T
T
T
2
2
2
A
CA
BB
C
T
T
T
图71.6 三组导线1 的热电偶1图
(4)连接导体定律与中间温度定律 当导体A、B连接导体A′、B′如图7.7所示,
中间温度Tn,其表达式为:
EABAB (T ,Tn ,T0 ) EAB (T ,Tn ) EAB (T ,T0 )
保热测温精度。
对标准化热电偶则在使用一段时间后或测 量端要受氧化腐蚀,并在高温下发生再结晶, 以及受拉伸、弯曲等机械应力的影响后再进行 标定,以消除测量系统的系统误差。
(1)标准化热电偶的主要技术参数有热电偶分 度号、测量范围、精度等级及允许偏差。
(2)热电偶的标定
标定就是核对热电偶热电势-温度关系是 否符合标准或标定曲线,也可以通过标定消除 测量系统的系统误差,标定方法有定点法和比 较法。
EABC (T1,T2 ) EAB (T1) EAB (T2 ) EAB (T1,T2 )
A
T2
T1
B
C
mV
图7.5 接入导体C的热电偶回路图
(3)标准电极定律
三组导体分别组成的热电偶如图7.6所示,A、 B组成的热电偶其产生的热电势等于A、C组成的 热电偶和C、B组成的热电偶的热电势之和。即
引出线
图7.10 薄膜热电偶结构图
3.热电偶的主要技术参数
为保证热电偶测温精度的各项技术指标,按 照工业标准化要求,热电偶可分为标准化和非标 准化两种。标准化热电偶指能批量生产、性能稳 定,具有统一的分度表并已列入国际和国家标准 文件中的热电偶。非标准化热电偶无论在适用范 围或数量上均不及标准化热电偶,但在某些特殊 场合,如在高温、低温、超低温、真空等被测对 象中,这些热电偶具有某些特别良好的特性。目 前非标准化热电偶主要用于进一步扩展高温和低 温测量范围,有很多产品,但这类热电偶不够成 熟,没有统一分度表,使用前需个别标定,以确
热电偶传感器实训报告

一、实训目的1. 了解热电偶传感器的原理和结构;2. 掌握热电偶传感器的应用和特点;3. 学会热电偶传感器的使用方法和注意事项;4. 提高实际操作能力,为以后的工作和学习打下基础。
二、实训内容1. 热电偶传感器原理及结构;2. 热电偶传感器应用及特点;3. 热电偶传感器的使用方法和注意事项;4. 热电偶传感器实验操作。
三、实训过程1. 热电偶传感器原理及结构(1)原理热电偶传感器是利用两种不同金属导体组成闭合回路,当回路中存在温差时,回路中会产生热电动势,热电动势与温差成正比。
通过测量热电动势,可以确定温度。
(2)结构热电偶传感器主要由热电极、绝缘材料、保护套管和接线端子组成。
热电极是热电偶的核心部分,由两种不同金属导体组成;绝缘材料用于隔离热电极,防止热量损失;保护套管用于保护热电极,防止外界环境对传感器的影响;接线端子用于连接电路。
2. 热电偶传感器应用及特点(1)应用热电偶传感器广泛应用于工业、农业、医疗、科研等领域,如:工业炉温测量、环境温度监测、热处理工艺控制、医疗器械等。
(2)特点1. 测量范围宽:热电偶传感器的测量范围可从-200℃至+2600℃,满足不同场合的需求;2. 精度高:热电偶传感器的精度可达±0.5℃,满足高精度测量要求;3. 响应速度快:热电偶传感器的响应时间一般在几秒到几十秒之间,满足实时测量要求;4. 抗干扰能力强:热电偶传感器具有良好的抗干扰性能,适用于恶劣环境。
3. 热电偶传感器的使用方法和注意事项(1)使用方法1. 选择合适的热电偶类型:根据测量温度范围和精度要求选择合适的热电偶类型;2. 连接热电偶传感器:将热电偶传感器与显示仪表或控制系统连接,确保连接牢固;3. 校准热电偶传感器:根据实际测量环境,对热电偶传感器进行校准,确保测量精度;4. 测量温度:将热电偶传感器放置于测量点,读取温度值。
(2)注意事项1. 避免热电偶传感器受到机械冲击和振动;2. 避免热电偶传感器受到腐蚀性介质的影响;3. 避免热电偶传感器长期暴露在高温度、高湿度环境下;4. 定期检查热电偶传感器的接线是否牢固,确保测量准确。
第7章热电偶传感器

对制成热电偶的材料的要求: (1)温度测量范围广,温度线性度好,测量精确度高,
输出热电动势大。 (2)热电性能稳定。 (3)物理化学性能好。不蒸发、抗氧化等。
我国标准热电偶有六种:
铜-康铜
镍铬-考铜
镍铬-镍铝
铂铑10-铂
非标准热电偶: 铂铑13-铂
发展中产品:
镍铬-康铜
铑质量的百分比
镍铬-镍硅 铂铑30-铂铑6 铂铑-铱 等 铁-康铜
八种国际通用热电偶: B:铂铑30—铂铑6 、R:铂铑13—铂 、S:铂铑10—铂 、 K:镍铬—镍硅 、N:镍铬硅—镍硅 、E:镍铬—铜镍、 J:铁—铜镍 、 T:铜—铜镍
用于制造铂热电偶 的各种铂热电偶丝
二、热电偶结构 1.普通工业热电偶的结构
(1)热电极(偶丝) 普通的直径为0.5~3.2mm 贵重的直径为0.3~0.6mm 长度为300~2000mm,一般350mm
第七章 热电偶传感器
热电偶传感器基于热电效应原理而工作。属于有源 传感器,使用时不需要外加电源,可以方便地测量炉子、 管道中的气体或液体温度,也可以测量固体表面温度。
结构简单、制造方便、测量范围广、精度高、惯性小、 便于远距离传送。
与热电阻的主要区别: 1、原理不同—信号性质不同:热电阻是阻值的变化,而热
(2)绝缘管
对热电极间、热电极与保护套管间
进行绝缘保护。 (3)保护套管
保护热电偶感温元件免受被测介质
化学腐蚀和机械损伤 (4) 接线盒
固定接线座和作为连接补偿导线的装置。
有普通式、防溅式、防水式和接插座式。
接线盒 保护套管 绝缘管
热电极
普通装配型热电偶的外形
安装 螺纹
安装 法兰
接线盒 普通装配型 热电偶的结 构放大图
热电偶传感器的工作原理

热电偶传感器的工作原理热电偶传感器是一种测量温度的传感器。
它利用两种不同材料的导线连接,通过不同材料之间的热电电动势来测量温度。
其工作原理主要包括热电效应原理、热电对原理和测温原理。
1. 热电效应原理热电效应是指当两个不同材料的导线处于不同温度下时,产生的热电电势差。
根据热电效应原理,热电偶传感器一般由两种不同材料的导线连接组成,分别称为热电对。
常用的热电对有N型热电偶(镍铬-镍硅)、K型热电偶(镍铬-镍铝)、T型热电偶(铜-铜镍)等。
这些热电对被放置在被测温度环境中,当被测温度发生变化时,由于热电效应的存在,热电对之间会产生一定的热电势差。
2. 热电对原理热电对原理是指热电偶传感器利用不同材料之间的热电效应来测量温度的原理。
具体而言,热电偶传感器的热电对被置于被测温度环境中,当被测温度发生变化时,热电对之间产生的热电势差也会随之变化。
这个热电势差可以通过测量热电对之间的电压来计算得到。
3. 测温原理热电偶传感器是利用热电效应来测量温度的,而测温原理则是指根据热电对生成的热电势差来计算被测温度的原理。
热电偶传感器的热电对之间的热电势差与被测温度环境之间存在一定的关系,这种关系通常由热电偶的特性参数和温度之间的数学模型来描述。
传统的计算方法是使用热电势表或温度转换电路将热电势转换为对应的温度值。
另外,随着现代科技的发展,也出现了数字式热电偶传感器,它利用特定的芯片将热电势转化为数字信号,进而实现温度测量。
总之,热电偶传感器是通过测量热电对之间的热电势差来计算被测温度的传感器。
它的工作原理主要包括热电效应原理、热电对原理和测温原理。
通过这些原理的相互作用,热电偶传感器能够在广泛的温度范围内进行准确的温度测量,具有广泛的应用领域,如工业自动化控制、环境监测、航空航天等。
同时,热电偶传感器还具有响应速度快、结构简单、成本低廉等优点,是一种常用的温度传感器。
热电偶式传感器工作原理

热电偶式传感器工作原理小伙伴们!今天咱们来唠唠热电偶式传感器这个超有趣的东西。
热电偶式传感器呀,就像是一个小小的温度侦探呢。
它的基本原理其实是基于一种很奇妙的热电效应。
你看啊,世界上有好多不同的金属,当把两种不同的金属一端连接在一起,然后把连接端放在一个温度环境里,另一端放在另一个温度环境里的时候,就会发生神奇的事情哦。
想象一下,这两种金属就像是两个性格不同的小伙伴。
当温度有差异的时候,它们之间就开始“闹别扭”啦,不过这个“闹别扭”是很有规律的。
它们之间会产生一个电势差,这个电势差就和温度的差异有着密切的关系呢。
就好像这两个金属小伙伴在悄悄地说:“温度不一样了,我们得做点反应啦。
”那这个电势差是怎么来的呢?这就得从金属内部的电子说起啦。
不同的金属,它们的电子活跃程度是不一样的。
当温度改变的时候,电子们就像一群调皮的小蚂蚁,开始重新分布啦。
在热端的金属里,电子变得更加活跃,就想着往冷端的金属那边跑。
这样一来一往的,就产生了电势差。
这电势差就像是一个信号,告诉我们温度有变化了。
而且哦,这个电势差和温度差之间的关系是比较稳定的。
就像一对好朋友之间有一个约定好的暗号一样。
科学家们通过大量的实验,已经把这个暗号给破解得差不多了。
所以我们就可以根据测量到的电势差,准确地算出温度差,然后再结合已知的一个温度,就能知道另一个温度啦。
热电偶式传感器在生活里的应用可多着呢。
比如说在工业的大熔炉旁边,那里面温度超级高,普通的温度计进去可能就直接“壮烈牺牲”了。
但是热电偶式传感器就不怕,它可以在高温环境里稳稳地工作,时刻监测着熔炉里的温度,就像一个忠诚的小卫士。
还有在一些科学实验里,需要精确测量很小的温度变化,热电偶式传感器也能大显身手。
不过呢,热电偶式传感器也有点小脾气。
它有时候会受到周围环境的干扰。
比如说周围有磁场啦,或者连接的线路有接触不良的情况啦,这都会影响它准确地测量温度。
就像一个小朋友在认真做作业的时候,旁边有人一直在打扰他,他就容易出错一样。
热电偶传感器ppt课件

3. 镍铬-镍硅热电偶(K型)
使用量最大旳便宜金属热电偶,用量为其他热电 偶旳总和。 正极(KP)旳名义化学成份为:Ni:Cr=90:10, 负极(KN)旳名义化学化学成份为Ni:Si=97:3。 其使用温度为-200~1300℃。
正
较硬
B
负
稍软
0.033
600~900
0~1600
1800
Ⅲ
>800
±4℃ ±0.5%t
正
不亲磁
Ⅱ
-40~1300
±2.5℃或±0.75%t
K
4.096
0~1200
1300
负
稍亲磁
Ⅲ
-200~40
±2.5℃或±1.5%t
N
正
不亲磁
负
稍亲磁
2.774
200~1200
1300
Ⅰ Ⅱ
-40~1100 -40~1300
T —— 接触面旳绝对温度
e —— 单位电荷量 NA——金属电极A旳自由电子密度 NB——金属电极B旳自由电子密度
2. 温差电势
温差电势(汤姆逊电势)
T
eA (T ,T0 )
dT
T0
(6.3.2)
图6.3.3 热电偶旳温差电势
δ —— 汤姆逊系数,它表达温差为1℃时所产生旳 电动势值,它与材料旳性质有关。
热电极旳温度分布无关; 假如热电偶旳热电极是非匀质导体,在不均匀温度
场中测温时将造成测量误差。所以热电极材料旳均 匀性是衡量热电偶质量旳主要技术指标之一。
2. 中间导体定律 在热电偶回路中接入与A、B电极不同旳另一种
导体称中间导体C,只要中间导体旳两端温度相同, 热电偶回路总电动势不受中间导体接入旳影响。
《传感器实验指导》热电偶测温实验

《传感器实验指导》热电偶测温实验1.掌握热电偶的工作原理;2.掌握热电偶测温调理电路的工作原理;3.掌握热电偶冷端补偿的原理。
1.分析热电偶传感器测量电路的原理;2.连接传感器物理信号到电信号的转换电路;3.软件观测温度变化时输出信号的变化情况;4.记录实验波形数据并进行分析。
1.开放式传感器电路实验主板;2.热电偶温度测量模块;3.万用表、温度计;4.导线若干。
热电偶(Thermocouple)是根据热电效应测量温度的传感器,是温度测量仪表中常用的测温元件。
热电偶是工业上最常用的温度检测元件之一。
其优点是:(1)测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
(2)测量范围广。
常用的热电偶从0~+1800℃均可连续测量,某些特殊热电偶最低可测到0-2300℃如金铁镍铬和钨-铼。
(3)构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
热电偶一般由热电极、绝缘套管、保护套管和接线盒等几部分组成。
通常分为以下两种热电偶:(1)铠装式热电偶(缆式热电偶),此种热电偶是将热电极、绝缘材料连同保护管一起拉制成型,经焊接密封和装配等工艺制成的坚实的组合体。
(2)标准型热电偶,它具有互换性好、统一的分度表、配套的显示仪表。
图:热电偶热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect)。
两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。
根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。
热电势的大小只与热电偶导体材质以及两端温差有关,与热电偶导体的长度、直径无关。
在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。
热电偶温度传感器及发展趋向分析

热电偶温度传感器及发展趋向分析热电偶温度传感器是一种常用于测量温度的传感器,利用热电偶效应来测量物体的温度。
它由两种不同材料的金属丝组成,通过两种不同金属的接触产生热电势差,利用这个差异来测量温度。
热电偶温度传感器具有灵敏度高、响应速度快、结构简单、成本低廉等优点,因此在工业控制、航空航天、兵器制造、医疗仪器等领域得到广泛应用。
热电偶温度传感器的发展趋向可以从以下几个方面进行分析:一、技术发展趋势1. 微型化和集成化:随着微型化和集成化技术的不断发展,热电偶温度传感器也在不断向微型化和集成化方向发展。
微型化和集成化可以减小传感器的体积和重量,提高其在特定场合的适用性。
2. 多元化测量:传统的热电偶温度传感器只能测量温度,随着技术的不断进步,未来的热电偶温度传感器可能会实现多元化测量,比如测量湿度、压力等参数。
3. 高精度和高灵敏度:随着科技的进步,人们对传感器的精度和灵敏度要求越来越高。
未来的热电偶温度传感器可能会在精度和灵敏度上有所突破,以满足更加精细化的测量需求。
二、应用领域的拓展1. 医疗健康领域:随着人们对健康的关注不断增加,热电偶温度传感器在医疗健康领域的应用也将不断增加。
比如在医疗仪器、体温计等方面的应用,可能会有更多的创新。
2. 智能家居领域:随着智能家居的发展,人们对家居环境的监测需求也在不断增加。
热电偶温度传感器可能会成为智能家居系统中的重要组成部分,用于监测室内温度、湿度等参数。
3. 工业控制领域:工业控制是热电偶温度传感器的传统应用领域,随着工业自动化水平的不断提高,对传感器的要求也在不断增加。
在工业控制领域,热电偶温度传感器可能会实现更加精细化的测控。
三、发展瓶颈1. 技术难题:尽管热电偶温度传感器在很多领域得到广泛应用,但在一些特殊的环境条件下,比如高温、高压、腐蚀性气体等条件下,热电偶温度传感器的应用受到一定的限制。
2. 成本控制:虽然热电偶温度传感器的成本相对较低,但与其他温度传感器相比,它的成本仍然有一定的优化空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
eAB (T )
KT e
1n
NA NB
2021/2/12
e A B 热(T电0 )偶传K感eT器0 1n
N N
A B
6
温差电动势
同一导体的两端因其温度不同而产生的一种电动势。
机理:高温端的电子能量要比低温端的电子能量大,从 高温端跑到低温端的电子数比从低温端跑到高温端的要 多,结果高温端因失去电子而带正电,低温端因获得多 余的电子而带负电,在导体两端便形成温差电动势。
意义:
有助于检验两个热电极材料成分是否相同及材料的均匀 性。
2021/2/12
热电偶传感器
14
中间导体定律
在热电偶测温回路内,接入第三种导体时,只要第三 种导体的两端温度相同,则对回路的总热电势没有影响。
A
t
B (a)
t0 T
C
t0
A
B
t1
t0
B
C
t1
(b)
E A B C ( t ,t 0 ) E A B ( t ) E A B ( t 0 ) E A B ( t ,t 0 )
热电偶AB在接点温度为t、t0时的热电势eAB(t, t0)等于热 电偶AB在接点温度t、tc和tc、t0时的热电势eAB(t, tc)和
eAB(tc, t0)的代数和,即
eAB(t,t0)=eAB(t,tc)+eAB(tc,t0)
2021/2/12
热电偶传感器
17
A tc A(A)
t
t0
B tc B(B)
应用:利用热电偶进行测温,必须在回路中引入连接导
线和仪表,接入导线和仪表后不会影响回路中的热电势。
2021/2/12
热电偶传感器
15
测量仪表及引线作为第三种导体的热电偶回路
t0
A t0
C
t
B t0
C
AC t1 B t1 A C
t
(a)
(b)
2021/2/12
热电偶传感器
16
中间温度定律
在热电偶测温回路中,tc为热电极上某一点的温度,
ke(TT0)lnN NB ATT0(AB)dt
2021/2/12
热电偶传感器
8
T eAB (T )
A
eA (T ,T0 )
B
eB (T ,T0 )
T0 eAB (T0 )
热电偶回路中产生的总热电势
eAB(T, T0)=eAB(T)+ eA(T,T0) -eAB(T0)- eB(T,T0) 忽略温差电动势,热电偶的热电势可表示为:
2021/2/12
热电偶传感器
10
热电偶的分度表
不同金属组成的热电偶,温度与热电动势之间有 不同的函数关系,一般通过实验的方法来确定, 并将不同温度下测得的结果列成表格,编制出热 电势与温度的对照表,即分度表。
供查阅使用,每10℃分档 。中间值按内插法计算。
tMtLE EM H E EL L(tHtL)
eAB(t,t0)=eAB(t,tc)+eAB(tc,t0)
中间温度定律
2021/2/12
热电偶传感器
18
中间温度定律的应用
• 根据这个定律,可以连接与热电偶热电特性相近的导体
A′和B,将热电偶冷端延伸到温度恒定的地方,这就为热
电偶回路中应用补偿导线提供了理论依据。
•该定律是参考端温度计算修正法的理论依据。在实际热电 偶测温回路中, 利用热电偶这一性质, 可对参考端温度不为 0℃的热电势进行修正。
2.4 热电偶传感器
2021/2/12
热电偶传感器
1
基本要求和重点
掌握有关热电偶的基本概念 掌握热电偶传感器的基本工作原理 掌握热电偶的基本定律、基本类型、
温度补偿方法、使用热电偶的测温方 法 会使用分度表
2021/2/12
热电偶传感器
2
2.4.1 热电偶工作原理
1. 热电偶测温原理 2. 热电偶基本定律
e A B (T ,T 0 ) e A B (T ) e A B (T 0 ) q k 0(T T 0 )lnn n B A
热电势存在必须具备两个条件: 一、两种不同的金属材料组成热电偶, 二、它的两端存在温差。
2021/2/12
热电偶传感器
9
讨论
•影响因素取决于材料和接点温度,与形状、尺寸等无关
2021/2/12
热电偶传感器
11
S型(铂铑10-铂)热电偶分度表
2021/2/12
热电偶传感器
12
2. 热电偶基本定律
均质导体定律 中间导体定律 中间温度定律 标准电极定律
2021/2/12
热电偶传感器
13
均质导体定律
由两种均质导体组成的热电偶,其热电动势的大小只与 两材料及两接点温度有关,与热电偶的大小尺寸、形状 及沿电极各处的温度分布无关。即热电偶必须由两种不 同性质的均质材料构成。
2021/2/12
热电偶传感器
19
标准导体(电极)定律
t0
t0
t0
A
C
B
C
A
B
t
t
t
E A B ( t,t0 ) E A C ( t,t0 ) - E B C ( t,t0 )
•两热电极相同时,总电动势为0
•两接点温度相同时,总电动势为0
•对于已选定的热电偶,当参考端温度T0恒定时,eAB(T0)=c
为常数,则总的热电动势就只与温度T成单值函数关系,
即
E A B ( t ,t 0 ) f( t ) f( t 0 ) f( t ) C ( t )
可见:只要测出eAB(T,T0)的大小,就能得到 被测温度T,这就是利用热电偶测温的原理。
大小表示: e A ( T , T 0 )
eB (T ,T0 )
2021/2/12
热电偶传感器
T eAB (T )
A
eA (T ,T0 )
B
eB (T ,T0 )
T0 eAB (T0 )
热电偶回路中产生的总热电势
EA(BT,T0)eAB (T)eA(T,T0)eAB (T0)eB(T,T0)
[eA(BT)eAB (T0)][eA(T,T0)eB(T,T0)]
A
eA (T ,T0 )
B
eB (T ,T0 )
T0 eAB (T0 )
2021/2/12
热电偶传感器
5
接触电动势
含义:由于两种不同导体的自由电子 密度不同而在接触处形成的电动势。
EAB(T )
+-
A +- B
+-
nA nB
接触电动势的数值取决于两种不同导体的材料特性和接
触点的温度。
两接点的接触电动势eAB(T)和eAB(T0)可表示为
2021/2/12
热电偶传感器
3
1. 热电偶测温原理
热电效应:两种不同材料的导体(或半导体)组成一个闭 合回路,当两接点温度T和T0不同时,则在该回路中就会产 生电动势的现象。
热电势、热电偶、热电极 热端(测量端或工作端)、冷端(参考端或自由端)
2021/2/12
热电偶传感器
4
热电偶回路
T eAB (T )