matlab--算法大全--第04章__动态规划
动态规划求解方法的Matlab实现及应用

方法, 在工程技术、 科学管理、 工农业生产及军事等 领域都有广泛的应用。在理论上, 动态规划是求解 这类问题全局最优解的一种有效方法, 特别是对于 实际中的某些非线性规划问题可能是最优解的唯 一方法。然而, 动态规划仅仅是解决多阶段决策问 题的一种方法, 或者说是考查问题的一种途径, 而 不是一种具体的算法。就目前而言, 动态规划没有 统一的标准模型, 其解法也没有标准算法, 在实际 应用中, 需要具体问题具体分析。动态规划模型的 求解问题是影响动态规划理论和方法应用的关键 所在, 而子问题的求解和大量结果的存储、 调用更 是一个难点所在。然而, 随着计算机技术的快速发 展, 特别是内存容量和计算速度的增加, 使求解较
&
动态规划的基本模型
实际中, 要构造一个标准的动态规划模型, 通
常需要采用以下几个步骤: 把 !划分阶段 按照问题的时间或空间特征, 问题分为若干个阶段。这些阶段必须是有序的或 者是可排序的 (即无后向性) , 否则, 应用无效。 " 选择状态 将问题发展到各个阶段时所处
收稿日期: !""# $ "% $ &% 作者简介: 于
+
++,
求解方法的实践与应用
[,] 最佳组队问题
在文献 [,] 中的第 + 个问题: “确定最佳组队问 题, 即要求给出 ,- 名队员组成 . 个队的组队方案, 使整体竞赛水平最高, 并给出每个队的竞赛水平” 。 文献 [,] 建立了最佳组队的动态规划模型, 其 模型的基本方程以逆序形式给出, 即
阶段的
) 允许决策集合为 %( , 指标函数为 &( " #" % & ) " #" % & , 。当求解时, 由边界条件从 " ! & 开始, 由前向 $" )
基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划(Dynamic Programming)是一种用来求解多阶段最优化问题的方法,在许多领域中都得到了广泛的应用。
本文将介绍如何使用Matlab实现动态规划算法,并通过一个具体的应用案例来说明其使用方法和效果。
动态规划算法的基本思想是将一个问题分解成多个阶段,每个阶段的最优解可以通过前一阶段的最优解来计算得到。
具体实现时,需要定义一个状态转移方程来描述问题的阶段之间的关系,以及一个递推公式来计算每个阶段的最优解。
在Matlab中,可以使用矩阵来表示问题的状态和状态转移方程,使用循环结构来进行递推计算。
下面以求解最长递增子序列(Longest Increasing Subsequence)为例来说明动态规划算法在Matlab中的实现和应用。
最长递增子序列是一个经典的动态规划问题,给定一个序列,找出一个最长的子序列,使得子序列中的元素是递增的。
可以使用动态规划算法来求解该问题。
定义一个状态数组dp,其中dp(i)表示以第i个元素结尾的最长递增子序列的长度。
初始化dp数组为1,表示每个元素自身就是一个递增子序列。
然后,使用一个循环结构遍历序列的每个元素,计算以当前元素结尾的最长递增子序列的长度。
具体实现时,需要比较当前元素与之前的元素的关系,如果当前元素大于之前的元素,则可以将当前元素加入到之前的最长递增子序列中,并更新dp(i)为dp(j)+1,其中j为小于i的所有元素的位置。
遍历dp数组,找出其中的最大值,即为整个序列的最长递增子序列的长度。
下面是Matlab代码的实现:```matlabfunction LIS = LongestIncreasingSubsequence(nums)N = length(nums);dp = ones(1, N);for i = 1:Nfor j = 1:i-1if nums(i) > nums(j)dp(i) = max(dp(i), dp(j)+1);endendendLIS = max(dp);end```以上代码定义了一个函数LongestIncreasingSubsequence,输入参数为一个序列nums,输出结果为最长递增子序列的长度LIS。
基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划是一种解决多阶段决策过程的优化技术。
它的主要思想是将问题分成几个阶段,在每个阶段用一个状态来描述问题,然后找到在每个阶段中符合条件的最优状态值,以便决定在一个阶段结束的时候采取什么决策。
在Matlab中,可以非常方便地实现动态规划算法。
这里简要介绍一下基于Matlab的动态规划算法的实现及应用。
首先,我们需要定义状态转移方程。
状态转移方程是动态规划算法的核心,决定了如何从一个状态转移到另一个状态。
例如,我们要用动态规划算法求解一个背包问题,物品的重量为w1,w2,w3,w4,w5,物品的价值为v1,v2,v3,v4,v5,背包的容量为W。
那么状态转移方程可以定义如下:dp(i,j) = max(dp(i-1,j), dp(i-1,j-w(i))+v(i))其中dp(i,j)表示前i个物品放入容量为j的背包中所能得到的最大价值。
i表示物品的数量,j表示背包的容量。
w(i)表示第i个物品的重量,v(i)表示第i个物品的价值。
上式中的max表示在当前状态下,应该选择哪个状态值。
然后我们需要初始化第一个状态dp(1,j),当只考虑第1个物品时,dp(1, j)的值与w(1)和v(1)有关。
当物品数量为0时,dp(i, j)的值为0。
接下来,我们可以使用循环以及状态转移方程来计算出dp(i,j)的值,最终得到最优的解。
在Matlab中,可以利用循环完成状态转移方程的计算,例如:dp(1,:) = (w(1) <= j).*v(1);在上述代码中,利用循环计算每个状态的最大价值。
第一行是初始化第一个状态,即当只有一个物品的时候,dp(1, j)的值为v(1)或0。
第二行是循环计算后续状态的最大价值,根据状态转移方程进行计算。
在实际应用中,动态规划算法可以用于诸如最优路径规划、时间序列分析、机器学习等领域。
例如,在机器学习中,动态规划算法可以用于序列模型的预测和分类问题。
基于Matlab的动态规划程序实现

动态规划方法的Matlab 实现与应用动态规划(Dynamic Programming)是求解决策过程最优化的有效数学方法,它是根据“最优决策的任何截断仍是最优的”这最优性原理,通过将多阶段决策过程转化为一系列单段决策问题,然后从最后一段状态开始逆向递推到初始状态为止的一套最优化求解方法。
1.动态规划基本组成(1) 阶段 整个问题的解决可分为若干个阶段依次进行,描述阶段的变量称为阶段变量,记为k(2) 状态 状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过程的状况。
各阶段状态通常用状态变量描述,用k x 表示第k 阶段状态变量,n 个阶段决策过程有n+ 1个状态。
(3) 决策 从一确定的状态作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。
描述决策的变量称为决策变量,决策变量限制的取值范围称为允许决策集合。
用()k k u x 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数。
用()k k D x Dk(xk)表示k x 的允许决策的集合。
(4) 策略 每个阶段的决策按顺序组成的集合称为策略。
由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为{}11(),(),,()k k k k n n u x u x u x ++ 。
可供选择的策略的范围称为允许策略集合,允许策略集合中达到最优效果的策略称为最优策略。
从初始状态*11()x x =出发,过程按照最优策略和状态转移方程演变所经历的状态序列{}****121,,,,n n x x x x + 称为最优轨线。
(5) 状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第k+ 1阶段的状态变量1k x +也被完全确定。
用状态转移方程表示这种演变规律,记为1(,)k k k x T x u +=。
(6) 指标函数 指标函数是系统执行某一策略所产生结果的数量表示,是衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上,用()k k f x 表示。
基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划是一种常用的优化算法,可以在给定的约束条件下,求解具有最优解的问题。
它通过将原问题拆分成若干子问题,并保存子问题的解,从而避免重复计算,减少运算量,提高算法的效率。
在Matlab中,可以通过使用递归或迭代的方式来实现动态规划算法。
下面将介绍一种基于Matlab的动态规划算法的实现及应用。
我们需要确定问题的状态,即在求解过程中需要保存的信息。
然后,定义状态转移方程,即问题的解与其子问题的解之间的关系。
确定边界条件,即问题的基本解。
以求解斐波那契数列为例,斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2) (n>=2)我们可以使用动态规划算法来求解斐波那契数列。
定义一个数组dp,用来保存每个子问题的解。
然后,通过迭代的方式,计算从小到大的每个子问题的解,直到得到问题的最优解。
在Matlab中,可以使用以下代码实现动态规划算法求解斐波那契数列:```matlabfunction [result] = Fibonacci(n)% 初始化数组dpdp = zeros(1, n+1);% 定义边界条件dp(1) = 0;dp(2) = 1;% 迭代计算每个子问题的解for i = 3:n+1dp(i) = dp(i-1) + dp(i-2);end% 返回问题的最优解result = dp(n+1);end```运行以上代码,输入一个整数n,即可求解斐波那契数列的第n项。
除了求解斐波那契数列,动态规划算法还可以应用于其他许多领域,如路径规划、背包问题等。
在路径规划中,我们可以使用动态规划算法来求解最短路径或最优路径;在背包问题中,我们可以使用动态规划算法来求解能够装入背包的最大价值。
动态规划算法是一种强大的优化算法,在Matlab中的实现也相对简单。
通过定义问题的状态、状态转移方程和边界条件,我们可以使用动态规划算法来求解各种不同类型的问题。
基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划算法是解决许多计算问题的有效方法,它可以用于组合优化、资源分配和时间序列分析等方面。
Matlab是一种高级计算软件,提供了许多内置函数,使得动态规划算法的实现变得简单。
一、动态规划算法的基本思想动态规划算法是一种优化技术,可以用于解决一些复杂的计算问题。
它的基本思想是把一个大问题分解成一系列子问题,通过解决子问题得到整体的最优解。
在动态规划算法中,通常使用递推式来描述问题的最优解。
在Matlab中,动态规划算法的实现通常包括以下几个步骤:1.定义状态变量:根据问题的特性,定义一组状态变量,用于描述问题的状态。
2.制定状态转移方程:根据问题的条件和规则,制定一组状态转移方程,用于计算问题的最优解。
3.构建转移矩阵:将状态转移方程转化为矩阵形式,便于计算和优化。
4.初始化状态变量:将初始状态赋值给状态变量,用于递推计算。
5.递推计算:根据状态转移矩阵和当前状态,计算下一时刻状态的值,直到达到目标状态。
6.输出最优解:输出最终状态对应的最优解。
三、应用实例1.背包问题背包问题是一种组合优化问题,目标是在给定的一组限制条件下,尽可能地装满容量限制的背包。
动态规划算法可以有效解决背包问题。
function [optx,optf]=knapsack(w,v,c)%w:物品的重量; v:物品的价值; c:背包容量%optx:最优解; optf:最优解对应的函数值n=length(w); %物品数量f=zeros(n+1,c+1); %状态变量fx=zeros(1,n); %物品的选择变量xfor i=1:nfor j=1:cif j<w(i) %背包容量不足的情况f(i+1,j)=f(i,j);else %背包容量足够的情况f(i+1,j)=max(f(i,j),f(i,j-w(i))+v(i));endendendoptf=f(n+1,c); %最优解j=c; %从后往前寻找物品for i=n:-1:1if f(i+1,j)>f(i,j)x(i)=1;j=j-w(i);endendoptx=x; %最优解2.最长公共子序列问题最长公共子序列问题是一种字符串匹配问题,目标是在两个字符串中找到最长的公共连续子序列。
《动态规划MATLab》课件

寻找最优子结构
将问题拆分为多个子问题,并定义子问 题之间的关系。
初始条件与边界条件定义
确定初始条件和边界条件,为求解过程 提供基础。
动态规划常见问题
1 背包问题
在给定容量和价值的情况 下,选择合适的物品放入 背包,使得背包中物品的 总价值最大化。
2 最长公共子序列
3 最长上升子序列
在给定两个序列的情况下, 找到它们之间最长的公共 子序列。
《动态规划MATLab》 PPT课件
这个《动态规划MATLab》PPT课件将帮您深入了解动态规划算法及其在 MATLab中的应用。通过丰富的示例和清晰的代码演示,您将掌握动态规划求 解问题的步骤和常见方法。
什么是动态规划
定义
动态规划是一种用于解决最优化问题的算法思想,通过将问题拆分为多个子问题并保存已计 算的中间结果,以减少重复计算的次数。
在给定序列的情况下,找 到其中最长的上升子序列。
MATLab介绍
基本语法
MATLab具有简洁而灵活的 语法,易于学习和使用。
数组与矩阵操作
MATLab提供了丰富的数组 和矩阵操作函数,方便快捷 地处理数据。
函数与脚本文件
MATLab支持函数和脚本文 件的编写与调用,使程序逻 辑更加结构化。
使用MATLab进行动态规划问题求解
1
用MATLab实现背包问题
通过MATLab编写代码,解决背包问题,得出最优解。
2
用MATLab实现最长公共子序列
利用MATLab函数,找到两个序列之间的最长公共子序列。
3
用MATLab实现最长上升子序列
使用MATLab算法,求解给定序列的最长上升子序列。
总结
动态规划思想及其应用
基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划算法是一种解决多阶段决策问题的优化方法,它可以在每个阶段选择最优决策,并且在各个阶段间保持最优子结构,从而达到整体最优的目的。
在实际应用中,动态规划算法被广泛用于求解优化问题、路径规划、资源分配等方面。
本文将介绍基于Matlab 的动态规划算法的实现及应用,并深入探讨其在实际问题中的应用。
一、动态规划算法的基本原理动态规划算法的基本原理是通过将问题分解为子问题,并计算每个子问题的最优解,然后存储下来以供后续使用。
最终得到整体最优解。
动态规划算法通常包括以下几个步骤:1. 确定状态和状态转移方程:首先需要确定问题的状态,然后建立状态之间的转移关系,也就是状态转移方程。
状态转移方程描述了问题的子问题之间的关系,是动态规划算法的核心。
2. 初始化:初始化动态规划数组,将初始状态下的值填入数组中。
3. 状态转移:利用状态转移方程计算出各个阶段的最优解,并将其存储在动态规划数组中。
4. 求解最优解:根据动态规划数组中存储的各个阶段的最优解,可以得到整体最优解。
Matlab是一种强大的计算软件,具有丰富的数值计算函数和可视化工具,非常适合实现动态规划算法。
下面以一个简单的背包问题为例,介绍如何在Matlab中实现动态规划算法。
假设有n件物品,每件物品的重量为w[i],价值为v[i]。
现在有一个容量为C的背包,问如何选择物品放入背包,使得背包中物品的总价值最大。
我们需要确定问题的状态和状态转移方程。
在这个问题中,我们可以定义状态dp[i][j]表示在前i件物品中选择若干个放入容量为j的背包中所能获得的最大价值。
状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])然后,我们可以利用Matlab实现这个动态规划算法,代码如下:```matlabfunction max_value = knapsack(w, v, C)n = length(w);dp = zeros(n+1, C+1);for i = 1:nfor j = 1:Cif j >= w(i)dp(i+1,j+1) = max(dp(i,j+1), dp(i,j-w(i)+1)+v(i));elsedp(i+1,j+1) = dp(i,j+1);endendendmax_value = dp(n+1,C+1);end```三、动态规划算法在实际问题中的应用动态规划算法在实际问题中有着广泛的应用,下面以路径规划问题为例,介绍动态规划算法的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推至 k = 1,故这种解法称为逆序解法。当然,对某些动态规划问题,也可采用顺序解
法。这时,状态转移方程和递归方程分别为:
xk = Tkr (xk+1, uk ), k = 1,L, n
,
⎪⎧ f0 (x1)= 0或1
⎨ ⎪⎩
f
k
(
xk
+1
)
=
opt {vk (xk+1, uk ) ⊗
uk
∈U
r k
数由 v j ( j = 1,2,L, n) 组成,常见的形式有:
阶段指标之和,即
n
∑ Vk,n (xk , uk , xk+1,L, xn+1 ) = v j (x j , u j ) , j=k
阶段指标之积,即
n
∏ Vk,n (xk , uk , xk+1,L, xn+1 ) = v j (x j , u j ) , j=k
G ,或定义为1 ,即 x7 = 1 。
根据过程演变的具体情况,状态变量可以是离散的或连续的。为了计算的方便有时 将连续变量离散化;为了分析的方便有时又将离散变量视为连续的。
状态变量简称为状态。 2.1.3 决策 当一个阶段的状态确定后,可以作出各种选择从而演变到下一阶段的某个状态,这 种选择手段称为决策(decision),在最优控制问题中也称为控制(control)。 描述决策的变量称决策变量(decision variable),变量允许取值的范围称允许决策
决策变量简称决策。 2.1.4 策略
决策组成的序列称为策略(policy)。由初始状态 x1 开始的全过程的策略记作 p1n ( x1 ) ,即
p1n ( x1 ) = {u1( x1 ),u2 ( x2 ),L,un ( xn )} . 由第 k 阶段的状态 xk 开始到终止状态的后部子过程的策略记作 pkn ( xk ) ,即
数应具有可分离性,即Vk,n 可表为 xk , uk ,Vk+1, n 的函数,记为
Vk,n (xk , uk , xk+1 ,L, xn+1 ) = ϕk (xk , uk ,Vk+1,n (xk +1 , uk+1 ,L, xn+1 ))
并且函数ϕk 对于变量Vk+1, n 是严格单调的。
过程在第 j 阶段的阶段指标取决于状态 x j 和决策 u j ,用 v j ( x j , u j ) 表示。指标函
集合(set of admissible decisions)。用 uk ( xk ) 表示第 k 阶段处于状态 xk 时的决策变量,
它是 xk 的函数,用Uk ( xk ) 表示 xk 的允许决策集合。在例 1 中 u2 (B1 ) 可取 C1,C2 或 C3 ,
可记作 u2 (1) = 1,2,3 ,而U2 (1) = {1,2,3} 。
+1
(
xk
+1
)
f k−1 (xk )}, k
= 1,L, n
例 3 用 lingo 求解例 1 最短路线问题。
model:
Title Dynamic Programming;
sets:
vertex/A,B1,B2,C1,C2,C3,C4,D1,D2,D3,E1,E2,E3,F1,F2,G/:L;
road(vertex,vertex)/A B1,A B2,B1 C1,B1 C2,B1 c3,B2 C2,B2 C3,B2 C4,
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广 泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动 态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时 间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为 多阶段决策过程,也可以用动态规划方法方便地求解。
C1 D1,C1 D2,C2 D1,C2 D2,C3 D2,C3 D3,C4 D2,C4 D3,
D1 E1,D1 E2,D2 E2,D2 E3,D3 E2,D3 E3,
E1 F1,E1 F2,E2 F1,E2 F2,E3 F1,E3 F2,F1 G,F2 G/:D;
endsets
data:
D=5 3 1 3 6 8 7 6
§2 基本概念、基本方程和计算方法 2.1 动态规划的基本概念和基本方程 一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。 2.1.1 阶段 阶段(step)是对整个过程的自然划分。通常根据时间顺序或空间顺序特征来划分阶
段,以便按阶段的次序解优化问题。阶段变量一般用 k = 1,2,L, n 表示。在例 1 中由 A 出发为 k = 1,由 Bi (i = 1,2) 出发为 k = 2 ,依此下去从 Fi (i = 1,2) 出发为 k = 6 ,共 n = 6 个阶段。在例 2 中按照第一、二、三、四季度分为 k = 1,2,3,4 ,共四个阶段。
阶段指标之极大(或极小),即
Vk ,n
(xk
,uk
,
xk+1 ,L,
xn+1 )
=
max(min)v
k≤ j≤n
j
(x
j
,u
j
)
.
这些形式下第 k 到第 j 阶段子过程的指标函数为Vk, j (xk , uk ,L, x j+1 ) 。
根据状态转移方程指标函数 Vk,n 还可以表示为状态 xk 和策略 pkn 的函数,即
pkn ( xk ) = {uk ( xk ),L,un ( xn )} , k = 1,2,L, n − 1. 类似地,由第 k 到第 j 阶段的子过程的策略记作
-57-
pkj ( xk ) = {uk ( xk ),L,u j ( x j )}.
可供选择的策略有一定的范围,称为允许策略集合(set of admissible policies),用
2.1.2 状态 状态(state)表示每个阶段开始时过程所处的自然状况。它应能描述过程的特征并 且无后效性,即当某阶段的状态变量给定时,这个阶段以后过程的演变与该阶段以前各 阶段的状态无关。通常还要求状态是直接或间接可以观测的。 描述状态的变量称状态变量(state variable)。变量允许取值的范围称允许状态集合
先建立起动态规划的数学模型:
(i)将过程划分成恰当的阶段。
(ii)正确选择状态变量 xk ,使它既能描述过程的状态,又满足无后效性,同时确
定允许状态集合 X k 。
(iii)选择决策变量 uk ,确定允许决策集合Uk ( xk ) 。
(iv)写出状态转移方程。
(v)确定阶段指标 vk ( xk ,uk ) 及指标函数Vkn 的形式(阶段指标之和,阶段指标之
(1)
在例 1 中状态转移方程为 xk +1 = uk ( xk ) 。
2.1.6. 指标函数和最优值函数 指标函数(objective function)是衡量过程优劣的数量指标,它是定义在全过程和所有
后部子过程上的数量函数,用Vk,n (xk , uk , xk+1,L, xn+1 ) 表示, k = 1,2,L, n 。指标函
=
n,L,1
(2)
在上述方程中,当 ⊗ 为加法时取 fn+1(xn+1) = 0 ;当 ⊗ 为乘法时,取 fn+1(xn+1) = 1。动
态规划递归方程是动态规划的最优性原理的基础,即:最优策略的子策略,构成最优子
策略。用状态转移方程(1)和递归方程(2)求解动态规划的过程,是由 k = n + 1 逆
2.1.7 最优策略和最优轨线
使指标函数 Vk,n 达到最优值的策略是从 k 开始的后部子过程的最优策略,记作
pk*n = {uk* ,L, un*}。 p1*n 是全过程的最优策略,简称最优策略(optimal policy)。从初始
状 态 x1(= x1* ) 出 发 , 过 程 按 照 p1*n 和 状 态 转 移 方 程 演 变 所 经 历 的 状 态 序 列
应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是 一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数 学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习 时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的 技巧去求解。
{x1*
,
x2*
,L,
x* n +1
}
称最优轨线(optimal
trajectory)。
-58-
2.1.8 递归方程 如下方程称为递归方程
⎪⎧ fn+1( xn+1 ) = 0或1
⎨ ⎪⎩
fk (xk )
=
opt {vk ( xk , uk ) ⊗
uk ∈U k ( xk )
f k +1 ( xk +1 )}, k
(set of admissible states)。用 xk 表示第 k 阶段的状态变量,它可以是一个数或一个向量。
用 X k 表示第 k 阶段的允许状态集合。在例 1 中 x2 可取 B1, B2 ,或将 Bi 定义为
i(i = 1,2) ,则 x2 = 1 或 2 ,而 X 2 = {1,2} 。 n 个阶段的决策过程有 n + 1 个状态变量,xn+1 表示 xn 演变的结果。在例 1 中 x7 取
例 1 最短路线问题
图 1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由 A 到 G 距离最短(或费用最省)的路线。