第13讲 二次函数(二)

合集下载

二次函数的应用(2)——抛物线型问题

二次函数的应用(2)——抛物线型问题

∴水面宽度将增加 2 6 4米.
8.如图,隧道横截面为抛物线,其最大高度为 6 米,OM 为 12 米.
(1)求这条抛物线的解析式; (2)若在隧道 C,D 处装两个路灯,且路灯的高度为 4 米,求 C, D 之间的距离.
解:(1)由题意,得 M 12,0,P6,6
设抛物线的解析式为 y a x 62 6
设抛物线的解析式为 y a x 2 x 2
∵过点C(0,2)
∴2=a0 20 2
,a 1
2Байду номын сангаас
∴抛物线的解析式为y 1 x 2 x 2 ,即 y 1 x2 2
2
2
(2)由题意,得 1= 1 x2 2
2
解得 x1 6,x2 6
(1)求这条抛物线的函数关系式; (2)水池的半径至少要多少米,才能使喷出的水流不落在池 外?
(1)顶点 A1, 4
设抛物线的函数关系式为 y a x 12 4
∵过(0,3) ∴ 3=a 0 12 4 ∴ a 1
∴抛物线的函数关系式为 y x 12 4
PPT课程
主讲老师:
全一册下
第二章 二次函数
第13课 二次函数的应用(2)——抛物线型问题
一、知识储备
1.求抛物线 y=x2-8x 与 x 轴的交点坐标. 解:令 y 0 ,得 0=x2 8x 解得 x1 0,x2 8
∴该抛物线与x轴的交点坐标为0,0,8,0
2.抛物线的顶点为(6,3)且过点(0,0),求它的解析式.
(2)当 x=9 y=-112(9-6)2+3=2.25<2.5 ∴射中球门
5.(例 2)如图,铅球在 A 点被推出,出手时球离地面 1 米, 铅球飞行轨迹是抛物线,当铅球飞行的水平距离为 4 米时达到最高 点 B,最高点离地面 3 米.

2020数学中考备考-第13讲 二次函数(二)

2020数学中考备考-第13讲 二次函数(二)

第13讲二次函数(二)(参考用时:60分钟)A层(基础)1.(2019岳阳)对于一个函数,当自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1,x2,且x1<1<x2,则c的取值范围是( B )(A)c<-3 (B)c<-2(C)c< (D)c<1解析:由题意知x1,x2是方程x2+2x+c=x的两个实数根,且x1<1<x2,整理,得x2+x+c=0,则解得c<-2,故选B.2.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是( B )(A)-1<x<4(B)-1<x<3(C)x<-1或x>4(D)x<-1或x>3解析:由图象知,抛物线与x轴交于(-1,0),对称轴为直线x=1,∴抛物线与x轴的另一交点坐标为(3,0),∵y<0时,函数的图象位于x轴的下方,∴-1<x<3.故选B.3.运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20 m;②足球飞行路线的对称轴是直线t=;③足球被踢出9.5 s时落地:④足球被踢出7.5 s时,距离地面的高度是11.25 m,其中不正确结论的个数是( B ) (A)1 (B)2 (C)3 (D)4解析:设该抛物线的解析式为h=at2+bt+c,将(0,0),(1,8),(2,14)代入,得解得∴h=-t2+9t=-(t-)2+,∴当t=时,h取得最大值,此时h=,故①错误;该抛物线的对称轴是直线t=,故②正确;当h=0时,得t=0或t=9,故③错误;当t=7.5时,h=-t2+9t=11.25,故④正确.综上可得,不正确的是①③.故选B.4.如图,二次函数y=-x2-2x的图象与x轴交于点A,O,在抛物线上有一点P,满足S△AOP=3,则点P的坐标是( D )(A)(-3,-3)(B)(1,-3)(C)(-3,-3)或(-3,1)(D)(-3,-3)或(1,-3)解析:令y=0,得-x2-2x=0,解得x=0,x=-2.∴A(-2,0),OA=2.∵S△AOP=OA·|y P|=3.∴|y P|=3.当y P=3时,-x2-2x=3,x2+2x+3=0,Δ=4-12<0,方程无解,此种情况不成立;当y P=-3时,-x2-2x=-3,x2+2x-3=0,解得x=1或x=-3,∴点P的坐标为(1,-3)或(-3,-3).故选D.5.(2019天津)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x 与函数值y的部分对应值如下表:且当x=-时,与其对应的函数值y>0.有下列结论:①abc>0;②-2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<.其中正确结论的个数是( C )(A)0 (B)1 (C)2 (D)3解析:当x=0时,c=-2,当x=1时,a+b-2=-2,∴a+b=0,∴y=ax2-ax-2,∴abc=2a2>0,故①正确;由表知直线x=是对称轴,当x=-2时,y=t,∴当x=3时,y=t,∴-2和3是关于x的方程ax2+bx+c=t的两个根,故②正确;把x=-1代入,得m=a+a-2=2a-2,把x=2代入,得n=4a-2a-2=2a-2,∴m=n=2a-2,∴m+n=4a-4,∵当x=-时,y=a-b+c=a+a-2=a-2>0,解得a>,∴m+n>4×-4=,故③错误,∴正确结论是①②,共2个,故选C.6.(2019武汉)抛物线y=ax2+bx+c经过A(-3,0),B(4,0)两点,则关于x 的一元二次方程a(x-1)2+c=b-bx的解是x1=-2,x2=5 .解析:由a(x-1)2+c=b-bx得a(x-1)2+b(x-1)+c=0,把抛物线y=ax2+bx+c沿x轴向右平移1个单位得到y=a(x-1)2+b(x-1)+c,∵抛物线y=ax2+bx+c经过点A(-3,0),B(4,0),∴抛物线y=a(x-1)2+b(x-1)+c与x轴的两交点坐标为(-2,0),(5,0), ∴一元二次方程a(x-1)2+b(x-1)+c=0的解为x1=-2,x2=5.7.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是-2 .解析:∵四边形ABOC是正方形,∴点B的坐标为(-,-).∵抛物线y=ax2过点B,∴-=a(-)2,解得b1=0(舍去),b2=-2.即b的值为-2.8.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D 同时出发,均以1 cm/s的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为 3 s时,四边形EFGH的面积最小,其最小值是18 cm2.解:设运动时间为t s(0≤t≤6),则AE=t,AH=6-t,根据题意,得S四边形EFGH=S正方形ABCD-4S△AEH=6×6-4×t(6-t)=2t2-12t+36= 2(t-3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18 cm2.9.已知直线l:y=kx+1与抛物线y=x2-4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,点O为原点,当k=-2时,求△OAB的面积.(1)证明:联立化简可得x2-(4+k)x-1=0,∵Δ=(4+k)2+4>0恒成立,∴直线l与该抛物线总有两个交点.(2)解:当k=-2时,y=-2x+1,如图,过点A作AF⊥x轴于点F,过点B作BE⊥x轴于点E,∴联立解得或∴点A的坐标为(1-,2-1),点B的坐标为(1+,-1-2),∴AF=2-1,BE=1+2.∵直线y=-2x+1与x轴的交点C的坐标为(,0),∴OC=,∴S△AOB=S△AOC+S△BOC=OC·AF+OC·BE=OC·(AF+BE)=××(2-1+1+2)=.10.(2019青岛)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数解析式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?解:(1)设销售量y与销售单价x之间的函数解析式为y=kx+b,将点(30,100),(45,70)分别代入,得解得故该商品每天的销售量y与销售单价x之间的函数解析式为y=-2x+160.(2)由题意,得w=(x-30)(-2x+160)=-2x2+220x-4 800=-2(x-55)2+ 1 250,∵-2<0,故当x<55时,w随x的增大而增大,∵30≤x≤50,∴当x=50时,w有最大值,最大值为w=1 200,故销售单价定为50元时,该商店销售该商品每天的利润最大,最大利润为1 200元.(3)由题意,得-2(x-55)2+1 250≥800,解得40≤x≤70,∵y=-2x+160,∴当x=70时,y取得最小值,最小值是y=-2×70+160=20,∴每天的销售量最少应为20件.B层(能力)11.已知二次函数y=-x2+x+6及一次函数y=-x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=-x+m与新图象有4个交点时,m的取值范围是( D )(A)-<m<3 (B)-<m<2(C)-2<m<3 (D)-6<m<-2解析:如图,当y=0时,-x2+x+6=0,解得x1=-2,x2=3,则A(-2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x-3),即y=x2-x-6(-2≤x≤3),当直线y=-x+m经过点A(-2,0)时,2+m=0,解得m=-2;当直线y=-x+m与抛物线y=x2-x-6(-2≤x≤3)有唯一公共点时,方程x2-x-6=-x+m有两个相等的实数解,解得m=-6,∴当直线y=-x+m与新图象有4个交点时,m的取值范围为-6<m<-2.故选D.12.(2019衡阳)在平面直角坐标系中,抛物线y=x2如图所示.已知A点的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2 019的坐标为(-1 010,1 0102) .解析:∵点A的坐标为(1,1),∴直线OA为y=x,点A1的坐标为(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,则解得∴点A2的坐标为(2,4),∴点A3的坐标为(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,则解得∴点A4的坐标为(3,9),∴点A5的坐标为(-3,9)…,∴其规律为A2(n-1)(n,n2),A2n-1(-n,n2),∴A2 019的坐标为(-1 010,1 0102),13.图中是抛物线形拱桥,P处有一照明灯,水面OA宽4 m,从O,A两处观测P处,仰角分别为α,β,且tan α=,tan β=,以O为原点,OA 所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1 m,水面宽多少?(取1.41,结果精确到0.1 m)解:(1)过点P作PH⊥OA于点H,如图.设PH=3x,在Rt△OHP中,∵tan α==,∴OH=6x.在Rt△AHP中,∵tan β==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=.∴OH=3,PH=.∴点P的坐标为(3,).(2)若水面上升1 m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x-4), ∵P(3,)在抛物线y=ax(x-4)上,∴3a(3-4)=,解得a=-.∴抛物线的解析式为y=-x(x-4).当y=1时,-x(x-4)=1,解得x 1=2+,x2=2-.∴BC=(2+)-(2-)=2≈2×1.41=2.82≈2.8(m).答:水面上升1 m,水面宽约为2.8 m.。

二次函数及其图象和性质

二次函数及其图象和性质

二次函数及其图象和性质(二)一、内容提要(一)二次函数的解析式:1.一般式:y=ax2+bx+c;其中a≠0, a, b, c 为常数2.顶点式:y=a(x-h)2+k;其中a≠0, a, h, k 为常数,(h,k)为顶点坐标。

3.交点式:y=a(x-x1)(x-x2);其中a≠0, a, x1,x2为常数,x1,x2是抛物线与横轴两交点的横坐标。

注:这种形式可以作为了解内容,重点是前两种。

(二)二次函数的图象:抛物线(三)性质:1.对称轴,顶点坐标:2.开口方向:a>0, 抛物线开口向上,并向上无限延伸。

a<0, 抛物线开口向下,并向下无限延伸。

3.增减性:(Ⅰ)a>0时,当x时,y随x增大而减少当x>时,y随x增大而增大(Ⅱ)a<0时,当x时,y随x增大而增大当x>时,y随x增大而减小4.最值:(Ⅰ)a>0时,当x=时,(Ⅱ)a<0时,当x= 时,5.抛物线与y轴交点坐标:(0,C)特别地当C=0时,抛物线过原点,反之也成立。

6.抛物线与x轴的位置关系:(Ⅰ)Δ=b2-4ac<0,抛物线与x轴无交点。

(Ⅱ)Δ=b2-4ac=0,抛物线与x轴只有一个交点,交点坐标为(,0)(Ⅲ)Δ=b2-4ac>0,抛物线与x轴有两个交点,交点坐标为(,0)二、典型例题:例1.已知+3x+6是二次函数,求m的值,并判断此抛物线开口方向,写出顶点坐标及对称轴。

解:由题意得解得 m=-1∴y=-3x2+3x+6=,开口向下,顶点坐标(),对称轴x=。

说明:在y=a(x-h)2+k中,(h,k)是抛物线的顶点坐标,所以一般求抛物线的顶点坐标时,常常利用配方法把解析式转化为上述表达形式,直接写出顶点坐标,对称轴方程,也可以用顶点坐标公式()求得,解题时可根据系数的情况选择适当的方法。

例2.已知抛物线y=ax2+bx+c 如图所示,直线x=-1是其对称轴,(1)确定a,b,c, Δ=b2-4a c的符号,(2)求证:a-b+c>0, (3)当x取何值时,y>0, 当x取何值时y<0。

【精品】2020中考数学考点举一反三讲练第13讲 二次函数及其应用 (学生版)

【精品】2020中考数学考点举一反三讲练第13讲  二次函数及其应用    (学生版)

第13讲 二次函数及其应用一、考点知识梳理【考点1 二次函数的图像及性质】1.二次函数的概念:一般地,如果两个变量x 和y 之间的函数关系,可以表示成y =ax 2+bx +c(a ,b ,c 是常数,且a ≠0),那么称y 是x 的二次函数,其中,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项. 2.三种表示方法:(1)一般式:y =ax 2+bx +c(a ≠0);(2)顶点式:y =a(x -h)2+k(a ≠0),其中二次函数的顶点坐标是(h ,k);(3)交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1,x 2为抛物线与x 轴交点的横坐标. 3.三种表达式之间的关系 顶点式――→确定一般式――→因式分解两点式 4.图像性质二次函数y =ax 2+bx +c(a ,b ,c 为常数,a ≠0)a >0时开口向上, 对称轴:直线x =-b 2a ,顶点坐标:⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a ,增减性:在对称轴的左侧,即x <-b 2a 时,y 随x 的增大而减小;在对称轴的右侧,即当x >-b2a 时,y 随x 的增大而增大,简记为“左减右增”a <0时开口向下,对称轴:直线x =-b 2a ,顶点坐标:⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a ,增减性:在对称轴的左侧,即当x <-b 2a 时,y 随x 的增大而增大;在对称轴的右侧,即当x >-b2a 时,y 随x 的增大而减小,简记为“左增右减”【考点2 二次函数的实际应用】1.二次函数的实际应用为每年的必考点,题型多为选择、解答题,有以下两种常考类型:(1)单纯二次函数的实际应用;(2)与一次函数结合的实际应用.2.出题形式有三种:(1)以某种产品的销售为背景;(2)以公司的工作业绩为背景;(3)以某公司装修所需材料为背景.3.设问方式主要有:(1)列函数关系式并求值;(2)求最优解;(3)求最大利润及利润最大时自变量的值;(4)求最小值;(5)选择最优方案.【考点3 二次函数的图像与方程的关系】二次函数与一元二次方程的关系:1.当抛物线与x轴有两个交点时,两交点的横坐标就是对应的一元二次方程的两个不相等的实数根.2.当抛物线与x轴只有一个交点时,该交点的横坐标就是对应的一元二次方程的两个相等的实数根.3.当抛物线与x轴没有交点时,对应的一元二次方程无实数根.【考点4 二次函数的图像与几何图形的关系】1.平移:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.平移步骤:(1)将抛物线表达式转化为顶点式y=a(x-h)2+k,确定其顶点坐标;(2)保持抛物线的形状不变,平移顶点坐标(h,k)即可.2.二次函数与几何图形的面积问题,是最常见的数形结合问题,首先要根据题意画出草图,结合图形分析其中的几何图形的特点,再求出面积等相关数据.【考点5 二次函数的图像其它函数的关系】二次函数与一次函数、二次函数与反比例函数、两个二次函数之间的关系是近几年中考的常考题型,需要把每个函数的性质了解清楚,点的坐标适合每个函数的表达式,然后再结合图像特点,总结规律。

第13讲:二次函数

第13讲:二次函数

I定义 : 如 . 形 的函数叫二次 函数. 2 图象 : . 二次 函数 的图象是 , 它是 轴
对称图形 , 对称轴是 3 二 次 函数 解 析 式 的形 式 有 : .
() 般式 : 1一 —n + +ca ) ( ≠O

( ) 点式 : 2顶 —a z一 )+ k n 0 , 点 为 ( , ( 。 (≠ )顶 ^
轴 交 于 点 B, S mB 6 且 △ 一 . ( ) 点 A 与点 B 的 坐 标 ; 1求
图 2
篓 ⑩

() 2 求此二次雨数 的解析式 ; () 3 如果 点 P在 轴上 , AAB 且 P是 等腰 三 角
形, 求点 P 的坐 标 . (0 8 枣 庄 ) 20 , 是
物线 的解 析 式 不 易 出错 ; 常见 的错误是 利用 函数图象 直接写 出不等式解 集 , 以为 是 1 误 <
< 3 这 是 不 会 看 图 所 致 . 际 , 实


上不等式 的解集 是抛物线 高于
直 线 的部 分 , : 1 x 3 即 < 或 > .
( 一1 +4的 图象 与 轴交 于点 A, ) 与 轴的负 半

鱼 于 点 E 交 BDT/ XC.

比例 函数 y k( >0 的图象 = 忌 )
上, 过点 M 作 ME上 Y轴 , 点 过 ~ 作 NF l 轴 , 足 分 别 为 _ 垂
图 8
、。 \ F \
图 9 2 —
() 1 若点 D 坐标 是 ( , ) 一8 O ,
图9 3 —
第1 3讲
J 厂 …. 一
二 次 函数
() 3对称轴 : () 大( ) : 4最 小 值 Y随 增大而 而 大而

二次函数函数及其图象

二次函数函数及其图象
第13讲┃ 二次函数的图象与性质
12.二次函数 y=ax2+bx+c(a≠0)的图象如图 13-5 所示,根据 图象解答下列问题:
(1)写出方程 ax2+bx+c=0 的两个根; (2)写出不等式 ax2+bx+c>0 的解集; (3)写出 y 随 x 的增大而减小的自变量 x 的取值范围; (4)若方程 ax2+bx+c=k 有两个不相等的实数根,求 k 的取值范 围.
┃考点自主梳理与热身反馈 ┃ 考点1 二次函数的定义
二次函数 的定义
二次函数的 自变量的取
值范围
形如y=ax2+bx+c(a,b,c都是常数,且 a__≠__0__)
一般的二次函数自变量的取值范围是全体实数, 而特殊的实际应用中的二次函数除外
第13讲┃ 二次函数的图象与性质
1.若二次函数 y=x2+2x-7 的函数值为 8,则对应的 x 的值是
第13讲┃ 二次函数的图象与性质
9.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B 的坐标为(4,0),点C在y轴正半轴上,且AB=OC.
(1)求C的坐标; (2)求二次函数的解析式,并求出函数最大值.
图13-2
第13讲┃ 二次函数的图象与性质
解:(1)∵A(-1,0),B(4,0), ∴AO=1,OB=4, AB=AO+OB=1+4=5, ∴OC=5,即点C的坐标为(0,5);
图 13-3
[解析] ∵抛物线与x轴的一个交点为(3,0),而对称轴为x=1, ∴抛物线与x轴的另一交点是(-1,0).
当y=ax2+bx+c>0时,图象在x轴上方,此时x<-1或x>3.
第13讲┃ 二次函数的图象与性质
11.如图 13-4,二次函数 y=ax2+bx+c 的图象开 口向上,图象经过点(-1,2)和点(1,0),且与 y 轴交 于负半轴,给出下面四个结论:①abc<0;②2a+b> 0;③a+c=1;④b2-4ac>0.其中正确结论的序号是 ___②__③__④_.(请将正确结论的序号都填上)

冀教版中考数学《第13讲二次函数的应用》知识梳理

冀教版中考数学《第13讲二次函数的应用》知识梳理

第1页 共1页
第13讲 二次函数的应用
若题目中未给出坐标系,则需要建立坐标系求解,建立的原则:①所建立的坐标系要使求出的二次函数表达式比较简单;②使已知点所在的位置适当(如在x 轴,y 轴、原点、抛物线上等),方便求二次函数丶表达式和之后的计算求解.
① 据题意,结合函数图象求出函数解析式; ②确定自变量的取值范围;
③根据图象,结合所求解析式解决问题.
① 分析问题中的数量关系,列出函数关系式; ② 研究自变量的取值范围; ③ 确定所得的函数;
④ 检验x 的值是否在自变量的取值范围内,并求相关的值;
⑤解决提出的实际问题.
解决最值应用题要注意两点:
①设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要设为函数;
②求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.
① 根据几何图形的性质,探求图形中的关系式;
② 根据几何图形的关系式确定二次函数解析式;
③ 利用配方法等确定二次函数的最值,解决问题
由于面积等于两条边的乘积,所以几何问题的面
积的最值问题通常会通过二次函数来解决.同样
需注意自变量的取值范围.。

第13讲二次函数图象与性质(课件)-2025年中考数学一轮复习讲练测(全国通用)

第13讲二次函数图象与性质(课件)-2025年中考数学一轮复习讲练测(全国通用)
2025年中考数学一轮复习讲练测
第13讲
二次函数的图象与性质
目录
C
O
N
T
E
N
T
S
01
02
考情分析
知识建构
03
考点精讲
第一部分
考情分析
考点要求
新课标要求
二次函数的相 ➢ 通过对实际问题的分析,体会二次函
关概念
二次函数的图
象与性质
二次函数与各
项系数的关系
二次函数与方
程、不等式
命题预测
数的意义.
➢ 能画二次函数的图象,通过图象了解
b
时,二次函数取得最小值
2a
4ac−b2
4a
y
当x=x2时,二次函数取得最大值y2
x1
y2
y1
当 x= −
4ac−b2
4a
y
x1≤x≤x2
b
时,二次函数取得最大值
2a
O
x1 O
b
时,二次函数取得最小值
2a
O
x2
x
当x=x1时,二次函数取得最小值y1
考点二 二次函数的图象与性质
备注:自变量的取值为x1≤x≤x2时,且二次项系数a<0的最值情况请自行推导.
a<0
开口向下,顶点是最高点,此时y有最大值.
4ac−b2
【小结】二次函数最小值(或最大值)为0(k或
).
4a

在对称轴的左边y随x的增大而减小,在对称轴的右边y随x
a>0


的增大而增大.
在对称轴的左边y随x的增大而增大,在对称轴的右边y随x
a<0
的增大而减小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析:∵二次函数y=ax2-2ax+c的图象经过点(-1,0), ∴方程ax2-2ax+c=0一定有一个解为x=-1. ∵抛物线的对称轴为直线x=1, ∴二次函数y=ax2-2ax+c的图象与x轴的另一个交点为(3,0), ∴方程ax2-2ax+c=0的解为x1=-1,x2=3. 故选C.
应用二次函数解决实际问题中的最大(小)值问题
个交点;当
b2-4ac<0时,抛物线与x轴 没有 交点.
二次函数的实际应用
1.设:找出问题中的变量和常量以及它们之间的函数关系,设出未知数. 2.列:列出函数解析式表示它们之间的关系. 3.解:应用二次函数的图象及性质解决问题. 4.验:检验是否符合实际问题的意义.
二次函数与方程、不等式的关系(易错点)
思路点拨:(1)用待定系数法求函数解析式;
解:(1)把点 A(1,0),B(3,0)分别代入 y=x2+bx+c,得
1 b c 9 3b
c
0, 0
解得
b c
4, 3.
∴二次函数的解析式为 y=x2-4x+3.
(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A,B,P,F为顶点 的四边形为平行四边形,求点P的坐标;
应用二次函数模型解决实际问题的步骤 (1)根据题意确定二次函数的关系式; (2)根据已知条件确定自变量的取值范围; (3)利用二次函数的性质和自变量的取值范围确定最大(小)值,注意二次函数 的最大值不一定是实际问题的最大值,要结合自变量的取值范围确定最值.
二次函数与几何图形综合应用
[例3]如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0),B(3,0),与y 轴交于点C. (1)求二次函数的解析式;
B(1,1),
∴方程组
y y
ax 2 , bx
c
的解为
x1 y1
2, 4,
x2 y2
1, 1.
即关于 x 的方程 ax2=bx+c 的解为 x1=-2,x2=1.
5.(2019南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖 的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3本笔记本共38元, 购买4支钢笔和5本笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?
2 ∴最后 4 s 滑行的距离是 600-576=24(m).
4.(2018孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为 A(-2,4),B(1,1),则方程ax2=bx+c的解是 x1=-2,x2=1 .
解析:∵抛物线 y=ax2 与直线 y=bx+c 的两个交点坐标分别为 A(-2,4),
(2)设该产品在第 x 个销售周期的销售数量为 p(万台),p 与 x 的关系可以用 p= 1 x+ 1 来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该
22 产品每台的销售价格是多少元?
思路点拨:(2)设销售收入为 w 万元,根据销售收入=销售单价×销售数量和 p= 1 x+ 1 ,列出 w 与 x 的函数解析式,再根据函数性质求得结果.
(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D, 求四边形AEBD面积的最大值及此时点E的坐标.
思路点拨:(3)利用 S = 四边形 AEBD 1 AB(yD-yE)和二次函数的性质求解. 2
解:(3)如图 3,作直线 BC,点 E 是抛物线上的一点,作 ED⊥AB,连接 AE,BE, ∵点 B(3,0),C(0,3), ∴直线 BC 的解析式为 y=-x+3, 设点 E 的坐标为(x,x2-4x+3), 则点 D 的坐标为(x,-x+3),
(A)①④ (C)②③④
(B)①② (D)②③
解析:①由图象知小球在空中达到的最大高度是 40 m,小球在空中经过的路程是 80 m;故①错误;②小球抛出 3 s 后,速度越来越快;故②正确;③小球抛出 3 s 时 达到最高点即速度为 0;故③正确;④设抛物线的函数解析式为 h=a(t-3)2+40,把
解:(3)当 x=0 时,y=- 1 (x-3)2+5= 16 .
5
5
设改造后水柱所在抛物线(第一象限部分)的函数解析式为 y=- 1 x2+bx+ 16 ,
5
5
∵该函数图象过点(16,0),
∴0=- 1 ×162+16b+ 16 ,解得 b=3,
5
5
∴改造后水柱所在抛物线(第一象限部分)的函数解析式为
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的 前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰 物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
思路点拨:(3)由抛物线的形状不变可得改造后水柱所在抛物线的二次项系数 不变,代入点(16,0)和原抛物线与y轴的交点坐标即可求出改造后的抛物线解 析式,再求顶点纵坐标即可.
22
解:(2)设销售收入为 w 万元,根据题意,得
w=yp=(-500x+7 500)( 1 x+ 1 ) 22
=-250(x-7)2+16 000, ∴当 x=7 时,w 取得最大值,最大值为 16 000, 此时 y=-500×7+7 500=4 000(元). ∴第 7 个销售周期的销售收入最大,此时该产品每台的销售价格是 4 000 元.
思路点拨:(1)根据顶点坐标设出顶点式,代入点(8,0),求出a值即可; 解:(1)设水柱所在抛物线(第一象限部分)的函数解析式为 y=a(x-3)2+5(a≠0), 将(8,0)代入 y=a(x-3)2+5,得 25a+5=0,
解得 a=- 1 , 5
∴水柱所在抛物线(第一象限部分)的函数解析式为
S = 四边形 AEBD 1 AB(yD-yE)=-x+3-x2+4x-3=-x2+3x, 2
∵-1<0, 故四边形 AEBD 面积有最大值,
当 x= 3 时,S 四边形 AEBD 取得最大值,最大值为- ( 3 ) 2+3× 3 = 9 ,
2
2
24
又∵当 x= 3 时,x2-4x+3= ( 3 ) 2-4× 3 +3=- 3 ,
y=- 1 x2+3x+ 16 =- 1 ( x- 15 ) 2+ 289 .
5
5 5 2 20
∴扩建改造后喷水池水柱的最大高度为 289 米. 20
解决抛物线型实际问题 (1)用待定系数法确定抛物线解析式; (2)把实际问题转化为点的坐标,代入解析式求解.
1.(2019潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次
思路点拨:(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式;
解:(1)设 y 与 x 之间的函数解析式为 y=kx+b(k≠0), 把(1,7 000),(5,5 000)代入,

k b 7000, 5k b 5000
解得
k b

500, 7500,
∴y 与 x 之间的解析式为 y=-500x+7 500.
y=- 1 (x-3)2+5(0<x<8). 5
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8 米的王师傅站立时必须在离水池中心多少米以内?
思路点拨:(2)求出当y=1.8时x的值,即可得出结论; 解:(2)当 y=1.8 时,有- 1 (x-3)2+5=1.8,
5 解得 x1=-1(舍去),x2=7, ∴为了不被淋湿,身高 1.8 米的王师傅站立时必须在离水池中心 7 米以内.
解:(1)设钢笔、笔记本的单价分别为 x,y 元,
根据题意得
2x 4x
3y 5y
38, 70,
解得
x
y
10, 6.
∴钢笔、笔记本的单价分别为 10 元,6 元.
(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50 支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等 奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一 等奖学生多少人时,购买奖品总金额最少,最少为多少元?
2
2
2
4
∴此时点 E 的坐标为 ( 3 ,- 3 ) . 24
应用二次函数解决抛物线型实际问题
[例4] 某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷 水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各 方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向 为x轴,喷水池中心为原点建立平面直角坐标系. (1)求水柱所在抛物线(第一象限部分)的函数解析式;
②当 AB 是四边形的对角线时,如图 2,
线段 AB 的中点坐标为(2,0),
设点 P3 的横坐标为 m,点 F 的横坐标为 2,
∴线段 P3F 中点的横坐标为 m 2 ,即 m 2 =2,
2
2
解得 m=2,
故点 P 的坐标为(2,-1);
综上所述,点 P 的坐标为(4,3)或(0,3)或(2,-1).
方程x2+bx+3-t=0(t为实数)在-1<x<4的范围内有实数根,则t的取值范围
是A
()
(A)2≤t<11
(B)t≥2
(C)6<t<11
(D)2≤t<6
解析:∵y=x2+bx+3的对称轴为直线x=1,∴b=-2,∴y=x2-2x+3,
相关文档
最新文档