[理学]第6章固定床反应器
第六章6.3甲醇转化制汽油

1.概述 ⑴甲醇作为燃料的一些缺陷
◆甲醇的热值只有汽油的一半;
ቤተ መጻሕፍቲ ባይዱ
Gasoline)
◆纯甲醇在固定的沸点64℃(无沸腾范围)沸腾;
◆甲醇燃烧时火焰看不见,这是一个很大的安全问题.
◆甲醇吸湿性强; ◆甲醇和其氧化物(如蚁酸)会导致腐蚀想象发生;
◆甲醇可以任何比例溶于水,会对地下水源产生危害;
⑵流化床反应器 催化剂连续再生(催化剂与气态产物分离,部分去再生,用空气烧 去催化剂上的积碳); 反应热由催化剂外部循环直接或间接从流化床中移去(无需气体循 环移热); 优点: 反应热除去容易,热效率高; 没有循环操作装置、建设费用低; 可以低压操作; 催化剂可以连续使用和再生; 催化剂活性稳定; 缺点: 开发费用高,放大困难。
ⅲ:双孔沸石 主要是具有两组孔结构,即有十二元和八元环孔 口或十元和八元孔口的交联通道. 包括丝光沸石,菱钾沸石(offretite),林德t, 纳菱沸石(gmelnite),片沸石(heulandite),或斜法费 石(clinoptilolite),镁碱沸石(ferrierite),zsm35,zsm-38,辉沸石(stilbite),环晶石(dachiardite), 柱沸石(epistilbite)等等。
◆甲醇具有高毒性。
⑵MTG工艺的意义 意义:
典型工艺的核心: Mobil公司开发了ZSM-5沸石催化剂,使 甲醇转化成高辛烷值汽油。 1985年,在新西兰建成了第一套年产57 万吨汽油(辛烷值为93.7)的MTG工厂。
2.化学反应 MTG的基本原理:
⑴甲醇转汽油总反应: nCH30H→(CH)n+nH20 +Q ⑵过程反应 ①甲醇脱水生成二甲基醚 2CH30H---CH30CH3+H20
第6章 固定床反应器

流体在固定床中的流动,与空管中的流体流动相似,只是流 道不规则而已。故此可将空床中流体流动的压力降计算公式修正 后用于固定床。
第6章 固定床反应器
6.2 固定床中的传递过程 6.2.2 床层压降
《化学反应工程》
2 um 1 B p a. 厄根方程 f '( )( ) 固定床压力降计算公式: 3 L dS B
第6章 固定床反应器
6.1 概述
《化学反应工程》
气-固相催化反应器
固定床 反应器
流化床 反应器
绝热式
换热式
自热式
单段绝热
多段绝热
内冷式
外冷(热)式
第6章 固定床反应器
6.1 概述
《化学反应工程》
固定床反应器的种类
(1)绝热式反应器
单段绝热床反应器
多段绝热床反应器
第6章 固定床反应器
6.1 概述
s (dV / da )2
第6章 固定床反应器
6.2 固定床中的传递过程 6.2.1 粒子直径和床层空隙率
《化学反应工程》
平均直径dP:是指不同大小颗粒直径的平均值。
①算术平均法 :
d p xi d i
i 1
xi为直径等于di的颗粒所占的质量分数。
n
②调和平均法:
n xi 1 d p i 1 d i
第6章 固定床反应器
6.1 概述
《化学反应工程》
固定床反应器的种类
(3)自热式反应器
甲烷化炉 CO+3H2 CH4+H2O
CO2+4H2
CH4+2H2O
强放热反应
第6章 固定床反应器
6.1 概述
《化学反应工程》
设备固定床反应器课件

定期对反应器内部进行清洁,清理积料和 杂质,保持设备内部的清洁度。同时对设 备外部进行保养,保持设备的外观整洁。
更换配件
记录与报告
根据需要,定期更换设备的易损件和磨损 件,如密封圈、加热元件等,确保设备的 正常运行。
对设备的运行情况、维护保养情况、故障 处理情况等进行记录和报告,为设备的维 修和保养提供依据。
异常处理
在反应过程中出现异常情况时,应ห้องสมุดไป่ตู้即采取相应的处理措 施,如降低温度、停止进料、排放有害气体等,确保设备 和人员安全。
操作步骤
按照规定的操作步骤启动反应器,包括加热、加料、调节 参数等,并密切关注反应过程中的温度、压力、流量等关 键参数。
停机操作
在停机时,应按照规定的操作步骤进行,包括关闭加热、 停止进料、冷却设备等,同时做好设备的清洁和保养工作 。
在新能源领域的应用
固定床反应器在新能源领域主要 用于燃料电池和太阳能电池的生
产。
在燃料电池中,固定床反应器能 够实现高效能、低成本的氢气和
氧气分离。
在太阳能电池中,固定床反应器 能够用于硅片的加工和处理,提
高太阳能电池的转换效率。
03
设备固定床反应器的操作与维护
操作规程
启动前检查
在启动固定床反应器之前,应检查设备是否处于良好的工 作状态,包括检查各部件的紧固情况、润滑系统、阀门开 闭状态等。
在气固相催化反应中,固定床反应器能够提供良好的传质和传热性能,提高反应效 率。
在液固相非催化反应中,固定床反应器能够实现连续操作,提高生产效率和产品质 量。
在制药生产中的应用
固定床反应器在制药生产中主 要用于抗生素、生物制品和中 药的生产。
固定床反应器能够提供稳定的 生产条件,保证药品质量和安 全性。
固定床反应器.ppt

Topt R ln
(E2 E1) k0E1CA0 (1 xA)
k0 ' E2 (CR0 CA0xA )
0
T
( 1 1 ) R ln E2 Topt Te E2 E1 E1
对一级反应且CR0=0时有
-rA
rA
k CA0 [(1
xA)
xA K
]
K
K0
exp[
H r R
(1 T
1 T0
)]
T
xA
固定床反应器的最优温度分布
1
随着x增加,逆反应增 加, 反应最优温度 随之下降.
x= 0
Topt
0
x
T
等速率线 (-rA)=0
(-rA)增加 Topt
T
T1 T2
0
x
0
x1
x2 x
T1 x1 T2 x2
例
合成NH3反应1/2N2+3/2H2 NH3是可逆放热反应,在铁催 化剂下E=58.6 kJ/mol,E’=167.5 kJ/mol,平衡常数Kp与温度的 关系为logKp=(2171+19.6P)/T-(4.2+0.02P),P为总压力 [MPa]。试计算下列条件下的最优温度Topt。
第五章 固定床反应器
见P184-185介绍: 催化剂不动; 流体相是气,液或气液并流,逆流; 应用很广:合成NH3,H2SO4,CO水煤气变换 制H2,乙烯氧化制环氧二烷,乙苯脱H2制苯,轻 油蒸汽裂解制乙烯;石化产品:橡胶,纤维, 树脂中均大量用固定床催化反应器。 主要问题是散热方案:催化剂床层导热差
dp 6
由左=右可得:
f'
150
De
8.314 167.48
化学反应工程:固定床反应器

B
式中,RH —— 水力半径。
6.2.2 床层压降 床层压降是固定床反应器设计的重要参数,要求床层压 降不超过床内压力的15%。 床层压降的计算 (1)
p d S 2 u L m
3 B 150 1 R 1.75 B eM
h0可由经验公式计算
(6-31)
h0 d p
d p e 2 (b) [a1 ] dt y
(6-32) (适用范围:y > 0.2)
式中, y —— 无量纲数
4e L 4(d p / dt )(L / dt )(e / ) y 2 Gcp dt Pr Rep
b —— 无量纲数
(6-44)
其中
Re G /(Se )
6.3 拟均相一维模型
概述
一、拟均相模型 忽略床层中催化剂颗粒与流体之间温度与浓度差别,将气相反应 物与催化剂看成均匀连续的均相物系。 (1)一维拟均相模型 只考虑沿气体流动方向的温度和浓度变化。根据流动形式还可分 为平推流一维模型和轴向分散一维模型。 (2)二维拟均相模型 同时考虑轴向和径向的温度和浓度分布。 二、非均相模型 考虑颗粒与流体之间的温度差和浓度差。 一般来说,模型考虑得越全面,对过程模拟越精确,但计算工作 量也越大,甚至无法求解。因此,在工程计算允许的误差范围内应尽 可能选用简单模型。
流体与颗粒间传热温差的计算 热量平衡
H ArA hp am (tG tS ) hp amt
式中,am Se / B —— 单位重量催化剂的外表面积; —— 床层比表面积Se的校正系数。
球形: 1 圆柱形: 0.9 片状: 0.81 无定形: 0.9 ; ; ;
固定床的特点及应用

蚀,无相变,温度范围200~ 350℃
3.熔盐:温度范围300℃~400℃,由无机熔盐KNO3、NaNO3、NaNO2按
一定比例组成,在一定温度时呈熔融液体,挥发性很小。但高温下渗
透性强,有较强的氧化性。
4.烟道气:适用于600~700℃的高温反应。
32
汽化 效率高 选择性提高
压力高
温度易控 投 资 大 设 备
其中以利用气态物质为反应物料,通过由固体催化剂所构 成的床层进行反应的气固相催化反应器在化工生产中应用最为 广泛。
固定床反应器 - 基本原理
• 又称填充床反应器,装填有固体催化剂或固体反应物用
以实现多相反应过程的一种反应器。固体物通常呈颗粒状,粒
径2~15mm左右,堆积成一定高度(或厚度)的床层。床层静止 不动,流体通过床层进行反应。它与流化床反应器及移动床反
特点:传热面积大,传热效果 好,易控制催化剂床层温度, 反应速率快,选择性高。 缺点:结构较复杂,设备费用高。 应用:能适用于热效应大的反应。
列管式固定床反应器
二〉换热式固定床反应器
✪列管式固定床反应器
热效应较大,不宜采用绝热式反应器,可采用换热式固定床反
应器。此设备如同列管式换热器,又称为列管式固定床反应器。
应器的区别在于固体颗粒处于静止状态。固定床反应器主要用
于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、 烃类蒸汽转化炉等。用于气固相或液固相非催化反应时,床层
则填装固体反应物。涓流床反应器也可归属于固定床反应器,
气、液相并流向下通过床层,呈气液固相接触。
• 涓流床反应器,是固流床三相反应器之一。指在反应器中,气液成逆 流或气液向下并流,液体以薄膜形式与气体接触的三相床反应器。液 体流为非连续相由上而下流动。用于石油产品的加氢脱硫、脱氮、脱 钒、脱金属和加氢裂化,丙烯水合和废水处理等过程。滴流床的优点 是接触时间分布较窄,且可在进入反应区前脱除毒物。床内流动接近 平推流可获得高转化率;荷液量低,可减少加氢脱硫时油品热裂解, 缺点是低液流速率,液体与催化剂的比例较低,可能形成局部的温度 与浓度梯度,甚至不完全润湿,影响反应效果;径向传热差,易于局 部过热而导致失活;在催化剂颗粒较大、反应速率较快时,内扩散影 响会导致有效系数低落;长期操作中,积炭、污垢等会使催化剂孔口 堵塞,影响寿命。
反应过程与技术 固定床反应器的计算

§2-4固定床反应器的计算Calculation of fixed bed计算内容:①催化剂用量;②床层高度和直径;③传热面积;④床层压力降。
计算基础:反应动力学方程;物料衡算;热量衡算。
固定床反应器的经验计算法:利用实验室;中间试验装置;工厂现有装置最佳条件测得数据。
一.催化剂用量的计算 Calculation of catalyst use level1.空间速度:Space velocity[]1-=h V V S RONV ~ON V 原料气体积(标)流量~R V 催化剂填充体积意义:单位体积催化剂在单位时间内通过原料标准体积流量2.接触时间:Contact timeV V R ετ= ~0V 反应条件下,反应物体积流量~ε床层空隙率00,nRT V p nRT PV ON ==pT Tp S p T Tp V V p T TpV V VR ON ON 0000000εετ===∴代入a p p K T 300103.101273⨯==,3.空时收率:Space time yield(STY)SGW W W S =意义:反应物流经床层时,单位质量(或体积)催化剂在单位时间内所获得的目的产物量。
4.催化剂负荷 Catalyst load[]h Kg W W /~原料 [][]3~m Kg cat W S 或 单位质量催化剂在单位时间内通过反应所消耗的原料5.床层线速度与空床速度 Linear velocity and superficial velocity 线速度:εR A V u 0= 反应体积在反应下,通过催化剂床层自由截面积的速率。
空床速度:R A V u 00=在反应条件下,反应气体通过床层截面积时的气速。
使用条件:所设计的反应器与提供数据的装置具有相同的操作条件等)、、、、原料、、(P T u cat μ只能估算。
不可能完全相同∴二.反应器床层高度及直径的计算 Calculation of reactor体积一定:床层高度↑→H 床层截面积↓→A 气速↑↑→∆P ↑动力消耗流动阻力,u ;床层高度↓↑→A ↓→u H ,对传热不利,另:H 太小,气体易产生短路。
第6章 固定床反应器

固定床反应器
6.1 固定床反应器的概述 一、固定床反应器的特点 二、固定床反应器的分类
1
一、固定床反应器的特点
水蒸气
凡是流体通过固定的固体物料所形成 的床层而进行反应的装置都称作固定 床反应器。 如:气-固相催化反应器、 气-固相非催化反应器。
测 温 口
乙苯
催化剂
图6-1乙苯脱氢的绝热床反应器
G um —— 质量流速;
校正摩擦系数 fm和指数n可由图6-11查取。
28
二、床层压降
29
二、床层压降
影响固定床压力降的因素: 流体的密度 流体 流体的粘度 流体的质量流率 床层的高度
床层
床层的空隙率
流通截面积
颗粒的形状 颗粒 颗粒的粒度 颗粒的表面粗糙度 颗粒的物理特性
例题6-1
30
三、固定床中的传热
+颗粒空隙体积 21
颗粒床层体积 VB =颗粒体积
床层空隙率εB
球形 圆柱形 不规则 粒径/管径(dp/dt)
22
一、粒子直径和床层孔隙率
三、固定床的当量直径 1、床层比表面—单位床层中颗粒的外表面
Se
npap VB
(1 B )VB p a p Vp p ap VB
(1 B )
产品
2
一、固定床反应器的特点
1、固定床反应器的优点是: ①返混小,床层内流体的流动接近平推流。 ②较少的催化剂和较小的反应容积可获得较大的生产能力。 ③流体同催化剂可进行有效接触,当反应伴有串联副反应时 可得较高选择性。 ④催化剂机械损耗小。 ⑤结构简单,操作方便。
3
一、固定床反应器的特点
2、固定床反应器的缺点是: ①传热差,反应放热量很大时,即使是列管式反应器也可能出 现飞温(反应温度失去控制,急剧上升,超过允许范围)。 ②操作过程中催化剂不能更换。 催化剂需要频繁再生的反应一般不宜使用,常代之以流化床 反应器或移动床反应器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? Q0
绝热式固定床反应器和换热式固定床反应器的区别在与其 与外界交换的热能Q是否等于零。
一、绝热式
单段绝热式
特点:反应器结构简单, 生产能力大。
缺点:反应过程中温度 变化较大。 适合热效应不大、反应 对温度的要求较宽的反 应
6-2甲醇氧化制甲醛的反应器
多段绝热床
根据段间反应气体的冷却或加热方式,多段绝热床又分 为中间间接换热式和冷激式。 特点:催化剂床层的温度波动小。 缺点:结构较复杂,催化剂装卸较困难。
dp 1 u2 f dl de 2
流通截面积 4 B de 4 润湿周边 (1 B ) SV
de:当量床层直径 dp/dl:床层高向的压强变化 ρ:流体密度 u:实际流速,通常以空塔气速um=u/εB表示
2 B 2 B d e 4 RH 4 d S dV S Se 3 1 B 3 1 B
6-9填充床的空隙率
床层空隙率εB
球形
圆柱形 不规则
三、固定床的当量直径 1、床层比表面
Se n p a p
(1 B ) p Vp p
a p (1 B )
ap Vp
6(1 B ) / d S
式中,np ——单位体积床层中颗粒的个数。
εB——床层空隙率 Vp ——非中空颗粒等体积的圆球体积
原料 产品 原料 产品 原料
冷 激 剂
产品
间接换热 原料冷激 多段固定床绝热反应器 非原料冷激
冷激式
特点:反应器结构简单,便于装卸催化剂,催化剂床层的 温度波动小。
缺点:操作要求较高 应用:适用于放热反应,能做成大型催化反应器
二、换热式
按换热介质不同,可分为对外换热式固定床反应器和自热
式固定床反应器。 对外换热式固定床反应器 列管式固定床反应器:通常是在管内放催化剂,管间走热载 体
对外换热式反应器
气体自上而下流过床层 催化剂床层内的流动是通过颗粒 之间的空隙进行的,易达到湍流, 但与圆管内的流动状况不完全相 同
乙炔法合成氯乙烯反应为放
热反应109kj/mol,利用高位 槽或加压泵强制循环换热, 水温靠调节阀控制压力来调 节。
逆流 并流 不同流向的自热式固定床反应器的轴向温度分布示意图
B
床层比表面积:
S e 6( 1 B ) / d S
d s S dV
有效截面积 床层空隙体积 B 水力半径:RH 润湿周边 总的润湿面积 S e 而比表面当量直径:d s 6 / SV
ቤተ መጻሕፍቲ ባይዱ
B d e 4 RH 4 4 [ ds ] Se 6(1 B ) 2 B ds 3 (1 B )
按下式求出:
n xi dd 1 / i 1 d i
大小不等且形状也各异的混合颗粒,其形状系数由待
测颗粒所组成的固定床压力降来计算。同一批混合颗 粒,平均直径的计算方法不同,计算出来的形状系数
也不同。
非球形颗粒的形状系数 物料
鞍形填料 拉西环 烟道尘
形状
- - 球状 聚集态
B
dp 1 u2 将d e、um 代入式 f 中得 dl de 2
' 2 u dp 3(1 B ) (um / B ) 1 B m ' f f 3 dl 2 B d s 2 ds B 2
3 其中:f f f ( ReM ) 4
床层空隙率εB
0.4
0
0.5
1
1.5
2
2.5
2
3.5
4
4.5
5
按混合颗粒的平均直径计算离壁距离
空管内 湍流
2
空管内层流
填充层内 气体流动
1
填充层内液体 流动
0
6.2.2 床层压降
床层压降是固定床反应器设计的重要参数,要求床层压
降不超过床内压力的15%。
气体流动通过催化剂床层的压力降厄根(Ergun)方程计算式:
1.固定床反应器的优点是:①返混小,流体同催化剂可进
行有效接触,当反应伴有串联副反应时可得较高选择性。 ②催化剂机械损耗小。③结构简单。
2.固定床反应器的缺点是:①传热差,反应放热量很大时,
即使是列管式反应器也可能出现飞温(反应温度失去控制,
急剧上升,超过允许范围)。②操作过程中催化剂不能更
换。 催化剂需要频繁再生的反应一般不宜使用,常代之以流化 床反应器或移动床反应器。
第六章
固定床反应器
水蒸气
乙苯
6 . 1 概述
凡是流体通过固定的固体物料所
形成的床层而进行反应的装置都
称作固定床反应器。 如:气-固相催化反应器、 气-固相非催化反应器。 测 温 口
催化剂
产品 乙苯脱氢的绝热床反应器 6-1
一、固定床反应器的特点
结构简单 高空速 很少催化剂损耗 很小气固返混 较长的扩散时间及距离 高床层压降 床内取热供热困难 催化剂取出更新困难 催化剂颗粒大,效率低
常用的Δp计算公式:
2 f mG L( 1 B ) p 3 n 3 d p s B
2
3 n
式中:dp —— 体积相当直径;
G um —— 质量流速。
fm和n可由图6-11查取。
图6-11 固定床的摩擦系数
推导>>在化工原理中:
l u2 p f de 2
固定床的空隙率是颗粒物料层中颗粒间自由体积与整个
床层体积之比,它是固定床的重要特性之一。空隙率对 流体通过床层的压力降、床层的传热都有重大的影响。 颗粒形状、颗粒的粒度分布、充填方式、颗粒直径与容 器直径之比都影响空隙率。固定床中同一截面上的空隙
率也不相同,近壁处较大,中心处较小。一般工程上认
为当床层直径与颗粒直径之比达 8 时,可不计壁效应。 壁效应影响是指靠近器壁的空间结构与其他部分有很大 差别,器壁处的流动状况、传质、传热状况与主流体中 也有很大差别。当采用实验规模的小型设备研究传质、 传热、反应的规律时,器壁的影响远比大型设备为大。
ρ、μ—— 流体的密度和粘度;
ds —— 比表面当量直径。
p d S 2 u m L
B 150 1 . 75 1 R B em
3
Rem<10,层流,上式中右边第二项可忽略; Rem>1000,湍流,上式中右边第一项可忽略。
2、不同当量粒径的关系 颗粒的形状系数(球形系数):φs 等体积球形粒子的外表面积与非球颗粒的外表积之比。
S aS / a p
S dV d S 6VP / aP
S (dV / da )
颗粒的形状系数
2
S 1
球体的形状系数=1,非球体的形状系数<1
3、混合颗粒的平均直径 对于大小不等的混合粒子,其平均直径可用筛分分析数据
轴向流动固定床反应器 径向流动固定床反应器
固定床反应器的分类
传热介质选用原则: 保证催化剂床层与传热介质之间有适宜的温差。
常用传热介质的温度范围
沸腾水 有机液态传热介质 100-300 ℃ 200-350 ℃
熔盐
烟道气
300-400 ℃
600-700 ℃
反应器按催化剂床是否与外界进行热量交换分为:绝热
B
Se
3、固定床的径向流速分布 尽管在近壁处空隙率较大,但壁摩擦阻力使流速将低到 接近0。一般工程上认为当床层直径与颗粒直径之比dt / ds=8 时,可不计壁效应。
1
距壁4个颗粒直径处,床层空隙率和流
0.8
速分布趋平坦,因此一般工程上认为当 床层直径与颗粒直径 之比值达 8 时可 不计壁效应。
拉西环
金属环矩鞍
6 . 2 固定床中的传递过程 6.2.1 粒子直径和床层空隙率 定型尺寸:最能代表颗粒性质的尺寸为颗粒的当量直径。 对于非球形颗粒,可将其折合成球形颗粒,以当量直径表 示。主要有三种表示:体积相当直径、外表面积相当直径 和比表面积相当直径。
一、颗粒直径的表示方法
1、表示方法
ReM 修正雷诺准数
Re
d eu
2 d s um 2 Rem 3 (1 B ) 3
f '与Rem的经验关联式: 150 f 1.75 Rem
'
2 u 1 B dp 150 m 得Ergun方程: 1.75 3 dl Rem d B s
φs
0.3 0.3 0.89 0.55
物料
砂 各种形状平均 硬砂 砂 砂 碎玻璃屑
形状
φs
0.75
尖状 尖片状 圆形 有角状 尖角状
0.65 0.43 0.83 0.73 0.65
天然煤灰 大至 10mm 0.65 破碎煤粉 0.75
二、床层空隙率 床层空隙率:粒子间的空隙所占床层容积的分率
式中
空隙体积 颗粒体积 VP B B 1 1 1 床层体积 床层层体 VB P
体流量均等,对分布流道的制造要求较高,且要求催化剂 有较高的机械强度,以免催化剂破损而堵塞分布小孔,破 坏流体的均匀分布。
径向流动反应器中气体在垂直 于反应器轴的各个横截面上沿 半径方向流动径向流动催化床 的气体流道短,流速低,可大 幅度地降低催化床压降,为使 用小颗粒催化剂提供了条件。
径向反应塔示意图
p
B —— 床层堆积密度;
—— 颗粒视密度。
注意:颗粒视密度与真密度之 间的区别。
床层堆积密度
是单位体积颗粒床层的固体质量,颗粒床层体积是颗粒体