变中抓不变的思想方法

合集下载

常用的小学数学思想方法及举例5

常用的小学数学思想方法及举例5

常用的小学数学思想方法及举例1、举例说明“一一对应思想”在小学数学中是如何体现的?对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

例如让学生数数时,拨一个珠子数一个数,这就是一一对应的思想。

一个珠子就对应一个数。

2、举例说明“数形结合思想”在小学数学中是如何体现的?数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。

另一方面复杂的形体可以用简单的数量关系表示。

在解应用题中常常借助线段图的直观帮助分析数量关系。

例如在学生学习10个十是100,10个百是1000时,让学生看课件把10个小正方体放成一排,摆10排,变成一个面,是100,再放10个这样的面就是1000了,变成一个大正方体。

这里就充分反映了数形结合的思想。

3、举例说明“假设思想”在小学数学中是如何体现的?假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

例如:四(2)班学生在校办工厂糊纸盒,原计划糊制1200个,实际每时糊的纸盒是原计划的1.2倍,结果提前4时完成任务,问原计划糊纸盒几时?分析与解假设没有提前,而是按原计划时间劳动,则糊成的纸盒是(1200×1.2=)1440(个),比原计划多做(1440-1200=)240(个),因为多糊的240个是在4时内做成的,因此实际每时糊纸盒(240÷4=)60(个),原计划每时糊(60÷1.2=)50(个)。

4、举例说明“比较思想”在小学数学中是如何体现的?比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

数学思维训练的学习方法

数学思维训练的学习方法

数学思维训练的学习方法数学思维的训练是需要一套完成的训练方法的,经过思维的训练,数学成绩一定可以大大提高,下面小编收集了一些关于数学思维训练的学习方法,希望对你有帮助数学思维训练的学习方法(小学)1.转化型这是解决问题遇到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。

在教学中,通过该项训练,可以大幅度地提高学生解题能力。

如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。

照这样卖法,4 人买了后,筐中鱼尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的学生来说,会感到一筹莫展。

即使基础较好的学生也只能复杂的方程。

但经过转化思维训练后,学生就变得聪明起来了,他们知道把买鱼人转换成1人,显然鱼1条;然后转换成2人,则鱼有3条;再3人,则7条;再4人,则15条。

2.系统型这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。

在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。

如:1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。

象这道题就牵涉到系统思维的训练。

教师可引导学生把10 个数看成一个系统,从不同的层次去考虑、第一层次:找100 的最接近数,即89 比100 仅少11。

第二个层次:找11 的最接近数,很明显是前面的12。

第三个层次:解决多l 的问题。

整个程序如下:12+3+4+5-6-7+89=1003.激化型这是一种跳跃性、活泼性、转移性很强的思维形式。

教师可通过速问速答来训练练学生。

如问:3 个5 相加是多少?学生答:5+5+5=15 或5×3=15。

教师又问:3 个5 相乘是多少?学生答:5×5×5=125。

紧接着问:3 与5 相乘是多少?学上答:3×5=15,或5×3=15。

小学数学思想有哪些

小学数学思想有哪些

小学数学思想有哪些?1、对应思想对应就是人们对两个集合因素之间的联系的一种思想方法,小学数学一般就是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数就是一一对应。

2、假设思想假设就是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想就是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想比较思想就是数学中常见的思想方法之一,也就是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知与未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想用符号化的语言(包括字母、数字、图形与各种特定的符号)来描述数学内容,这就就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导与演算,都就是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想类比思想就是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律与乘法交换律、长方形的面积公式、平行四边形面积公式与三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然与简洁。

6、转化思想转化思想就是由一种形式变换成另一种形式的思想方法,而其本身的大小就是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想分类思想方法不就是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数与偶数;按约数的个数分质数与合数。

又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理与建构。

如何在思想上保持进步

如何在思想上保持进步

如何在思想上保持进步思想进步是指一个人在思想上不断更新、进步、完善。

随着时代的变迁和社会的发展,思想进步也变得愈加重要。

如何在思想上保持进步,成为了一个越来越被关注的话题。

一、开放心态,不断接受新事物一个人的思想进步需要有开放的心态,接受各种新事物。

现实生活中,很多人因为缺乏开放的心态,过于专注于自己的想法和观点,而无法接受别人的看法和意见。

这样的人难以进行有效的群体讨论,思想也不能与时俱进。

与此相反,拥有开放心态的人会不断地从自己的观点和想法中跳脱出来,接受新的事物。

这种不断接受新事物的思想状态可以让人有更加广阔的视野及思维想象空间。

二、积极思考,不断反思积极思考是思想进步的重要前置条件,只有在思考的基础上才能有新的认识和思维的成长。

因此,我们必须不断地给自己的头脑“加油”,积极地思考。

在这个过程中,要不断地反思自己的行为和想法,确保自己的思想方向是正确的。

思考则可以是多元化的:日常思考:Reflexion/Introspection跨领域沟通:Communication through diverse communities深度思考:Deliberation三、不断学习,不断进修知识是思想进步的重要支撑和保证,持续的学习和进修可以让我们拥有更新、丰富和深刻的认知。

当我们接触到一个新的知识体系时,往往需要花费时间去理解和吸收。

只有通过对知识的熟悉和掌握,我们才有可能在思想上实现真正的进步。

我们需要跨出自己的舒适区,不断地学习新的领域和知识,挑战我们的思维模式和认知能力。

四、制定和执行计划如果我们希望在思想上实现真正的进步,则需要像完成一个任务一样有条不紊地展开行动。

我们需要制定具体的计划,并且计划中需要落实具体的行动方案。

通过这样的办法,我们可以明确自己想要取得的成果,并且可以更好地衡量自己取得的进步。

总之,在思想上保持进步需要我们坚持积极思考、接受学习、具备开放心态,并且在操作层面上来制定和执行计划。

小学数学的17个思维方式

小学数学的17个思维方式

小学数学最重要的17个思维方式1.对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应的。

2.假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3.比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4.符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5.类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6.转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7.分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

小学数学解题技巧:数学小学数学常用的16种思想方法

小学数学解题技巧:数学小学数学常用的16种思想方法

小学数学解题思路数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

数学解题思维方法汇总

数学解题思维方法汇总

17个数学思维方法,附例题01 对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

02 假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

03 比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

04 符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式等。

05 类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

06 转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

07 分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

常用的小学数学思想方法:对应思想方法、假设思想方法、

常用的小学数学思想方法:对应思想方法、假设思想方法、

常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。

数学的思想方法是人们对数学知识和规律本质的认识,是分析、处理和解决数学问题的根本想法。

它不象数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而是隐藏于教材之外的无“形”的知识系统。

但是却对学生数学的学习和终身发展起着至关重要的作用。

所以,在数学教学中,教师要深入挖掘文本中的数学思想和方法,适时对学生进行数学思想和方法的渗透。

那么,在小学阶段,教师要注意渗透哪些数学思想和方法呢?1、对应思想利用数量间的对应关系来思考数学问题,就是对应思想。

集合、函数、坐标等问题都以这一思想为基础。

找数量之间的对应关系,也是解答应用题的一种重要的思维方式。

在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。

例如,水果店上午卖出橘子6筐,下午又卖出同样的橘子8筐,比上午多卖100元。

每筐橘子多少元?在这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元,对应的筐数是(8-6)筐,此题就迎刃而解了。

即100÷(8-6)=50(筐)。

此外,在教学归一问题,相遇问题等都要让学生找到题中数量之间的对应关系。

到了高年级学分数乘除法应用题时,则要找到具体数量和分率之间的对应关系。

分数应用题虽然千变万化,但万变不离其宗,找到了对应关系,也就找到了解题的关键。

例如,修一段路,第一天修了全长的1/4,第二天修了全长的 2/5,还剩2100米,这条路全长多少米?根据题意列出对应关系表:总米数————“1”第二天米数——— 2/5第一天米数——— 1/4 剩下2100米——(1-1/4-2/5)从上表可以看到2100米对应的分率就是(1-1/4-2/5),也就是说,总米数的(1-1/4-2/5)就是2100米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档