多孔材料孔结构表征
多孔材料的表征及其分析

多孔材料孔结构的表征分析摘要:多孔材料的研究已成为当今材料科学研究领域的一大热点,而多孔材料的研究离不开结构表征分析。
多孔材料的表征常用X射线小角度衍射法、气体吸附法、电子显微镜观察法等。
重点介绍了这些表征方法对多孔材料的孔道有序性、孔形态、比表面积和孔体积及孔径等的表征分析应用,最后简单介绍了孔结构表征的新方法。
关键词: 多孔材料应用特性孔结构表征分析法1.引言近年来多孔材料的开发和应用日益受到人们的关注。
不仅发展非常迅速,种类也很多,如多孔聚合物、多孔陶瓷、泡沫塑料、多孔金属材料等。
这些材料具有一些共同的特点:密度小, 孔隙率高, 比表面积大。
由于它们所具有的特殊结构及性能, 使得它们备受关注。
多孔材料在很多领域都得到了应用, 如过滤器、流体分离装置、多孔电极、催化剂载体、火焰捕集器、建筑用隔音材料、水下潜艇消音器、宇航结构层压面板、汽车缓冲挡板等, 遍及化工、电化学、建筑、军工及航天等领域。
由于使用目的不同,对材料的性能要求各异,需要不同的制备技术,因此,制备出的多孔材料种类很多,形态也很多,如多孔陶瓷的形态可以为粒状、圆柱状、孔管状以及蜂窝状等。
2.多孔材料的一般特性相对连续介质材料而言。
多孔材料一般具有相对密度低、比强度高、比表面积高、重量轻、隔音、隔热、渗透性好等优点。
具体来说,多孔材料一般有如下特性:2.1机械性能的改变应用多孔材料能提高强度和刚度等机械性能。
同时降低密度,这样应用在航天、航空业就有一定的优势,据测算。
如果将现在的飞机改用多孔材料,在同等性能条件下.飞机重量减小到原来的一半。
应用多孔材料另一机械性能的改变是冲击韧性的提高,应用于汽车工业能有效降低交通事故对乘客的创造伤害。
2.2选择渗透性由于目前人们已经能制造出规则孔型而且排列规律的多孔材料,并且,孔的尺寸和方向已经可以控制。
利用这种性能可以制成分子筛,比如高效气体分离膜、可重复使用的特殊过滤装置等。
2.3选择吸附性由于每种气体或液体分子的直径不同。
avizo孔隙表征参数

avizo孔隙表征参数摘要:1.avizo 孔隙表征参数简介2.avizo 孔隙表征参数的种类3.avizo 孔隙表征参数的应用4.avizo 孔隙表征参数的优缺点正文:一、avizo 孔隙表征参数简介avizo 孔隙表征参数是一种用于描述多孔材料孔隙结构的参数,通过这些参数可以直观地反映出多孔材料的孔隙分布、孔径大小等信息。
在材料科学、环境工程、土木工程等领域中,avizo 孔隙表征参数被广泛应用于研究多孔材料的性能和应用。
二、avizo 孔隙表征参数的种类1.孔隙度:指多孔材料中孔隙体积与总体积的比值,用以表征材料的孔隙含量。
2.孔径分布:指多孔材料中孔隙的尺寸分布情况,通常用孔径分布曲线来表示。
3.孔隙连通性:指多孔材料中孔隙之间的连通程度,分为连通孔隙和封闭孔隙两类。
4.孔隙形状:指多孔材料中孔隙的几何形状,如圆形、椭圆形、不规则形等。
5.孔隙表面积:指多孔材料中孔隙表面的总面积,用以表征材料的比表面积。
三、avizo 孔隙表征参数的应用1.在材料科学中,avizo 孔隙表征参数可以用于研究材料的孔隙结构、性能和应用,为材料设计和优化提供理论依据。
2.在环境工程中,avizo 孔隙表征参数可以用于评估土壤、滤料等多孔材料的过滤、吸附性能,为环境治理提供技术支持。
3.在土木工程中,avizo 孔隙表征参数可以用于分析混凝土、岩土等建筑材料的孔隙结构,为工程设计和施工提供依据。
四、avizo 孔隙表征参数的优缺点优点:1.avizo 孔隙表征参数可以直观地反映多孔材料的孔隙结构,便于理解和分析。
2.avizo 孔隙表征参数为多孔材料的性能评价和优化设计提供了重要依据。
缺点:1.avizo 孔隙表征参数的计算和测量方法较为复杂,需要一定的理论基础和实验技能。
多孔陶瓷材料的制备与表征研究

多孔陶瓷材料的制备与表征研究一、引子:多孔陶瓷材料是具有许多孔隙结构的特殊材料,广泛应用于过滤、吸附、催化等领域。
本文旨在探讨多孔陶瓷材料的制备方法和表征技术。
二、制备方法:1. 泡沫陶瓷材料泡沫陶瓷材料是一种具有高度结构有序和孔隙连通的多孔材料,制备方法多样。
一种常见的方法是以聚合物泡沫为模板,采用浇注、喷涂等方法制备泡沫预体,然后经过热解和烧结得到陶瓷材料。
2. 模板法模板法是一种常见的多孔陶瓷制备方法,通过采用不同孔隙大小的模板,可以制备出不同孔径的陶瓷材料。
常用的模板包括聚苯乙烯微球、树脂珠等,将模板与陶瓷原料混合,烧结后,通过溶解或者燃烧去除模板,从而得到多孔陶瓷材料。
3. 发泡法发泡法是一种常用的制备多孔陶瓷材料的方法,通过在陶瓷浆料中加入气泡剂,使其在烧结过程中发生气泡膨胀,形成孔隙结构。
发泡法制备的多孔陶瓷材料孔隙布局均匀,孔径可调。
4. 真空浸渍法真空浸渍法是一种制备高度有序多孔陶瓷材料的方法。
首先制备出二氧化硅或其他陶瓷材料的溶胶,然后将其浸渍到特殊的介孔硅胶膜上,经过多次浸渍和热解处理,最终得到孔径可调的多孔陶瓷材料。
三、表征技术:1. 扫描电子显微镜(SEM)SEM可以观察到材料的表面形貌和孔隙结构。
通过SEM图像可以评估多孔陶瓷材料的孔径分布、孔隙连通性等,并可以对制备方法进行优化改进。
2. 氮气吸附-脱附法(BET)BET技术可以用来测定纳米孔隙的孔径和比表面积。
通过测定材料在吸附和脱附过程中氮气的吸附量,可以计算出材料的比表面积和孔隙体积。
3. 压汞法压汞法是一种测量材料孔隙结构及孔隙分布的方法。
利用孔隙的连通性,通过施加不同的压力,测定压汞的饱和和释放曲线,从而得到材料的孔隙直径和孔隙分布。
4. X射线衍射法(XRD)XRD可以通过分析材料的衍射谱来确定多孔陶瓷材料的结晶相、晶粒尺寸等信息。
结合其他表征技术,可以评估材料的热稳定性和晶格缺陷等特性。
结语:多孔陶瓷材料的制备和表征是一个复杂而重要的领域。
孔材料比表面与孔结构表征

344.4811 m?g 340.2511 m?g 469.4068 m?g 141.0897 m?g 199.1614 m?g
116.970 m?g
90.0825 m?g
Pore Volume
Single point adsorption total pore volume of pores less than 673.740 ?radius at P/Po = 0.985558180:
Adsorption average pore width (4V/A by BET):
36.6589
Desorption average pore width (4V/A by BET):
36.4750
BJH Adsorption average pore radius (2V/A):
37.033
BJH Desorption cumulative volume of pores between 8.500 ?and 1500.000 ?radius:
0.311831 cm?g 0.310266 cm?g 0.065320 cm?g 0.216591 cm?g 0.190212 cm?g
Pore Size
高压段可粗略地看出粒子堆积 程度,如І型中若最后上扬,则 粒子不均匀。平常得到的总孔 容通常是取相对压力为0.99左 右时氮气吸附量的冷凝值
孔材料比表面与孔结构的 表征
◆滞 后 环
※滞后环的产生原因 由于毛细管凝聚作用使N2 分子在低于常压下 冷凝填充了介孔孔道,由于开始发生毛细凝 聚时是在孔壁上的环状吸附膜液面上进行, 而脱附是从孔口的球形弯月液面开始,从而 吸脱附等温线不相重合,往往形成一个滞后 环。
H4也是狭缝孔,区别于粒子堆集,是一些类 孔材料比表似面由与层孔状结结构构的产生的孔如活性炭
多孔材料孔结构表征ppt课件

3. 孔结构的表征技术
3. 孔结构的表征技术
总结 显微法是研究100nm以上的大孔较为有 效的手段 ,能直接提供全面的孔结构信息。 对于孔径在30nm以下的纳米材料,常用气体 吸附法来测定其孔径分布;而对于孔径在 100μm以下的多孔体,则常用压汞法来测定 其孔径分布。
谢谢观赏! Thanks!
多孔材料孔结构表征
目录
1 引言 2 多孔材料的特性 3 孔结构的表征技术
1.引言
多孔材料普遍存在于我们的周围,在 结构、缓冲、减振、隔热、消音、过滤等 方面发挥着重大的作用。高孔率固体刚性 高而密度低,故天然多孔固体往往作为结 构体来使用,如木材和骨骼;而人类对多 孔材料使用,不但有结构的,而且还开发 了许多功能用途。
①孔径; ②孔径分布; ③孔形态; ④孔通道特性等
3. 孔结构的表征技术
3.1.显微法 显微法就是采用扫描电子显微
镜或透射电子显微镜对多孔陶瓷进 行直接观察的方法。该法是研究 100nm以上的大孔较为有效的手段 ,能直接提供全面的孔结构信息。 但显微法观察的视野小,只能得到 局部信息;而透射电子显微镜制样 较困难,孔的成像清晰度不高;显 微法是属于破坏性试验等,这些特 点使它成为其他方法的辅助手段, 用于提供有关孔形状的信息。
我们以沸石为例,现有制得的两 种沸石NaX和MNaX。
采用扫描电镜、X 射线衍射、氮 气吸附/脱附等对样品的结构表征结果
2. 孔结构的表征技术
图为NaX 和MNaX 的XRD 图谱,与标准 样对比未观察到任 何其它的杂峰, 说 明它们具有沸石固 有的FAU 拓扑结构 。MNaX 的衍射峰表 现出宽化的迹象, 说明它晶粒小。
MNaX体现出Ⅰ和Ⅳ型结合的特征,在较低的相对压力 (p/p0<0.01)下吸附量随压力的增大迅速上升, 即微孔填 充, 而后吸附量随压力的增加继续缓慢增加, 并当相对压 力达到p/p0≈0.4 时吸附量随压力增加迅速增加,吸附和脱 附过程变得不可逆, 即出现毛细凝聚现象,等温线上出 现明显的滞后环, 表现出典型的介孔材料特征。
多孔陶瓷的表征与性能测试技术_下_

上, 测试在不同的温度下样本的抗弯强度。 一般陶瓷材料的抗热震性能材料有高温急冷而不开 裂的性能。可通过测试样品置于某恒定温度下的炉中保 温 @N, 立即取出浸入室温下的水中, 反复测试直至样品出 现微裂纹为止。对于不方便判断微裂纹的多孔陶瓷, 也可 以测试热震后样品的抗弯强度的变化来表征材料的抗热 震性能。
( 5! )
测试设备为厂家专门生产的动态机械分析仪。如 型 仪器包括 : 分析器、 B;8C./2 &?<;82 D+8EA 生产的 FGHI; 程序控制升温的电炉、 计算机以及测量系统, 其中测量系 统包括: 给样品施加正弦力的马达、 测量样品应变的位移 传感器( ) JKFL M 参见图 I 。
!!F) =-CD!2 ( E
式中:
( !( )
— — 流体的流速( 在标准温度、 标准压力下) C7 — — — 测试样品的厚度 D7 — — — 流体的粘度 ! —
2
样品室如图 < 所示。
!"#$%&’()*%+,(#’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’-./012’&.34 ( #5678/9&.3:; )
2222222222222
式中:
-R , !-( DS - @ 6 O@T Q2222222222222 C&!
( 55)
V22 其他性能
不同的多孔材料用于不同的场合时要求具有不同的
— — 马达所施加的正弦力 PE,. /$72 — — — 震动系统的质量 G2—
V
!"#$%&’()*%+,(#’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’-./012’&.34 ( #5678/9&.3:; )
多孔碳材料的制备与表征

多孔碳材料的制备与表征多孔碳材料是一种优异的材料,具有广泛的应用前景。
它的制备和表征是一个非常重要的研究方向。
近年来,随着科技的不断发展,人们对多孔碳材料的研究越来越深入,不断出现了许多新颖的制备方法和表征技术。
本文将对多孔碳材料的制备和表征做一个简要的介绍。
一、多孔碳材料的制备1. 化学气相沉积法化学气相沉积法是一种制备多孔碳材料的常用方法。
它的原理是将有机气体加热至高温,然后通过气相反应得到多孔碳材料。
化学气相沉积法制备多孔碳材料具有效率高、操作简便等优点,但其制备出的多孔碳材料孔径分布较窄,对于较大孔径的多孔碳材料制备效果不理想。
2. 盐模板法盐模板法是一种常用的制备多孔碳材料的方法,其原理是将一定量的盐溶液涂在碳材料表面,待其干燥后在高温下烧蚀掉盐晶体,得到多孔碳材料。
盐模板法制备多孔碳材料具有孔径分布范围广、制备过程简单等特点,但对于一些具有特殊形貌的多孔碳材料制备效果不理想。
3. 滴定凝胶法滴定凝胶法是一种实验室常用的制备多孔碳材料的方法。
其原理是先将一种含碳前驱体溶解在溶剂中,再加入一种特殊的凝胶剂,使其形成凝胶。
凝胶在低温下煅烧,即可得到多孔碳材料。
滴定凝胶法制备多孔碳材料具有操作简单、适用于各种形貌的多孔碳材料等优点,但对于制备孔径较大的多孔碳材料不适用。
二、多孔碳材料的表征1. 扫描电子显微镜(SEM)扫描电子显微镜是一种常用的多孔碳材料表征技术。
它通过束缚电子的反射、散射和吸收等现象来获得样品表面形貌信息。
SEM能够反映多孔碳材料的孔洞分布、孔径大小和孔道连通性等信息。
2. 红外光谱(FTIR)红外光谱是一种常用的多孔碳材料表征技术。
它通过检测多孔碳材料的红外吸收谱来推测样品的化学结构。
FTIR能够反映多孔碳材料中的羟基、羰基和酯基等官能团。
3. 压汞法压汞法是一种常用的多孔碳材料表征技术。
它通过测定压力变化来分析样品中的孔隙结构。
压汞法能够反映多孔碳材料的孔径大小、孔容和孔隙度等信息。
多孔陶瓷

陶瓷孔道后,将大大提高转换效率和反应
速度。
例如用泡沫陶瓷和蜂窝陶瓷被覆贵金 属或稀土金属催化剂后,可用于汽车的尾 气处理,使层气中的CO、CmHn化合物转
化为CO2,并能使捕获的炭粒在较低的温
度下起燃,使净化过滤器催化再生。
当多孔陶瓷的孔径小于气体分子平 均自由程时,不同气体具有不同的渗透
能力,利用多孔陶瓷的这一特点,可选
择性地分离某一反应生成的气体产物,
而使反应速度加快。
作敏感元件
利用多孔陶瓷探头制成的土壤水分测定 装置,可快速测出土壤中的水分变化,其
探头的灵敏度取决于材料的气孔率及孔径。
多孔陶瓷片两侧镀覆电极后,插入土
壤中,土壤含盐率的高低将由陶瓷片的电
阻值变化而反映出来。
作为隔膜材料
在电解法生产双氧水工艺中,用多孔
多孔陶瓷的孔结构特征与陶瓷本身的优异性能结 合,使其具有均匀的透过性、发达的比表面积、低密度、 低热导率、低热容以及优良的耐高温、耐磨损、耐气候 性、抗腐蚀性和良好的刚度、一定的机械强度等特性。 这些性能使多孔陶瓷成为发展迅速,应用广泛,前景广阔 的新型材料。
2.2多孔陶瓷的孔隙形成机理 多孔陶瓷的孔隙结构通常是由颗粒堆积形成的空腔, 坯体中含有大量可燃物或者可分解物形成的空隙,坯 体形成过程中机械发泡形成的空隙以及由于坯体成 形过程中引入的有机前驱体燃烧形成的孔隙。一般 采用骨料颗粒堆积法和前驱体燃尽法均可以制得较 高的开口气孔的多孔陶瓷制品;而采用可燃物或分解 物在坯体内部形成的气孔大部分为闭口气孔或半开
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 孔结构的表征技术
3.2.2第Ⅵ类吸附等温线
介孔材料的吸附行为大 多对应于第Ⅳ类吸附等温 线:开始主要是单分子吸 附,随后是多层吸附,显 著特征是在中比压区发生 毛细管凝聚现象,吸附等 温线上表现为一个突跃, 并且孔径越大,突跃发生 的压力越高,然后是外表 面吸附。
2. 孔结构的表征技术
例子 我们以沸石为例,现有制得的两 种沸石NaX和MNaX。 采用扫描电镜、X 射线衍射、 氮气吸附/脱附等对样品的结构表征 结果
3. 孔结构的表征技术
3.1.显微法 显微法就是采用扫描电子显微 镜或透射电子显微镜对多孔陶瓷进 行直接观察的方法。该法是研究 100nm以上的大孔较为有效的手段 , 能直接提供全面的孔结构信息。但 显微法观察的视野小,只能得到局 部信息;而透射电子显微镜制样较 困难,孔的成像清晰度不高;显微 法是属于破坏性试验等,这些特点 使它成为其他方法的辅助手段,用 于提供有关孔形状的信息。
2. 孔结构的表征技术
图5 NaX 和MNaX 的氮气吸附/脱附 等温线NaX在较低的相对压力小于 0.01下吸附量随压力的增大迅速上 升, 达到一定相对压力后吸附接近 饱和,之后随着压力的增加吸附量 不再出现明显变化, 属于Ⅰ型等温 线, 表明其为微孔沸石。 MNaX体现出Ⅰ和Ⅳ型结合的特征,在较低的相对压力 (p/p0<0.01)下吸附量随压力的增大迅速上升, 即微孔填 充, 而后吸附量随压力的增加继续缓慢增加, 并当相对压 力达到p/p0≈0.4 时吸附量随压力增加迅速增加,吸附和脱 附过程变得不可逆, 即出现毛细凝聚现象,等温线上出 现明显的滞后环, 表现出典型的介孔材料特征。
2 cos 压力下进入多孔材料中汞的量就可以计算出 P P P (1) r 相应压力下,大于某半径 r 的孔洞的体积, 而公式(1)的压力差是用来排除孔中的液体,而压 从而根据孔洞形状可以得出孔的尺寸分布以 汞法所施加的压力是用来把汞压入孔中,因为汞对于待测 试材料来说是不浸润的, cosθ 为负值,所以对于圆柱形孔 及比表面积。
3. 孔结构的表征技术
3.2气体吸附法 气体吸附法是表征多孔材料最重要的方
法之一。通常采用它可以测定多孔材料的比
表面积、孔体积和孔径分布情况,以及进行
表面性质的研究。孔道结构的类型和相关性
质则可以通过吸附特征曲线来表征。
3. 孔结构的表征技术
3.2.1吸附平衡等温线
为了避免发生化学吸附,常采用化学惰性 气体如N2或Ar为吸附质,恒温条件下,测定不 同比压P/P0(相对压力,P为气体的真实压力, P0为气体在测定温度下的饱和蒸气压)下的气体 吸附量,所得曲线称为吸附平衡等温线。吸附 平衡等温线包括吸附和脱附两部分,材料的孔 结构不同,吸附平衡等温线的形状不同。根据 的分类,气体吸脱附等温线可分为6类,其中4 种类型适合多孔材料。
1.引言
多孔材料:是一类包含大量孔隙的材 料,这种多孔固体材料主要由形成材料本 身基本构架的连续固相和形成孔隙的流体 相所组成,介质为气体和液体。
根据孔径尺寸在2nm以下的称为微孔,
2nm-50nm为介孔,而在50nm以上的称为大
孔。
2.多孔材料性能检测-主要评价指标
一般可用下述参数来表征 多孔材料的特性: ①孔径; ②孔径分布; ③孔形态; ④孔通道特性等
多孔材料孔结构表征
目
1
录
引言
2
多孔材料的特性
3
孔结构的表征技术
1.引言
多孔材料普遍存在于我们的周围,在 结构、缓冲、减振、隔热、消音、过滤等 方面发挥着重大的作用。高孔率固体刚性 高而密度低,故天然多孔固体往往作为结 构体来使用,如木材和骨骼;而人类对多 孔材料使用,不但有结构的,而且还开发 了许多功能用途。
2 1
洞来说,其半径r为:
2 cos r P
(2)
3. 孔结构的表征技术
3.2.3压汞仪的测试方法
主要原理:实验时先将多孔试样置于膨
胀计内,在放进冲汞装置中,其真空条件下向膨 胀计冲汞,使汞包住试样。压入多孔体中的汞量 由与试样相连的膨胀计毛细管内汞柱的高度变化 来表示。常用的测定方法为直接用测高仪读出汞 柱的高度差,从而求得体积的累计变化量。
2. 孔结构的表征技术
3.3压汞法 对于大孔材料的孔 结构表征常用压汞法, 压汞测孔法能直接获取 孔结构第一手信息, 孔隙 结构换算时无需大量、 复杂的模型和假定。
3. 孔结构的表征技术
3.3.1压汞法测试原理
从公式(2 )可以看出,当△P增大时, 压汞法是通过测量施加不同压力时进入多1) 能进入汞的孔的半径就减小。因此测试不同
2. 孔结构的表征技术
图为NaX 和MNaX 的XRD 图谱,与标准 样对比未观察到任 何其它的杂峰, 说 明它们具有沸石固 有的FAU 拓扑结构。 MNaX 的衍射峰表现 出宽化的迹象, 说 明它晶粒小。
2. 孔结构的表征技术
NaX(a)和MNaX(b)沸石的SEM 照片。 NaX 为八面体, 且表面光滑; 而MNaX 呈现为表面粗糙的球体。
3. 孔结构的表征技术
3. 孔结构的表征技术
总 结 显微法是研究100nm以上的大孔较为有 效的手段 ,能直接提供全面的孔结构信息。 对于孔径在30nm以下的纳米材料,常用气体 吸附法来测定其孔径分布;而对于孔径在 100μm以下的多孔体,则常用压汞法来测定 其孔径分布。
3. 孔结构的表征技术
3.2.2第1类吸附等温线
对微孔材料而言,其 吸附行为对应着第1类吸 附等温线。 特征为:在很低的相 对压力开始吸附,相对压 力小于0.3,氮气吸附观 察不到毛细凝聚现象,在 高相对压力区域的吸附行 为与介孔和大孔材料相同。
3. 孔结构的表征技术
3.2.2第Ⅱ类吸附等温线
大孔材料对应于第Ⅱ 类吸附等温线,在低比压 区主要是单分子吸附,但 随后的多层吸附与单分子 吸附之间没有明显界限, 没有发生毛细凝聚现象, 在中等压力下没有突跃。
3. 孔结构的表征技术
3.2.2第Ⅳ类吸附等温线
第一段:先形成单层吸附,拐点B 指示单分子层饱和吸附量 第二段:开始多层吸附 第三段:毛细凝聚,其中,滞后 环的始点,表示最小毛细孔开始 凝聚;滞后环的终点,表示最大 的孔被凝聚液充满;滞后环以后 出现平台,表示整个体系被凝聚 液充满,吸附量不再增加,这也 意味着体系中的孔是有一定上限 的。