时序电路的分析和设计

合集下载

时序电路的基本分析与设计方法

时序电路的基本分析与设计方法

时序电路的基本分析与设计方法时序逻辑电路时序逻辑电路——电路任何一个时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关。

时序电路中务必含有具有经历能力的存储器件。

时序电路的逻辑功能可用逻辑表达式、状态表、卡诺图、状态图、时序图与逻辑图6种方式表示,这些表示方法在本质上是相同的,能够互相转换。

一、时序电路的基本分析与设计方法 (一)分析步骤1.根据给定的时序电路图写出下列各逻辑方程式: (1)各触发器的时钟方程。

(2)时序电路的输出方程。

(3)各触发器的驱动方程。

2.将驱动方程代入相应触发器的特性方程,求得各触发器的次态方程,也就是时序逻辑电路的状态方程。

3.根据状态方程与输出方程,列出该时序电路的状态表,画出状态图或者时序图。

4.根据电路的状态表或者状态图说明给定时序逻辑电路的逻辑功能。

【例1】分析时序电路(1)时钟方程:CP CP CP CP ===012输出方程:nnQ Q Y 21=驱动方程:⎪⎩⎪⎨⎧======n n n nnn Q K Q J Q K Q J Q K Q J 202001011212(2)求状态方程JK 触发器的特性方程:n n n Q K Q J Q+=+1将各触发器的驱动方程代入,即得电路的状态方程:⎪⎩⎪⎨⎧=+=+==+=+==+=+=+++n n n n n n n n n n n n n n n n n nn n n n n n Q Q Q Q Q Q K Q J Q Q Q Q Q Q Q K Q J Q Q Q Q Q Q Q K Q J Q 202020000100101011111112121222212(3)计算、列状态表nn nn nn n n Q Q Y Q Q Q Q Q Q 21210011112=⎪⎩⎪⎨⎧===+++(4)画状态图及时序图(5)逻辑功能有效循环的6个状态分别是0~5这6个十进制数字的格雷码,同时在时钟脉冲CP 的作用下,这6个状态是按递增规律变化的,即:000→001→011→111→110→100→000→…因此这是一个用格雷码表示的六进制同步加法计数器。

异步时序逻辑电路的分析与设计

异步时序逻辑电路的分析与设计

异步时序逻辑电路的分析与设计异步时序逻辑电路是一种基于信号的到达时间和时序性的电路设计方法。

与同步时序逻辑电路不同,异步时序逻辑电路中的数据传输和处理不依赖于时钟信号,而是根据输入信号的到达顺序和时序关系来进行操作。

本文将详细介绍异步时序逻辑电路的分析与设计。

异步时序逻辑电路的分析主要包括信号流图的建立和状态表的推导。

首先,通过对输入信号的时序关系进行分析和理解,可以根据具体应用需求建立信号流图。

信号流图是一种图形化表示方式,其中包含了电路中信号的流动方式以及各个元件的逻辑功能。

在建立信号流图时,需要注意信号的输入和输出时间以及逻辑功能的实现方式,这是实现异步时序逻辑电路的关键。

在信号流图的基础上,可以根据信号的到达先后顺序推导状态表。

状态表是对电路中每个元件当前状态和下一状态的描述。

通过观察信号流图,可以确定每个元件在不同状态下的输出值,并利用这些信息进行状态表的推导。

在状态表中,可以列出元件的当前状态和下一状态的取值,并根据逻辑功能的要求来确定元件的控制信号。

异步时序逻辑电路的设计主要涉及到逻辑电路元件的选择和电路的优化。

在异步时序逻辑电路中,常用的逻辑电路元件包括触发器、门电路和编码器等。

根据实际需求,可以选择不同类型的逻辑电路元件来实现电路的逻辑功能。

在设计时,需要注意减少电路的延迟和功耗,提高电路的性能和可靠性。

可以通过选择低延迟的元件、合理布局电路和优化信号传输路径等方式来减小电路的延迟。

另外,可以采用时序检测和冗余检测等方法来增加电路的可靠性。

除了分析和设计,测试和验证是异步时序逻辑电路设计中的重要环节。

可以利用仿真软件对电路进行测试和验证,以确保电路的正确性和性能。

通过仿真可以观察电路的输入输出关系,检测是否存在冲突或错误,并进行合理的调整和优化。

总结起来,异步时序逻辑电路的分析与设计涉及到信号流图的建立、状态表的推导、元件的选择和电路的优化等方面。

通过合理的分析和设计,可以实现复杂的时序逻辑功能,并提高电路的性能和可靠性。

时序电路的设计及显示

时序电路的设计及显示

时序电路的设计及显示时序电路是一种能够根据输入信号的时序关系来产生相应输出信号的电路。

它主要应用于计算机、通信系统、测控系统等领域,用于控制及处理各种时序信号。

本文将介绍时序电路的设计原理以及不同类型的时序电路显示。

1.时序电路的设计原理1.1时序逻辑电路时序逻辑电路是根据时序信号的控制来产生相应的输出信号。

它由组合逻辑门和触发器组成。

组合逻辑门根据输入信号的逻辑关系产生输出信号,而触发器则根据时钟信号的控制来保持或改变其输出状态。

时序逻辑电路的设计一般包括以下步骤:1)确定逻辑功能:根据需求确定所需的逻辑功能,包括输入输出信号及其逻辑关系。

2)设计组合逻辑电路:根据逻辑功能设计组合逻辑电路,利用逻辑门实现输入信号的逻辑关系。

3)设计时序控制电路:根据逻辑功能确定触发器的数量及其工作方式,并利用时序控制电路控制触发器的输入和输出。

4)进行仿真与验证:利用电路仿真软件进行仿真验证,确保电路的正确性。

5)设计PCB电路板:根据电路图设计PCB电路板,完成电路的布局和连线。

6)进行实际测试:将设计好的电路板进行实际测试,验证电路的性能和可靠性。

1.2时序控制电路时序控制电路用于控制时序逻辑电路的工作状态。

它主要由时钟信号发生器、时序控制器和触发器等组成。

时序控制电路主要包括同步时序控制和异步时序控制两种形式。

同步时序控制是通过时钟信号来控制触发器的工作,保证电路的同步工作。

异步时序控制则根据输入信号的状态来控制触发器的工作,适用于电路的反应时间较短或信号复杂的情况。

2.时序电路的显示2.1数码管显示数码管是一种将数字信号以数字形式显示的设备,通常由七段显示元件组成。

数码管显示通过控制数码管的每一段,将数字信号转化为相应的数字显示。

2.2液晶显示液晶显示屏是一种将数字、字母、图形等以液晶显示的设备。

液晶显示采用液晶材料的光学性质来显示信息,具有低功耗、薄、轻、反应速度快等优点。

2.3LED显示LED显示是一种通过控制发光二极管的亮灭来显示信息的设备。

时序逻辑电路设计与分析(完整电子教案)

时序逻辑电路设计与分析(完整电子教案)
(a)同步D触发器(b)同步JK触发器
图8.20具有异步控制端的同步触发器
【训练与提高】
制作一个时钟电路中的分钟校时电路。
工作原理:时钟电路中的分钟校时电路有按键控制,按键按一次(阐述有效信号,打开门电路),门电路输出将改变N次状态,其中N此变化(变化快门)由输入的时钟信号决定。同时该电路中具有秒钟输入信号。其参考电路如下图8.21所示。试搭建调试电路,分析其工作过程。
时序逻辑电路设计与分析(完整电子教案)
8.
触发器(flip flop)是构成时序逻辑电路的基本单元,能记忆、存储一位二进制信息,触发器也称双稳态触发器,它有两种稳定输出工作状态,即分别输出1和输出0的状态。在无输入信号作用时,这种状态是稳定的;而当输入信号到来并满足一定逻辑关系时,输出端的状态将迅速变化,能从一种稳定状态转换到另一种稳定状态。
三、RS触发器在机械开关去抖上的应用
通常按键开关为机械弹性开关,当机械触点断开、闭合时,电压信号小型如图8.6。由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而在闭合及断开的瞬间均伴随有一连串的抖动,如下图。抖动时间的长短由按键的机械特性决定,一般为5ms~10ms。这是一个很重要的时间参数,在很多场合都要用到。
【训练与提高】
搭建2组按键去抖动电路,并用示波器观察输出结果。
8.
【项目任务】
测试如下电路,改变A、B状态,观察LED1和LED2的变化,并建立真值表。
图8.8测试电路(multisim)
【信息单】
基本RS触发器属于无时钟触发器,触发器状态的变换由 、 端输入信号直接控制。在实际工作中,触发器的工作状态不仅由输入决定,而且还要求触发器按一定的节拍翻转,为此需要加入一个时钟控制端CP,只有在CP端上出现时钟脉冲时,触发器的状态才能变化。带有时钟信号的触发器叫时钟触发器,又称同步触发器。

第4章 时序逻辑电路设计

第4章 时序逻辑电路设计
时序逻辑电路是具有记忆功能的逻辑电路,记忆元件 一般采用触发器。因此,时序逻辑电路由组合电路和 触发器组成,其等效模型如图4.5所示。
1模型
时序电路按其状态的改变方式不同,可分为同 步时序逻辑电路和异步时序逻辑电路两种,在 图4.5中,当CLK1与CLK2为相同信号时,该 电路为同步电路;当CLK1与CLK2为不同信号 时,该电路为异步电路。
output q;
reg
q;
always@(posedge clk or posedge rst)
begin
if(rst==1’b1)
q<=1’b0;
else if(en==1’b1)
q<=data;
else ;
end
endmodule
带同步复位、上升沿触发的触发器
module dff_synrst(data,rst,clk,q); input data,rst,clk; output q; reg q; always@(posedge clk) begin if(rst==1’b1) q<=1’b0; else q<=data; end
本设计要求用仿真和测试两种手段来验证 计数器的功能。实验时,可以通过修改十进 制计数器的设计得到六进制、100进制计数器。
三、设计要求
(1) 完成各模块的Verilog HDL设计编码; (2) 进行功能仿真; (3) 下载并验证计数器功能; (4) 如果60进制计数器要求用6进制和10进制
计数器搭建电路,请画出设计连接图,并 完成设计编码和验证。
else q<=data; end endmodule
带异步复位和置位、上升沿触发的触发器
module dff_asynrst(data,rst,set,clk,q);

实验时序电路实验报告

实验时序电路实验报告

实验时序电路实验报告摘要:时序电路是数字电路中的一种重要电路,它负责控制系统中各个部件和信号的时序关系。

本实验旨在通过设计和实现一个简单的时序电路,加深对时序电路原理的理解,并掌握时序电路设计的基本方法和步骤。

在实验中,我们采用了JK触发器和计数器等器件,通过逻辑电平的高低和输入信号的输入顺序来实现不同的时序控制功能。

通过实验我们发现,在正确配置和连接时序电路的各个部件后,时序电路可以准确地按照预定的时序顺序进行工作,实现了预期的控制效果。

一、实验目的1. 了解时序电路的基本概念和工作原理;2. 掌握JK触发器和计数器的基本特性和设计方法;3. 设计和实现一个简单的时序电路。

二、实验器材和设备1. 实验台板2. 集成电路(IC):7404、74107、741613. 电源、导线等三、实验原理1. 时序电路简介时序电路又称为序贯电路,是数字电路中按照一定的时序和顺序进行工作的电路。

它根据输入信号和内部时钟信号的时序关系来控制系统的输出,能够实现各种复杂的逻辑控制功能。

时序电路对时钟信号的边沿触发具有较高的要求,通常使用触发器作为时序电路的基本单元。

2. JK触发器JK触发器是一种常用的时序电路元件,具有两个正反馈输入端(J和K)和两个输出端(Q和Q')。

JK触发器的工作原理是当时钟触发信号为上升沿时,J、K输入信号控制Q输出端的电平状态。

3. 计数器计数器是一种常用的时序电路模块,它可以根据时钟信号的输入进行计数,并输出对应的计数结果。

常见的计数器有二进制计数器、十进制计数器等。

四、实验内容和步骤1. 实验电路的设计根据实验要求和所学知识,设计一个简单的时序电路。

本实验中,我们设计一个由两个JK触发器和一个计数器构成的时序电路。

其中,JK触发器用于接收输入信号和时钟信号,并根据输入信号的顺序和时钟信号的边沿触发生成输出信号;计数器用于对输入信号的个数进行计数,并根据计数结果控制输出信号的状态。

时序电路的设计实验报告

时序电路的设计实验报告时序电路的设计实验报告引言:时序电路是数字电路中的一种重要类型,它在各种电子设备中都有广泛应用。

本实验旨在通过设计一个简单的时序电路,来加深对时序电路原理和设计方法的理解。

实验目的:1. 理解时序电路的基本原理和工作方式;2. 掌握时序电路的设计方法;3. 通过实际设计和调试,提高电路设计和故障排除的能力。

实验器材和元件:1. 逻辑门集成电路(例如74LS00、74LS04等);2. 触发器集成电路(例如74LS74等);3. 电阻、电容、开关等辅助元件;4. 示波器、数字信号发生器等测试设备。

实验原理:时序电路是根据输入信号的时序关系来控制输出信号的电路。

它通常由触发器、计数器、多路选择器等组成。

触发器是时序电路的基本组成单元,它能够存储和传递数据,并且根据时钟信号的变化来改变输出状态。

实验步骤:1. 根据实验要求,确定时序电路的功能和输入输出要求;2. 根据功能要求,选择合适的逻辑门和触发器进行电路设计;3. 根据设计原理,绘制电路原理图;4. 按照原理图,进行电路的布线和焊接;5. 使用数字信号发生器提供输入信号,通过示波器观察输出信号;6. 调试电路,确保电路按照设计要求正常工作;7. 对电路进行性能测试和稳定性测试;8. 记录实验数据和观察结果;9. 分析实验结果,总结电路设计中的问题和经验。

实验结果:经过设计和调试,本次实验成功实现了所要求的时序电路功能。

输入信号经过时序电路处理后,输出信号按照预期的时序关系变化。

实验数据表明,电路的稳定性和性能良好。

实验总结:通过本次实验,我深入了解了时序电路的原理和设计方法。

在实际操作中,我遇到了一些问题,例如电路布线不当导致信号干扰、触发器的选择不合适等。

通过调试和修改,我逐渐解决了这些问题,并获得了宝贵的经验。

同时,我也意识到了时序电路设计的重要性,它直接影响到整个电子设备的性能和稳定性。

未来展望:时序电路是数字电路中的基础知识,我将继续深入学习和研究相关内容。

时序逻辑电路的分析和设计

CP FF0 Q0 1J FF1
莫尔型同步时序 电路。 2. 写出各触发器 的驱动方程。
n J 0 K 0 Q2
1J >C >C1
1 1K
1J
Q1 &
≥1 1J
FF2
Q2
1J >C >C1
1 1K
1J >C1 >C
1 1K Q2
输 入 信 号
1K
1K
Y0 A1 74139Y1 A0 Y2 Y3
n n n n n Q0 1 Q2 Q0 Q2 Q0
n n Q1n1 Q0 Q1n Q0 Q1n
n n n n n n Q2 1 (Q1nQ0 Q2 )Q n Q1nQ0 Q2 Q2 2
n n n n n Q2 1 Q1nQ0 Q n Q1nQ0 Q2 Q2 2
Q
n
=1
1
Y=Q2Q1
n 1 1J 1J
n Q2 1
n 1 Q 1K Q2 1 X1K Q1n Q Q2 1X Q1 Q n 2 3.求出电路状态方程。 & n
1 2
>C >C1
>C >C1
输 出 信 号 n
Qn1 JQ n KQn >C
1J
Q2
n 1
n n X Q1 Q2
Q Q
1
1 0
n +1 1
3
第六章
1、组合电路:


时序逻辑电路是数字逻辑电路的重要组成部分。 逻辑电路可分为 两大类:
由若干逻辑门组成,电路不具记忆能力。 电路的输出仅仅与当时的输入有关。
2、时序电路:
延迟元件或触发器
存储电路,因而具有记忆能力。 电路的输出不仅与当时的输入有关,而且 还与电路原来的状态有关。

《时序逻辑电路分析》课件

优化触发器设计
采用低功耗、高速的触发器设计,减少资源占用。
提高工作速度的优化方法
并行处理
通过并行处理技术,提高电路的工作 速度。
时钟分频与倍频
根据电路的工作频率需求,合理选择 时钟的分频与倍频方案,以优化工作 速度。
THANKS
感谢观看
REPORTING
PART 03
时序逻辑电路的设计
REPORTING
同步设计法
01
同步设计法定义
同步设计法是一种基于时钟信号 的设计方法,用于构建时序逻辑
电路。
03
优点
同步设计法具有较高的可靠性和 稳定性,能够实现复杂的逻辑功
能。
02
工作原理
在同步设计法中,所有操作都严 格在时钟信号的驱动下进行,保 证了电路的稳定性和可靠性。
《时序逻辑电路分析 》PPT课件
REPORTING
• 时序逻辑电路概述 • 时序逻辑电路的分析方法 • 时序逻辑电路的设计 • 时序逻辑电路的应用 • 时序逻辑电路的优化设计
目录
PART 01
时序逻辑电
时序逻辑电路的定义、特点
时序逻辑电路的特点包括
具有记忆功能、具有时钟信号控制、具有输入信号和输出信号等。
时序逻辑电路的基本组成
时序逻辑电路由触发器、组合逻 辑电路和时钟信号源三部分组成 。
组合逻辑电路用于实现输入信号 到输出信号的逻辑变换,主要由 门电路组成。
总结词:时序逻辑电路的基本组 成
触发器是时序逻辑电路中的核心 元件,用于存储状态信息,常见 的触发器有RS触发器、D触发器 、JK触发器和T触发器等。
04
异步时序逻辑电路是指触发器的时钟输入端接在不同的时钟源上,时 钟信号独立作用于各个触发器,实现状态异步转换。

时序电路应用实验报告(3篇)

第1篇一、实验目的1. 理解时序电路的基本概念和组成,掌握时序电路的设计方法和分析方法。

2. 掌握计数器、寄存器、移位寄存器等时序电路的应用。

3. 熟悉FPGA开发环境,能够使用Quartus II设计工具进行时序电路的设计和仿真。

二、实验原理时序电路是数字电路中的一种重要电路,它能够根据输入信号的变化,产生一系列有序的输出信号。

时序电路主要由触发器、逻辑门和时钟信号组成。

1. 触发器:触发器是时序电路的基本单元,具有存储一个二进制信息的功能。

常见的触发器有D触发器、JK触发器、T触发器等。

2. 逻辑门:逻辑门用于实现基本的逻辑运算,如与、或、非、异或等。

3. 时钟信号:时钟信号是时序电路的同步信号,用于控制触发器的翻转。

三、实验内容1. 计数器设计(1)设计一个3位同步二进制加计数器。

(2)设计一个3位同步二进制减计数器。

2. 寄存器设计使用74LS74触发器设计一个双向移位寄存器。

3. 移位寄存器设计使用74LS74触发器设计一个单向移位寄存器。

4. 环形计数器设计使用74LS74触发器设计一个环形计数器。

5. 可控分频器设计使用Verilog HDL语言设计一个可控分频器,实现时钟信号的分频功能。

四、实验步骤1. 使用Quartus II设计工具创建工程,并添加所需的设计文件。

2. 根据实验原理,编写时序电路的Verilog HDL代码。

3. 编译代码,并生成测试平台。

4. 在测试平台上进行仿真,验证时序电路的功能。

5. 将设计下载到FPGA,进行硬件实验。

6. 记录实验结果,分析实验现象。

五、实验结果与分析1. 计数器实验结果(1)3位同步二进制加计数器:按照时钟信号的变化,计数器能够从000计数到111。

(2)3位同步二进制减计数器:按照时钟信号的变化,计数器能够从111减到000。

2. 寄存器实验结果使用74LS74触发器设计的双向移位寄存器,能够实现数据的左移和右移功能。

3. 移位寄存器实验结果使用74LS74触发器设计的单向移位寄存器,能够实现数据的左移功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Qn+1=X1X2Qn+X1X2Qn=X1X2Qn+(X1+X2)Q
n
电路输出方程:
Z= X1X2Qn+X1X2Qn+X1X2Qn+X1X2Qn 11
3)状态转移表:
输入
S(t)
X1 X2
Qn
00
0
00
1
01
0
01
1
10
0
10
1
11
0
11
1
N(t) Qn+1
输出 Z
0
0
0
1
0
1
DF
D╳ ╳ ╳
C
E/0
F/0
D
G/0
H/0
E
A/0
B/0
F
C/0
D/0
G
E/0
F/0
E √ ╳AC A√E ╳ BD BF
H
G/0
H/1
F ╳AC BD

╳EDCF

╳ABDC
G AB√FE ╳CDEF √

√AE
BF
╳CDEF
H╳ ╳ ╳ ╳ ╳ ╳ ╳
ABCDE FG
等价 状态:
[AE]
[BF] [CG] [AC] [AG] [CE] [EG]
1/0
A
B
0/0 00
01
0/0
0/0 D
1/1 11
0/0 1/0
1/0
C 10
图6.2.5 例6.2.2电路的状态转移图
8
4)分析逻辑功能:Mealy型电路。在任何状态 下,一旦X出现0,则电路回到初始状态A, 且输出Z为0。当X连续出现四个及四个以上 的“1”,输出Z则为1,可以看出,该电路是 一个连续四个以上1的检测电路。
1
1
0
1
1
0
加 数 X2 0
1
1
0
1
0
0
低位进位 Qn 1
1
0
1
0
0
0
高位进位Qn+1 0
1
1
0
1
0
0
本位和 Z 1
1
0
1
0Байду номын сангаас
1
0
13
同步时序电路的设计
设计步骤: (1)根据功能要求,确定输入输出信号,建立原始状态
转移表。 最为关键重要的一步,不易掌握。初次建立的
状态转移表往往不是最简的,因此称为原始状态表。 (2)化简状态表
B:0;
E:0101;
C:01;
X/Z
状态
1/0
1/0
0/0
0/0
A
B
1/0
C
0/0
D
1/0
E
0/0
0/0
1/1 18
注意: ①确定有多少状态来表示所设计电路,决
不能遗漏任何一个可能的状态。
②当外部输入变量为n个时,则每个状态有 2n两个转移方向。
19
可导出原始状态转移表:
S(t)
A B C D E
n+1
2
1
Z
X =0 X =1 X =0 X =1
0 0 00 01
0
0
0 1 0 0 10
0
0
1 0 00 11
0
0
1 1 00 11
0
1
6
表6.2.3(c)例6.2.2电路的状态转移表
N(t) S(t)
X =0 X =1
A
A
B
B
A
C
C
A
D
D
A
D
Z(t)
X= 0 X = 1
0
0
0
0
0
0
0
1
7
Q2Q1 Xn/Zn
16
定义状态:
A:起始状态,准备检测。
B:电路收到序列的最后一位是0;
C:电路收到序列的最后两位是01;
D:电路收到序列的最后三位是010; E:电路收到序列的最后四位是0101; F:电路收到序列的最后五位是01011;准
备重新检测
F状态并入A状态。
17
检测序列01011状态转移图
A:01011,准备; D:010;
22
例2:将下面原始状态表进行化简。
S(t)
N(t)/Z(t)
X=0
X=1
A
A/0
B/0
B
C/0
D/0
C
E/0
F/0
D
G/0
H/0
E
A/0
B/0
F
C/0
D/0
G
E/0
F/0
H
G/0
H/1
23
S(t) N(t)/Z(t)
X=0
X=1
隐含表
A
A/0
B/0
B
C/0
D/0
B ╳ABDC
C
√ABFE
╳CE
2
例1:分析下图所示电路。
Q2
Q1
Z
1J
1J
C1
C1
CP
1K
1K
1
&
&
1
1
&
X
3
解:1)电路分析:Mealy型电路,同步时 序电路,输入:X,输出Z。
2)列方程:
a、激励方程:J1=X,K1=X·Q2n。 J2=XQ1n,K2=X。
b、状态方程: Q1n+1=[XQ1n+X·Q2nQ1n].CP Q2n+1=[XQ1nQ2n+X·Q2n].CP c、输出方程:Z=XQ1nQ2n
N(t) X=0 X=1
BA BC DA BE DA
Z(t)
X=0 X=1
0
0
0
0
0
0
0
0
0
1
20
化简原始状态表
关键:寻找等价状态。什么是等价状态?满足 以下两条件:
①在所有输入条件下,两状态对应输出完全相 同。
②在所有输入条件下,状态转移也完全相同。
等价状态可以合并为一个状态。
21
化简过程分三步: 画出隐含表进行顺序比较。 进行关联比较 列出最小化状态表。
原始状态表往往存在多余的状态或重复的状态, 若状态越多,则电路越复杂,必须对其进行化简。
14
(3)进行状态编码 (4)选定触发器,根据状态转移表设计各触发器
的激励函数和输出函数。 (5)画电路图。
15
建立原始状态表
例1:设计一个同步序列电路对输入序列进 行检测,当出现01011时,输出为1,否则 输出为0。 解:输入:X,输出:Z。
1
0
0
1
1
0
1
0
1
1
4)逻辑功能:实现串行二进制加法运算。X1X2为被加数和 加数,Qn为低位来的进位,Qn+1表示向高位的进位,Z为
计算结果。
12
例如:X1=110110,X2=110100 ,则运算如下表所示:
节拍脉冲CP CP7 CP6 CP5 CP4 CP3 CP2 CP1
被加数 X1 0
24
等价类:等价状态的集合。 [AE],[BF],[CG],[AC],[AG],[CE],[EG]
最大等价类:包含了全部等价状态的等价类。 [ACEG] [BF] [D] [F] 重新命名为: a,b,c,d状态
9
4 例2:分析下图所示电路5 。
&
1 1
A & ?
Z
X
&
N A X N
&
C
1 & J
1
C
R 1 & K
10
解:1)分析电路结构:该电路是由七个与非门 及一个JKFF组成,且CP下降沿触发,属于米 勒电路,输入信号X1,X2,输出信号Z。
2)求触发器激励函数:J=X1X2,K=X1X2 触发器次态方程:
4
表6.2.3(a)例6.2.2电路的状态转移表
当前输入 当前状态 下一状态 当前输出
X
Q Q Q Q n
n
2
1
n+1 n+1
2
1
Z
0
00
00
0
0
01
00
0
0
10
00
0
0
11
00
0
1
00
01
0
1
01
10
0
1
10
11
0
1
11
11
1
5
表6.2.3(b)例6.2.2电路的状态转移表
Qn2
Q
n 1
Q Q n+1
时序电路的分析 和设计
1
时序电路的分析步骤
(1)电路分析:根据电路结构,确定是同步还是异 步电路,确定输入信号和输出信号,哪些部分是 组合逻辑电路,哪些部分是存储电路。
(2)列方程: 列各触发器激励方程
列各触发器状态方程(包括CP) 列电路输出方程
(3)作状态转移表(图),波形图。
(4)分析逻辑功能。
相关文档
最新文档