九年级数学画角平分线
人教版初中数学《角的平分线的性质》_完美课件

交OA于点M,交OB于点N
尺规法画角平分线
A M
C
O
NB
分别以点M,N为圆心,大于½MN的长度为半径画
弧,两弧在∠AOB的内部交于点C
尺规法画角平分线
A M
C
O
NB
画射线OC,即为∠AOB的角平分线
思考和交流
• 在你刚才画好的角平分线OC 上任意取一点P,过点P画出 OA和OB的垂线段,分别记 垂足为D,E。PD和PE的长 度有什么关系?
• 在OC上再取几个点试一下, 并和你的伙伴交流结论,你 们发现角平分线有什么性质?
思考和交流
• 经过测量,PD=PE总成立。 • 经过讨论,我们猜想: • 角分线上的点到角两边的距
离相等。
你能用全等三角 形证明吗?
怎样证明几何命题?
• 证明几何命题,先明确已知和求证。
– 已知:一个点在一个角的平分线上。 – 求证:这个点到这个角两边的距离相等。
角分线上的点到角两边的距离相等
A D
∵OC平分∠AOB,
O
P C PD⊥OA,PE⊥OB
∴PD=PE
EB
动脑想一想
• 如图,要在S区建一个 集贸中心,使它到铁路、 公路的距离相等,并且 离公路与铁路的交叉处 500m,这个集贸中心应 建在哪里?
动脑想一想
• 角分线上的点到角两边的距离相等。 • 到角的两边的距离相等的点是否也在角的
DC=BC(已知) ∴ △ADC≌△ABC (SSS) ∴∠DAC=∠BAC(对应角相等) 即 AE平分∠BAD
动脑想一想
• 通过刚才的启发,你能想到怎样画出下面 的角的平分线吗?
A
仅用尺规作图,
已知∠AOB,
求作∠AOB的
初中数学 如何画出一个角的平分线

初中数学如何画出一个角的平分线
要画出一个角的平分线,我们可以采用以下步骤:
步骤1:准备工作
在纸上用直尺绘制一个角。
我们可以使用直尺的一条边作为角的一条边,然后用另一条边延长出来作为另一条边。
确保角的两边相交于一个顶点。
步骤2:确定角的平分线的起点
在角的顶点处,使用直尺绘制一条线段,作为平分线的起点。
这个起点可以是任意长度,只需确保它足够长以后续步骤的绘制。
步骤3:以顶点为中心,绘制一个圆弧
以角的顶点为中心,使用指定的半径,在角的两个边上各绘制一个圆弧。
这两个圆弧应该相交于一个点,这个点将成为平分线与角的顶点相交处。
步骤4:以圆弧相交点为半径,作两个圆弧
以圆弧相交点为圆心,以相同的半径作两个圆弧。
这两个圆弧应该分别与角的两个边相交,分别在两个边的延长线上。
步骤5:连接起点和两个相交点
使用直尺连接平分线的起点与两个圆弧相交点,分别得到与角的两个边相交的点。
这两个点将成为平分线与角的两个边相交处。
步骤6:连接起点和角的顶点
使用直尺连接平分线的起点与角的顶点,得到平分线的终点。
至此,我们成功地画出了角的平分线。
需要注意的是,如果角的两边相交于一个直角或钝角的顶点,那么平分线的绘制将稍有不同。
在这种情况下,我们需要将角的两边延长,使其相交于一个锐角的顶点,然后按照上述步骤进行绘制。
总结起来,画出一个角的平分线的步骤包括准备工作、确定平分线的起点、绘制圆弧、连接起点和圆弧相交点、连接起点和角的顶点。
通过这些步骤,我们可以准确地画出角的平分线。
专题08 三角形中的重要模型-平分平行(平分射影)构等腰、角平分线第二定理模型

三角形中的重要模型-平分平行(平分射影)构等腰、角平分线第二定理模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。
平分平行(射影)构等腰模型、角平行线第二定理模型(内角平分线定理和外角平分线定理模型) 模型1、平分平行(射影)构等腰1)角平分线加平行线必出等腰三角形.模型分析:由平行线得到内错角相等,由角平分线得到相等的角,等量代换进行解题.平行线、角平分线及等腰,任意由其中两个条件都可以得出第三个。
(简称:“知二求一”,在以后还会遇到很多类似总结)。
平行四边形中的翻折问题就常出现该类模型。
图1 图2图3 条件:如图1,OO ’平分∠MON ,过OO ’的一点P 作PQ//ON. 结论:△OPQ 是等腰三角形。
条件:如图2,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC 。
结论:△BDE 是等腰三角形。
条件:如图3,在中,平分,平分,过点O 作的平行线与,分别相交于点M ,N .结论:△BOM 、△CON 都是等腰三角形。
2)角平分线加射影模型必出等腰三角形.→图4条件:如图4,BE 平分∠CBA ,∠ACB =∠CDA =90°. 结论:三角形CEF 是等腰三角形。
ABC !BO ABC ÐCO ACB ÐBC AB AC FCDE××○○×线交于点.若,则的度数为( )A .B .C .D .例2.(2023.湖南长沙八年级期中)如图,点O 为△ABC 的∠ABC 和∠ACB 的平分线的交点,OD // AB 交BC 于点D , OE // AC 交BC 于点E .若AB =5 cm ,BC =10 cm ,AC =9 cm ,则△ODE 的周长为( )A .10 cmB .9 cmC .8 cmD .5 cm例3.(2023·广东·八年级期末)如图,▱ABCD 中,AB =3cm ,BC =5cm ,BE 平分∠ABC 交AD 于E 点,CF 平分∠BCD 交AD 于F 点,则EF 的长为 cm .例4.(2023.成都市青羊区八年级期中)如图,在中,,于点D ,的平分线BE 交AD 于F ,交AC 于E ,若,,则_____________.例5.(2023.山东八年级期末)如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF 与BE 、CF 之间有怎样的关系.(2)如图②,若AB ≠AC ,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF 与BE 、CF 间的关系还存在吗?(3)如图③,若△ABC 中∠B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.AF 1l B 130BCA Ð=°1Ð20°25°30°50°ABC △90BAC Ð=°AD BC ^ABC Ð3AE =2DF =AD =ABF EDC模型2、角平行线第二定理(内角平分线定理和外角平分线定理)模型图1 图2图3例5.(2022秋·北京·八年级北京八十中校考期中)在中,D 是边上的点(不与点B 、C 重合),连接.(1)如图1,当点D 是边的中点时,_____;(2)如图2,当平分时,若,,求的值(用含m 、n 的式子表示);(3)如图3,平分,延长到E .使得,连接,若,求的值.ABC !BC AD BC :ABD ACD S S =△△AD BAC ÐAB m =AC n =:ABD ACD S S △△AD BAC ÐAD AD DE =BE 3,5,10BDE AC AB S ===△ABC S !课后专项训练1.(2023春·山东淄博·九年级校考期中)如图,中,,点I 为各内角平分线的交点,ABC !90ABC Ð=°ABC !11.(2023秋·安徽滁州·八年级统考期末)12.(2023.广东九年级期中)如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,当CQ =CE 时,EP +BP =________.13.(2023春·山东淄博·七年级统考期末)如图,在中,,是斜边上的高,的平分线交于点,交于点.(1)求证:是等腰三角形.(2)若,.求的长度.14.(2023秋·江苏·八年级专题练习)如图,在中,,是边上的高,是的角平分线,与交于点,求证:是等腰三角形.15.(2023广东江门八年级月考)(1)如图1,已知,在中,,平分,平分,过点作,分别交、于、两点,则图中共有________个等腰三角形:与、之间的数量关系是________,的周长是________.(2)如图2,若将(1)中“中,”改为“若为不等边三角形,,”其余条件不变,则图中共有________个等腰三角形;与、之间的数量关系是什么?证明你的结论,并求出的周长.13ABC !90ACB Ð=°CE AB ABC ÐBD CE M AC D CDM V 10AB =8AC =ME ABC !90ACB Ð=°CD AB AE BAC ÐAE CD F CEF △ABC !10AB AC ==BD ABC ÐCD ACB ÐD EF BC AB AC E F EF BE CF AEF △ABC !10AB AC ==ABC !8AB =10AC =EF BE CF AEF △(3)已知:如图3,在外,,且平分,平分的外角,过点作,分别交、于、两点,则与、之间又有何数量关系呢?写出结论并证明.16.(2022秋·福建厦门·八年级厦门市湖里中学校考期中)如图,为的角平分线.(1)如图1,若于点,交于点,,.则________; (2)如图2,若,,的面积是10,求的面积;(3)如图3,若,,,请直接写出的长(用含,的式子表示)D ABC !AB AC >BD ABC ÐCD ABC !ACG ÐD DE BC AB AC EF EF BE CF AD ABC D CE AD ^F AB E 7AB =5AC =BE =7AB =5AC =ACD D ABC D 2C B Ð=ÐAB m =AC n =BD m n。
【数学课件】角平分线的性质(1)

A
E D
B
C
练一练
2. 在△ABC中,AC⊥BC,AD为∠BAC的 平分线,DE⊥AB,AB=7㎝,AC=3㎝,求 BE的长。
A
E
C
B
D
在∠AOB的平分线 OC上任取一点P,然后, 作点P到∠AOB两边的 垂线段PD、PE,画一 画,量一量,从中你有 什么新发现?你能说明 其中的道理吗?
几何语言:
∵OC是∠AOB的平分线,
A
D C
PD⊥OA,PE⊥OB
∴PD=PE
B
P
·
E
O
一起来证明这个性质:
已知: ∠AOC= ∠BOC,点P 在OC上, PD ⊥OA,PE ⊥OB, 求证: PD=PE
证明:
C
A D
证明一个几何命题的步骤: 1. 2. 3.
(课本21页)
P
·
E
O
B
1. 在Rt△ABC中, ∠C 为直角,BD平分 ∠ABC,DE⊥AB于E,则:
好好学习,天天向上。
角平分线上的点到角两边 的距离相等。
从这节课中你 有哪些收获?
课堂小测
• 堂堂清
作 业
• 1.课本22页第2题。(作业本) • 2.练习册 • 3.预习教材21页。自学例题并思考点P在角 A的平分线上吗? • 能力提升题:
课本23页第5题。(作业本)
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
角平分线的画法的依据

角平分线的画法的依据角平分线是一个重要的几何概念,它指的是将一个角分成两个相等的角的直线。
在数学中,角平分线被广泛应用于各种几何问题的解决中,因此了解和掌握角平分线的画法是非常重要的。
本文将介绍角平分线的画法的依据,并详细解释如何准确地画出角平分线。
首先,我们需要了解角平分线的定义。
角平分线是从某个角的顶点开始,将该角分成两个相等角的直线。
在画角平分线之前,需要先画出待分角。
给定一个角ABC,其中A为顶点,角度为θ。
为了构造角ABC的角平分线,我们需要遵循以下步骤:1. 使用直尺绘制一条从角的顶点A开始的射线AC。
这条射线将成为角的一条边,并且应该足够长以确保角平分线与角的另一条边相交。
2. 使用直尺绘制一条从角的另一条边AB上的任意一点B开始的射线BD。
这条射线应该与射线AC相交,并且尽可能接近垂直于射线AC。
3. 通过使用指南针工具,设置一个合适的半径,将B作为圆心在射线AC上绘制一个弧段,与射线BD两次相交。
这两个相交点分别标记为E和F。
4. 使用直尺绘制一条连接顶点A和弧段上的任意一个交点E的直线AE。
同样,使用直尺绘制一条连接顶点A和弧段上的另一个交点F 的直线AF。
5. 直线AE和直线AF分别是角ABC的两条平分线,因为它们将角ABC分成两个相等角。
根据以上步骤,我们可以成功地绘制出角ABC的角平分线。
这个方法的依据主要是基于几何学中的一些公设和定理。
首先,我们应用了平行公设和定理。
在步骤1中,我们绘制了从顶点A开始的射线AC,这条射线与角的一条边AB平行。
在步骤2中,我们绘制了从角的另一条边AB上的点B开始的射线BD,该射线应该足够接近垂直于射线AC。
通过这样的构造,我们可以得到一条平行于射线AC的射线BD,并且这两条射线相交于角ABC的顶点A。
其次,我们应用了圆的性质。
在步骤3中,我们使用圆心B和半径BE(或BF)在射线AC上绘制了一个弧段。
根据圆的性质,弧段上的任意两个点与圆心B的距离相等。
角平分线的画法及原理

角平分线的画法及原理宝子,今天咱们来唠唠角平分线这个超有趣的东西呀。
先来说说角平分线的画法吧。
咱有一种特别简单又好玩的方法哦。
拿个圆规来,把圆规的针尖放在角的顶点上,然后随便画个弧,这个弧呢就和角的两条边都相交啦。
这就像是给角的两边都戴了个小帽子一样,是不是很可爱呢?接着呢,不要动圆规的半径哦,分别以刚才和角两边相交的那两个点为圆心,再画两个小弧,这两个小弧呀就会在角的内部相交啦。
最后呢,用直尺把角的顶点和这个相交点连起来,哇塞,这条线就是角平分线啦。
就好像是找到了角这个小世界里最公平的那条分割线一样呢。
那为啥这么画就能得到角平分线呢?这就涉及到一些超酷的原理啦。
咱先看那第一步画的弧,它和角的两边相交得到的那两个点到角的顶点的距离是相等的呀,因为是用同一个半径画的弧嘛。
然后呢,后面又分别以这两个点为圆心画弧,这两个小弧相交的那个点到这两个点的距离也是相等的。
这就像是在角的内部找到了一个到角两边距离都相等的神秘点呢。
从数学的角度来说,角平分线的定义就是把一个角平均分成两个相等的角的线。
我们这么画出来的线,它具有一个超厉害的性质,就是角平分线上的点到角两边的距离相等。
想象一下哦,如果我们在角平分线上随便取一个点,然后向角的两边作垂线,这两条垂线的长度是一样的呢。
这就好像是这个点在角的两边之间找到了一种完美的平衡。
咱再换个角度想,就像分蛋糕一样,如果要把一个角这个“蛋糕”分成相等的两部分,我们通过这样画弧、找交点、连线的方式,就精准地找到了那条分界线。
而且呀,这个方法是经过很多很多聪明的数学家验证过的,超级靠谱呢。
其实角平分线在生活中也有很多应用呢。
比如说在建筑设计里,如果要设计一个对称的建筑,可能就会用到角平分线的知识来确定一些对称轴之类的。
还有在一些艺术创作里,要是想把一个图案按照某个角平均分开,也能用到这个方法哦。
宝子,你看这角平分线是不是既好玩又超级有用呢?它就像是数学这个大宝藏里的一颗亮晶晶的小宝石,虽然看起来小小的,但是蕴含着很多很多的智慧呢。
初中数学角平分线问题的六种方法

初中数学角平分线问题的六种方法
角平分线是指将一个角分成两个相等的角的线。
在初中数学中,有六种常见的方法可以求解角平分线问题。
方法一:作弧上的等分线法
以角的顶点为圆心,画一个圆,并将圆分成需要的等分数。
然后将等分点和角的两个端点相连,这些线段就是所求的角平分线。
方法二:作垂线法
以角的一边为直径作一个圆,然后将另一边的端点与圆上的点连成线段。
连接角的两个顶点与圆心,这两条线段就是所求的角平分线。
方法三:作过顶点的角平分线法
以角的顶点为圆心,任意作一个大于角的两边的弧,将弧上的两个点与角的两个端点连成线段。
连接圆心与弧的两个端点,这两条线段就是所求的角平分线。
方法四:作等距离线段法
以角的一边为直径作一个圆,在圆上选择等距离原点的多个点,然后将这些点与角的两个端点连成线段。
与角度相等的线段即为所求的角平分线。
方法五:作锐角三等分线法
将角分成三个相等的锐角,然后以这三个锐角的顶点为圆心,分别作三个圆。
连接圆心与圆上的点,这些线段即为所求的角平分线。
方法六:利用角度性质法
利用角的度数关系来求解角平分线。
如果角的两边垂直,则角平分线就是两边的垂线;如果角的两边相等,则角平分线就是两边的中垂线;如果角的两边呈比例关系,则角平分线是两边之比的垂线。
以上六种方法是初中数学中常见的角平分线求解方法。
每种方法都有其独特的应用场景,根据题目给出的条件,选择合适的方法来求解即可。
同时,理解角平分线的定义和性质,掌握角的几何构造技巧,也能在解决问题中起到很好的帮助作用。
画角平分线PPT教学课件

方法: 搜集一些关于鸟的歌曲,并学唱。如歌曲《飞吧,鸽子》。
4、鸟与科学
方法: 阅读《古鸟化石》、《飞机与鸟》、《鹰眼的启示》等文章,也可再搜集些类似 的资料,谈谈鸟给人类科学研究带来的启发。
5、鸟文化博览会
方法: 用一节课的时间来展示学生的探究成果。如:诗歌朗诵、歌曲、 绘画、文学短评 集、话题讨论“人与鸟”等。
爱护大自然
的每一个生命, 也是给我们多留 一份生存的空间。
活动过程
1、鸟与美学——欣赏鸟的体形美、色彩 美、鸣声美、飞翔的姿态美以及鸟所具 有的人性美
方法:①亲自饲养鸟儿,进行零距离观察;
②欣赏图片、录像。(推荐新纪录片《鸟 的迁徙》)
③谈谈自己最欣赏鸟的什么美,为什么。
2、鸟与文学
方法: 1、搜集写鸟的精彩片段或古诗句进行积累并诵读。 2、欣赏配乐散文《鸟的故事》、《珍珠鸟》,写文学短评。 3、阅读《鸽子》和《空山鸟语》,完成书上的习题。
顶角∠BAC=∠α, ∠BAC的平 分线为m。
m
• 已知△ABC中,∠A=900,
• 求作⊙P,使圆心P在AC上,且 与AB、BC的两边都相切。
C
A
B
• 说说本节你的收获、体会、疑 惑
鸟
自
然
专 题
精
探 究
灵
方
案
活动目的
1、对鸟的种类、形态特征、生活 习性、生存状态能有一些了解。 2、能从观鸟的过程中获得美感。 3、能继续训练想象能力。 4、能正确认识鸟与人的关系。
尺规作图画角平分线
九年级数学组
复习
• 看图填空。 • (1)在
上截取
•
=
=
;
(2)以
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[问答题,简答题]回流突然中断怎么处理? [多选]下列各项中,应列入资产负债表“应收账款”项目的有()。A.预付职工差旅费B.代购货单位垫付的运杂费C.销售产品应收取的款项D.对外提供劳务应收取的款项 [判断题]个人对外贸易经营者指依法办理工商登记或者其他执业手续,取得个人工商营业执照或者其他执业证明,并按照国务院商务主管部门的规定,办理备案登记,取得对外贸易经营权,从事对外贸易经营活动的个人。A.正确B.错误 [单选]在仪表专业中,现场压力变送器常常用符号PIT表示,其中I表示()。A、电流B、压力C、电压D、带指示功能 [问答题,简答题]调度自动化系统分类。 [单选]纳税人申请印花税核定调整或取消,基本规范规定的办理时限为()。A、15个工作日B、10个工作日C、20个工作日D、30个工作日 [单选,A1型题]羊乳喂养下列哪项是正确的()A.羊乳中蛋白质含量较牛乳少B.羊乳中脂肪多且肪脂球大C.羊乳中叶酸和维生素B含量较牛乳少D.羊乳中矿物质含量比牛奶少E.每100ml羊乳的热卡比牛奶略少 [填空题]采用布置恰当的六个支承点来消除工件的(),称为“六点定位原则”。 [填空题]当三相电动势的相序排列是A---C---B时,称为()。 [单选,A2型题,A1/A2型题]下列小儿急性肠套叠的治疗原则中,正确的是()A.小儿急性肠套叠一经确诊应立即手术B.已有腹膜炎症状的患儿也可使用空气或钡剂灌肠C.术后复发性肠套叠以小肠套叠为主,应尽快手术D.伴发高热、休克患者应采取保守治疗E.空气灌肠时最高压力可到300mmHg [单选]某孕妇,25岁,孕1产0,孕39周,上午11时有规则宫缩而入院。宫缩中下,38秒,间隔3~4分钟,于1Байду номын сангаас时宫颈扩张一指,先露高位-1.5,给予缩宫素2.5u加强宫缩后宫缩中等强度,持续40秒,间隔2~3分钟,产妇一般情况好,3小时后宫颈扩张4cm,先露高位-1。此时应如何处理()A.哌替 [单选]下列关于银行借款的说法中,不正确的是()。A.与发行债券、融资租赁等债务筹资方式相比,银行借款的程序相对简单,所花时间较短B.利用银行借款筹资,比发行债券和融资租赁的利息负担要低C.借款筹资对公司具有较大的灵活性D.可以筹集到无限的资金 [问答题,简答题]计算题:为测定某聚氯乙烯树脂中氯乙烯单体的含量,分别称取试样0.4025g和0.3985g置于50m1样品瓶中,并注入3.0m1N,N-二甲基乙酰胺(DMAC),待试样平衡后从两份试样溶液中各取出1.0ml上部气体注入气相色谱中分析,测得峰面积分别为15.6cm2和14.8cm2,同时从装有浓 [判断题]任何单位和个人在与金融机构建立业务关系或者要求金融机构为其提供一次性金融服务时,都应当提供真实有效的身份证件或者其他身份证明文件。A.正确B.错误 [单选,B1型题]小儿前囟闭合过早见于哪种疾病()A.佝偻病B.小头畸形C.中枢感染D.脱水E.甲状腺功能低下 [单选,A1型题]逆没食子鞣质在酸的存在下加热后形成()A.没食子酸和葡萄糖B.黄烷-3-醇或黄烷-3,4-二醇和葡萄糖C.逆没食子酸和葡萄糖D.咖啡酸和葡萄糖E.咖啡酸和奎宁酸 [单选]目前有()类消防产品实施型式认可管理制度。A、21B、9C、15D、4 [单选,A1型题]关于合理营养与平衡膳食,错误的是()A.合理烹调,减少营养素损失B.良好的饮食习惯有助于儿童达到膳食平衡C.合理搭配各类食品,以刺激儿童食欲D.早餐和午餐应安排富含蛋白质和脂肪的食物E.儿童每餐进餐的时间应为20~30分钟 [问答题,简答题]霍乱弧菌是如何污染熟食品的? [单选]抵押权的实现方式不包括()。A、拍卖B、变卖C、折价D、在债务履行期届满前,抵押权人与抵押人约定债务人不履行到期债务时抵押财产归债权人所有 [单选,B1型题]中枢性呼吸衰竭表现为()A.吸气性呼吸困难B.呼气性呼吸困难C.混合性呼吸困难D.呼吸节律不规则E.端坐呼吸 [单选]疫苗、()和国务院药品监督管理部门规定的其他药品,不得委托生产?A.中成药B.放射性药品C.麻醉药品D.血液制品 [单选]建筑高度不超过32m的二类高层建筑应设()楼梯间。A、开敞楼梯间B、敞开楼梯间C、封闭楼梯间D、防烟楼梯间 [问答题,简答题]苫盖蓬布货物货车的要求? [单选]仲裁案件当事人甲公司与乙公司在案件审理过程中通过协商,就已经提交仲裁的争议达成和解协议。随后申请人甲公司撤回了仲裁申请。后甲公司反悔,此时甲、乙两公司的纠纷应如何解决?()A.甲公司只能另外通过诉讼解决纠纷B.甲公司只能与乙公司重新达成仲裁协议再申请仲裁C.甲 [单选]下列关于等深线用途的说法中,何者是错误的()。A.等深线可用于避险B.等深线可用于导航C.等深线可用来缩小概率船位区D.等深线可用来测定仪器误差 [单选]货运票据封套封口前,相关人员必须同时对票据封套记载的事项和实际运单、货票核对,保证运输票据()。A、整洁B、质量C、整齐D、齐全 [单选]类风湿关节炎滑膜的病理特征是()。A.血管翳形成B.滑膜水肿C.淋巴细胞浸润D.滑膜增厚E.滑膜消失或变薄 [单选]不是放射免疫分析的必备条件的是()A.符合一定质量要求的放射性核素标记的抗原B.高纯度的标准品和高质量的特异性抗体C.合适的标记抗原抗体复合物与游离标记抗原分离技术D.放射性测量仪器E.免疫荧光仪器 [单选]骶耻外径正常值为()A.23~26cmB.18~20cmC.30~36cmD.25~28cmE.8.5~9.5cm [单选]在短时记忆中,把几个孤立的项目结合成一个有意义的单位来识记称为()A.组块B.编码C.项目D.容量 [单选]接受长期胰岛素治疗的病人最常见的问题是()A.抗体诱发的胰岛素耐药性B.脂肪萎缩C.胰岛素注射部位产生局部变态反应D.胰岛素注射部位感染E.低血糖 [单选]肺癌锁骨上野与纵隔野相邻时,下列哪项设计是正确的()A.锁骨上野与纵隔野共用一条分野线,不需间隔B.两野共用并拉开一定距离,使两照射野在50%等剂量深度相交C.两野可在相临处重叠0.5cmD.两野边界相接时,可用铅块挡掉一个照射野的扩散区,不需间隔E.两野可在相临处拉开2 [单选]儿茶酚胺症最常见的病因是()A.垂体瘤B.嗜铬细胞瘤C.肾上腺髓质增生D.肾上腺皮质球状带腺瘤E.外伤 [单选]Tc—甲氧基异丁基异腈(MIBl)心肌断层显像是采用()A.扫描机B.γ照相机C.电子照相机D.单光子发射计算机断层仪(SPECT)E.正电子发射计算机断层仪(PET) [判断题]B超检测宫内节育器不论金属或塑料结构均能检出,且可确定在宫内的位置是否适合。A.正确B.错误 [单选,A1型题]下列各项中测定胎儿安危的方法哪种最简便而较准确()A.胎儿电子监护B.尿雌三醇测定C.胎动计数D.羊膜镜检查E.缩宫素激惹试验 [问答题,简答题]励磁变接线组别? [问答题,简答题]缠绕式立井箕斗提煤系统,如因煤仓仓满卸煤时发生卡箕斗现象,操作工怎样从运行异常地讯号或现象来判断?应采取什么应急措施? [单选]高压供电系统中,当时,计算短路电流可以只考虑()。A.系统短路电阻B.系统短路阻抗C.系统短路电抗D.系统短路电压