2019年高二数学上期末试题带答案(1)
山东省2019年秋高二上学期期末考试数学(理)试题含答案

山东省2019年秋季高二数学(理科)期末检 测 试 题第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题:0,1xp x e x ∀>>+,则p ⌝为( ) A .0,1xx e x ∀>≤+ B .0,1xx e x ∃>≤+ C .0,1xx e x ∀<≤+ D .0,1xx e x ∃<≤+ 2.抛物线22y x =的焦点坐标是 ( ) A .1,02⎛⎫⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,08⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭3. 过点()1,0且与直线220x y --=平行的直线方程是( )A .220x y +-=B .210x y -+=C .210x y --=D .210x y +-=4.若变量,x y 满足约束条件1020y x y x y ≤⎧⎪+≥⎨⎪--≤⎩,则2z x y =-的最大值为 ( )A . 1B .2 C. 3 D .45.如图是一个几何体的三视图,根据图中的数据(单位:cm ),可知此几何体的体积是 ( )A .324cmB .3643cm C. (36cm +D .(324cm +6. 圆224x y +=与圆()()223449x y -+-=的位置关系为( )A .内切B .相交 C. 外切 D .相离7.“02n <<”是“方程22113x y n n +=+-表示双曲线”的 ( ) A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件8. 过点()2,0P 引直线l 与曲线y =,A B 两点,O 为坐标原点,当AOB ∆的面积取最大值时,直线l 的斜率等于( )A ..±9. 设,m n 是两条不同直线,,αβ是两个不同的平面,下列命题正确的是( )A .//,//m n αβ且//αβ,则//m nB .,m n αβ⊥⊥且αβ⊥,则m n ⊥ C. ,,m n m n αβ⊥⊂⊥,则αβ⊥ D .,,m//,//m n n ααββ⊂⊂,则//αβ10. 设12,F F 分别是双曲线()2222:10,b 0x y C a a b-=>>的左、右焦点.圆2222x y a b+=+与双曲线C 的右支交于点A ,且1223AF AF =,则双曲线离心率为( )A .125 B .135C. 2 D 11. 在正方体1111ABCD A B C D -中,M 、N 分别是1111,A A B C 中点,则BM 与AN 所成角的余弦值为( )A .110 B .25C. 10 D .212. 已知()0,2A ,抛物线()2:0C y mx m =>的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N 中,若:FM MN =,则三角形OFN 面积为( )A ...第Ⅱ卷 非选择题(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在空间直角坐标系中,正方体1111ABCD A B C D -的顶点A 的坐标为()1,2,3-,其中心M 的坐标为()0,2,1,则该正方体的棱长等于 .14.某隧道的拱线设计半个椭圆的形状,最大拱高h 为6米(如图所示),路面设计是双向车道,车道总宽为 4.5米,那么隧道设计的拱宽d 至少应是 米.15.已知,A B 是球O 的球面上两点,090,AOB C ∠=为该球面上的动点.若三棱锥O ABC -体积的最大值为92,则球O 的表面积为 . 16.已知圆22:1O x y +=,圆()()22:41M x a y a -+-+=,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为,A B ,使得060APB ∠=,则实数a 的最大值与最小值之和为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知圆22:8120C x y x +-+=,直线:20l x ay a ++=. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于,A B 两点,且AB =时,求直线l 的方程. 18. 如图,已知PA O ⊥所在的平面,AB 是O 的直径,4,AB C =是O 上一点,且0,45,AC BC PCA E =∠=是PC 中点,F 为PB 中点.(1)求证://EF 面ABC ; (2)求证:EF ⊥面PAC ; (3)求三棱锥B PAC -的体积.19. 已知命题:p 直线20ax y +-=和直线()32110ax a y -++=垂直;命题:q 三条直线2310,4x 3y 50,10x y ax y -+=++=--=将平面划分为六部分.若p q ∨为真命题,求实数a 的取值集合.20. 已知四棱锥S ABCD -,四边形ABCD 是正方形,2,2ABS BA AS SD S ∆====. (1)证明:平面ABCD ⊥平面SAD ;(2)若M 为SD 的中点,求二面角B CM S --的余弦值.21.已知抛物线()2:20C y px p =>上一点(),2A m 到其焦点F 的距离为2.(1)求抛物线C 的方程; (2)若直线l 与圆2243x y +=切于点M ,与抛物线C 切于点N ,求FMN ∆的面积.22.椭圆()2222:10x y C a b a b +=>>的离心率是2,过点()0,1P 的动直线l 与椭圆相交于,A B 两点,当直线l 与x 轴平行时,直线l 被椭圆C 截得的线段长为(1)求椭圆C 的方程;(2)在y 轴上是否存在异于点P 的定点Q ,使得直线l 变化时,总有PQA PQB ∠=∠?若存在,求出点Q 的坐标;若不存在,请说明理由.试卷答案一、选择题1-5:BDCCB 6-10: AABBD 11、12:CA二、填空题13. 14. 32 15. 36π 16. 4三、解答题17.解:将圆C 的方程228120x y x +-+=化成标准方程为()2244x y -+=,则此圆的圆心为()4,0,半径为2. (1)若直线l 与圆C2=,解得34a =-;(2)过圆心C 作CD AB ⊥,则根据题意和圆的性质,得2222212CD CD DA AC DA AB ⎧=⎪⎪⎪+==⎨⎪⎪==⎪⎩,解得7a =-或1a =-,故所求直线方程为7140x y --=或20x y --=.18.解:(1)证明:在三角形PBC 中,E 是PC 中点,F 为PB 中点, ∴//EF BC ,BC ⊂平面,ABC EF ⊄平面ABC ,∴//EF 面ABC ; (2)证明:∵PA ⊥面ABC ,BC ⊂平面ABC ,∴BC PA ⊥, 又∵AB 是O 的直径,∴BC AC ⊥,又PAAC A =,∴BC ⊥面PAC ,∵//EF BC ,∴EF ⊥面PAC ; (3)∵045PCA ∠=,∴PA AC =,在Rt ABC ∆中,∵,4AC BC AB ==,∴AC BC ==,∴18233B PAC P ABC ABC V V S PA --∆===.19.解:p 真:()23210a a -+=,()()23213110a a a a --=+-=,∴13a =-或1a =,q 真:∵2310x y -+=与4350x y ++=不平行,则2310x y -+=与10ax y --=平行或4350x y ++=与10ax y --=平行或三条直线交于一点,若2310x y -+=与10ax y --=平行,由11231a --=≠-得23a =, 若4350x y ++=与10ax y --=平行,由11435a --=≠得43a =-, 若三条直线交于一点,由23104350x y x y -+=⎧⎨++=⎩,得113x y =-⎧⎪⎨=-⎪⎩,代入10ax y --=得23a =-, ∴q 真,23a =或43a =-或23a =-, ∵p q ∨真,∴p q 、至少有一个为真,∴a 的取值集合为4212,,,,13333⎧⎫---⎨⎬⎩⎭. 20.解:(1)证明:∵122sin 22ABS S BAS ∆=∠=, ∴sin 1BAS ∠=,即BA AS ⊥, 又∵ABCD 为正方形,∴BA AD ⊥, ∵BAAS A =,∴BA ⊥平面SAD ,∵BA ⊂平面ABCD ,∴平面ABCD ⊥平面SAD ; (2)解:设AD 的中点为O ,∵AS SD =,∴SO AD ⊥,由(1)可知平面ABCD ⊥平面SAD ,且平面ABCD 平面SAD AD =,∴SO ⊥平面ABCD ,在平面ABCD 内,过O 作直线Ox AD ⊥,则,,Ox OD OS 两两垂直.以O 为坐标原点,,,Ox OD OS 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()(12,1,0,2,1,0,0,1,0,,0,2B C D S M ⎛- ⎝⎭, ∴()(130,2,0,2,,,2,22BC CM CS ⎛⎫==--=-- ⎪ ⎝⎭, 设平面BCM 的法向量为()111,,n xy z =,则00n BC n CM ⎧=⎪⎨=⎪⎩,11112012022y x y z =⎧⎪⎨--+=⎪⎩,即11104y x z =⎧⎪⎨=⎪⎩,取()3,0,4n =,设平面CMS 的法向量为()222,,m x y z =,则00m CS m CM ⎧=⎪⎨=⎪⎩,22222221202x y x y z ⎧--+=⎪⎨--+=⎪⎩,即2220x y =⎧⎪⎨=⎪⎩,取()m =, cos ,219m n m n m n===B CM S --的余弦值为19.21.解:(1)∵(),2A m 在抛物线22y px =上,∴2m p=, 由题意可知,222pp +=,解得2p =, 所以抛物线C 的方程为24y x =;(2)设直线l 方程为:y kxb =+,∵l 与圆2243x y +=相切, ∴d ==,整理得22344b k =+,① 依题意直线l 与抛物线24y x =相切,由24y kx b y x=+⎧⎨=⎩得()222240k x kb x b +-+= (*) ()22224401kb k b kb ∆=--=⇒= ②由①②解得k b ==或k b == 此时方程(*)化为2440x x -+=,解得2x =,∴点(2,N ±,∴3MN ====, 直线l为:2y x =或2y x =-, ()1,0F 到l的距离为d '=,∴11223FMN S MN d ∆'==⨯=. 22.解:(1)∵222122c e e a ===,∴2222222,2a c b c b c a b ==+==, 椭圆方程化为:222212x y b b+=,由题意知,椭圆过点),∴226112b b+=,解得224,8b a ==, 所以椭圆C 的方程为:22184x y +=; (2)当直线l 斜率存在时,设直线l 方程:1y kx =+,由22281x y y kx ⎧+=⎨=+⎩得()2221460k x kx ++-=,()221624210k k ∆=++>, 设()()1221122122421,,,,621k x x k A x y B x y x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,假设存在定点()0,Q t 符合题意,∵PQA PQB ∠=∠,∴QA QB k k =-,∴()()()()2112122112121212121211QA QB x y x y t x x x kx x kx t x x y t y t k k x x x x x x +-++++-+--+=+== ()()()()1212122124421063kx x t x x k t k k t x x +-+--==+-==-, ∵上式对任意实数k 恒等于零,∴40t -=,即4t =,∴()0,4Q , 当直线l 斜率不存在时,,A B 两点分别为椭圆的上下顶点()()0,2,0,2-, 显然此时PQA PQB ∠=∠,综上,存在定点()0,4Q 满足题意.。
2019学年高二数学上学期期末考试卷 理(含解析)

2019学年度高二期末考试卷理科数学第I卷(选择题)一、选择题1. 命题“,”的否定是()A. ,B. ,C. ,D. ,【答案】D【解析】试题分析:全称命题的否定是特称命题,所以量词和结论一同否定.考点:全称命题和特称命题.2. 已知两条直线:,:平行,则()A. -1B. 2C. 0或-2D. -1或2【答案】D【解析】试题分析:由于两直线平行,故,解得,当时,两直线重合,不符合题意,故.考点:两直线的位置关系.3. 双曲线的顶点到渐近线的距离为()A. B. C. D.【答案】D【解析】试题分析:由题意,得,不妨设双曲线的一个顶点为,一条渐近线方程为,所以所求距离为,故选D.考点:1、双曲线的性质;2、点到直线的距离公式.4. 设函数,则()A. 2B. -2C. 5D.【答案】D【解析】∵∴∴∴故选D5. 已知双曲线:,为坐标原点,点是双曲线上异于顶点的关于原点对称的两点,是双曲线上任意一点,的斜率都存在,则的值为()A. B. C. D. 以上答案都不对【答案】B【解析】设 ,则 ,因为所以,即,选B.点睛:求定值问题常见的方法有两种(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.6. 如图,已知直线与轴、轴分别交于两点,是以为圆心,1为半径的圆上一动点,连结,则面积的最大值是()A. 8B. 12C.D.【答案】C【解析】试题分析:因为直线与轴、轴分别交于两点,所以,,即,,所以.根据题意分析可得要面积的最大则点到直线的距离最远,所以点在过点的的垂线上,过点作于点,易证,所以,所以,所以,所以点到直线的距离为,所以面积的最大值为,故选C.考点:1、一次函数;2、相似三角形的判定与性质.7. 已知是椭圆的两个交点,过点F2的直线与椭圆交于两点,则的周长为()A. 16B. 8C. 25D. 32【答案】A【解析】因为椭圆的方程我,所以,由题意的定义可得的周长,故选A.8. 设,则是的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要【答案】A..................考点:充分必要条件.9. 抛物线与双曲线有相同的焦点,点A是两曲线的交点,且轴,则双曲线的离心率为A. B. C. D.【答案】B【解析】设双曲线的另一焦点为E,因为抛物线y2=4px(p>0)的焦点F(p,0),把x=p代入y2=4px,解得y=±2p,可取A(p,2p),又E(﹣p,0).故|AE|=2p,|AF|=2p,|EF|=2p.所以2a=|AE|﹣|AF|=(2﹣2)p,2c=2p.则双曲线的离心率e==+1.故答案为:B。
[精品]2019学年高二数学上学期期末考试试题 理(普通班,含解析)
![[精品]2019学年高二数学上学期期末考试试题 理(普通班,含解析)](https://img.taocdn.com/s3/m/ae6a51b781c758f5f71f6719.png)
2019学年上学期期末考试高二数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 命题:“”的否定是()A. B.C. D.【答案】C【解析】因为的否定是所以命题:“”的否定是,选C2. 已知空间向量,,则等于()A. B. 2 C. D. 1【答案】A【解析】 ,选A3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】且.所以“”是“”的必要不充分条件.故选B.4. 已知变量满足约束条件则的最小值为()A. 1B. 2C. -3D. -4【答案】D【解析】根据题意画出可行域,是一个封闭的三角形区域,目标函数,当目标函数过点时有最小值,代入得到-4.故答案为:D。
5. 在长方体中,,,,是中点,则()A. B.C. D.【答案】B【解析】 ,选C6. 函数的导数为,则()A. B. C. -1 D. 0【答案】A【解析】由题,.故选A.7. 在等差数列中,已知,则该数列的前12项和等于()A. 36B. 54C. 63D. 73【答案】B【解析】 ,选B8. 设椭圆的左、右焦点分别为,以为直径的圆与直线相切,则该椭圆的离心率为()A. B. C. D.【答案】C【解析】由题以为直径的圆的圆心为(0,0),半径为c,所以,即,解得.故选C.点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).9. 已知,,,则的最小值为()A. B. C. D.【答案】B【解析】 ,选B10. 已知过双曲线右焦点,斜率为的直线与双曲线在第一象限交于点,点为左焦点,且,则此双曲线的离心率为()A. B. C. D.【答案】C【解析】由题意,∵过双曲线右焦点的直线,∴,代入双曲线,可得,∴,∴,∴,∵,∴,故选C.11. 函数在上是增函数,则实数的取值范围是()A. B. C. D.【答案】C【解析】在上恒成立,所以令所以当时, ,即,选C12. 已知长方体,,,为线段上一点,且,则与平面所成的角的正弦值为()A. B. C. D.【答案】A...... ............设平面一个法向量为,则由因为,所以与平面所成的角的正弦值为,选A点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 双曲线的一个焦点到它的一条渐近线的距离为__________.【答案】【解析】由题一个焦点(3,0)到一条渐近线的距离 .14. 若抛物线与抛物线异于原点的交点到抛物线的焦点的距离为3,则抛物线的方程为__________.【答案】【解析】根据题意画出图像,由抛物线的定义,曲线上的点到焦点的距离和到准线的距离相等,设A,代入曲线,得到。
高二数学上学期期末考试试题 理(含解析)新人教版 新 版

2019学年度上学期期末考试试卷高二数学试题(理科)一、单选题(本大题共12小题,每题5分)1. 下列图形中不一定是平面图形的是()A. 三角形B. 四个角都相等的四边形C. 梯形D. 平行四边形【答案】B【解析】根据几何公理,三角形能确定一个平面(两相交直线能确定一个平面)、梯形、平行四边形能确定一个平面(两平行线能确定一个平面),所以不能确定的是:四个角都相等的四边形。
故选B。
2. 下列等于1的积分是()A. B. C. D.【答案】C【解析】;;;.故选C.点睛:定积分的计算一般有三个方法:(1)利用微积分基本定理求原函数;(2)利用定积分的几何意义,利用面积求定积分;(3)利用奇偶性对称求定积分,奇函数在对称区间的定积分值为0.3. 在正方体中,与所成的角为()A. B. C. D.【答案】B【解析】通过平行移动,得到与的夹角是与的所成角,易知,所成角为,故选B。
4. 已知函数的导函数为,且满足,则等于()A. 1B.C.D.【答案】B【解析】,所以,得,故选B。
5. 已知三个平面、、,,a、b是异面直线,a与、、分别交于A、B、C三点,b与、、分别交于D、E、F三点,连结AF交平面于G,连结CD交平面于H,则四边形BGEH 的形状为( )A. 平行四边形B. 矩形C. 菱形D. 梯形【答案】A【解析】由面面平行的性质定理可知,,得,同理可知,,所以四边形是平行四边形,故选A。
6. 已知…则等于A. B. C. D.【答案】D..................点睛:本题考查周期性的应用。
在求解之类的大项函数问题,一般的,函数要么具有周期性,要么存在通项式,由题意可知,本题具有周期性,解得答案即可。
7. 祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为( )A. B. C. D.【答案】B【解析】,故选B。
2019年高二上学期期末考试理数试题含答案

2019年高二上学期期末考试理数试题含答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间之间坐标系中,平面内有和两点,平面的一个法向量为,则等于()A. B. C. D.2.某几何体的三视图如图所示,则俯视图的面积为()A. B. C. D.3.已知,若直线与直线垂直,则等于()A. B. C. D.4.已知双曲线的一条渐近线的倾斜角是直线倾斜角的倍,则等于()A. B. C. D.5.已知命题,.若是假命题,则命题可以是()A.椭圆的焦点在轴上 B.圆与轴相交 C.若集合,则 D.已知点和点,则直线与线段无交点6.空间四边形中,,,,点在上,且,为中点,则等于()A. B. C. D.7.“”是“圆与圆有公共点”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件8.已知,是两个不同平面,,是两条不同直线,给出下列命题,其中正确的命题的个数是()(1)若,,则;(2)若,,,,则;(3)如果,,,是异面直线,那么与相交;(4)若,,且,,则且.A. B. C. D.9.如图,在四棱锥中,底面,底面是矩形,且,,、分别是、的中点,则点到平面的距离为()A. B. C. D.10.已知直线与圆相交于、两点,,且,则等于()A. B. C. D.11.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.12.已知点是抛物线与圆在第一象限的公共点,且点到抛物线焦点的距离等于.若抛物线上一动点到其准线与到点的距离之和的最小值为,为坐标原点,则直线被圆所截得的弦长为()A. B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.底面半径为的圆柱的侧面积是圆柱表面积的,则该圆柱的高为 .14.在平面直角坐标系中,正方形的中心坐标为,其一边所在直线的方程为,则边所在直线的方程为 .15.椭圆的右顶点和上顶点分别为和,右焦点为.若、、成等比数列,则该椭圆的离心率为 .16.在正方体中,是上一点,若平面与平面所成锐二面角的正切值为,设三棱锥外接球的直径为,则 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)在平面直角坐标系中,,,点在直线上.(1)若直线的斜率是直线的斜率的2倍,求直线的方程;(2)点关于轴对称点为,若以为直径的圆过点,求的坐标.18. (本小题满分12分)已知双曲线的离心率为,经过第一、三象限的渐近线的斜率为,且.(1)求的取值范围;(2)设条件;条件()()2:2220q m a m a a -+++≤.若是的必要不充分条件,求的取值范围.19. (本小题满分12分)在四棱锥中,底面,底面是一直角梯形,,,,,.(1)若,为垂足,求异面直线与所成角的余弦值;(2)求平面与平面所成的锐二面角的正切值.20. (本小题满分12分)已知过点的动直线与抛物线相交于、两点.当直线的斜率是时,.(1)求抛物线的方程;(2)设线段的中垂线在轴上的截距为,求的取值范围.21. (本小题满分12分)如图,四边形是矩形,平面,,且,,.(1)过作平面平面,平面与、分别交于、,求与平面所成角的正弦值;(2)为直线上一点,且平面平面,求的值.22. (本小题满分12分)已知、分别是椭圆的左、右焦点,点是椭圆上一点,且,.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于、两点,以为底作等腰三角形,顶点为,求的面积.试卷答案一、选择题1.C 由题意得,则,即,解得.2.B 由三视图可知,俯视图是一个直角梯形,上、下底和高分别为、和,其面积为.3.D 由题意得cos2sin2cos4sin cos0θθθθθ-=-=,,.4.A 由已知得双曲线的渐近线的倾斜角为,则,得.5.D 易判断命题是假命题,若是假命题,则为假命题,选项、、均正确,对于,作图知直线与线段有交点,所以选.6.A211211322322MN MO ON OA OB OC a b c=+=-++=-++.7.A 若圆与圆有公共点,则,解得或,故选.8.B 根据面面垂直的判定定理可知命题(1)正确;若,,,,则与平行或相交,故命题(2)错误;如果,,,是异面直线,那么与相交或平行,故命题(3)错误;由线面平行的性质定理可知命题(4)正确.故正确命题有个,故选.9.A 建立如图所示的空间直角坐标系,则,.设平面的法向量为,则即630,2630.2x zx y⎧-+=⎪⎪⎨⎪+=⎪⎩取,得.又,故点到平面的距离为.10.B ,直线与直线垂直,且圆心到直线的距离为,即23,2,31aa⎧=-=⎪+⎩,作图知,解得3,4.3ab⎧=-⎪⎨=⎪⎩则.11.D 该几何体的直观图如图所示.连接,则该几何体由直三棱柱和三棱锥组合而成,其体积为1112232238 232⨯⨯⨯+⨯⨯⨯⨯=.12.C 抛物线上一动点到其准线与到点的距离之和的最小值为,又,、、三点共线,且是线段的中点,,,,则,,圆心到直线的距离为,所求的弦长为.二、填空题13. 设高为,则由题意得,解得.14. 直线上的点关于点对称点为,设直线的方程为,则直线过,解得,所以边所在直线的方程为.15. 、、,由得,,,则,解得或(舍去).16. 过作交于,过作于,连接,则为平面与平面所成锐二面角的平面角,,,设,则,,则,,则三棱锥外接球的直径,.三、解答题17.解:(1)点在直线上,可设点,直线的斜率是直线的斜率的倍,,解得,则点,直线方程为,即.(2)点关于轴对称点,,以为直径的圆过点,,即,解得,即,圆的圆心坐标为. 18.解:(1)由已知得:,,,,解得,,,即的取值范围.(2)()()2222m a m a a -+++≤0,,即,是的必要不充分条件,解得,即的取值范围为.19.解:法一:(1)过点作交于,连接,则与所成角即为与所成角.在中,,由得,..2223333433a PA PE a PD a ⎛⎫ ⎪⎝⎭===,.32234433a a CD PE ME a PD a ∴===. 连接.在中,,,,,,,.又底面,,.平面.平面,.在中,.异面直线与所成角的余弦值为.法二:(1)如图建立空间直角坐标系,则,,,,,,,.设与所成角为,则()230cos a a a AE CD AE CD a a θ+===-+ 异面直线与所成角的余弦值为.(2)易知,,,则平面.平面的一个法向量为.设平面的一个法向量为,则,.而,,由,.得0,0.ax ay ax ay ⎧+=⎪⎨⎪-+=⎩令,. 设向量与所成角为, 则2225cos 511BC m BC m a α====++..平面与平面所成锐二面角的正切值为.20.解:(1)设,,当直线的斜率是时,的方程为,即.由得,又,,③由①②③及得:,,,即抛物线的方程为.(2)易知的斜率存在,且不为,设,的中点坐标为,由得,④,.线段的中垂线方程为,线段的中垂线在轴上的截距为.对于方程④,由得或,.21.解:(1)当时,平面平面.证明:连接,,,,,四边形是平行四边形,,,,,,平面平面,以为原点,,,所在直线分别为,,轴,建立空间直角坐标系(如图),则,,,,,,,,设平面的一个法向量,则令,则,,,设与平面所成角为,则sin cos,AF nθ===(2)设,,则,,,点的坐标为,平面,,欲使平面平面,只要,,,,得,.22.解:(1),,,,,.即,则,,,椭圆.(2)设直线的方程为.由221124y x mx y=+⎧⎪⎨+=⎪⎩得.①设、的坐标分别为、,的中点为,则,.因为是等腰的底边,所以.所以的斜率241334mkm-==--+,解得.此时方程①为,解得,,所以,,所以. 此时,点到直线的距离,所以的面积.$22375 5767 坧8Q 32922 809A 肚34793 87E9 蟩精品文档26756 6884 梄32198 7DC6 緆q23630 5C4E 屎24970 618A 憊实用文档。
2019学年浙江省高二上期末数学试卷【含答案及解析】

I2a—b^-lg3
^+c=lg5,解之得-
26-«+1=lgl4=lg2-hlg72^+&+4;-3 =lg0021,l-2^ + 2i-c =lg2S,H^-t-c =k6,卩(:1)、COx(7> ft正确的,而%"£仕卞叩.5$即(3).(9)不正确,综上故选A.
第9题【答案】
第6题【答案】
【解析】试题分析?如團,设九艮UD分别为四个力旺S的球心,贝I]显然几何^D-ABC是正四面体,極长为 ? ’设。是止四面^D-ABC的夕剧的球心,易知当正万体的对甬绒交点与点0重合」并且对甬 纟右平面肋C垂直时正方体的樓长最大,由于正方体的植长为E,可求得正四面HD-ABC的高为
2
第7题【答案】
标轴,中心为坐标原点,是其一个焦点,又点I■在椭圆•.上.
(1)求动圆圆心;的轨迹 「的方程和椭圆,的方程;
(2)过点::作直线 交轨迹 「于两点,连结'■,射线
d交椭圆 于『/两点,求■.,;?面积的最大 值;
(3)过椭圆:.上一动点■作圆的两条切线,切点分别为'■
求;宀::的取值范围•
参考答案及解析
V
,进而可蹄其増更闾叮-弄论-占
.一一「亠、’ _ 一.江
6
〃二—,所以/(_r)=2iiii
3
选D・
•由于其耶关于点(汙)对斛所山匕
f\
i 2.v ■!— +Q,I$丿
4,可解得
T M2「故
第3题【答案】
【解析】
试题分析!本题可以用特殊1®去判定,由于对任意的£(-3,+®),关于x的方程八门=&那和个'7(
2019学年高二数学上学期期末考试试题 理(含解析)

2019年度第一学期高二年级期末考试试题理科数学一、选择题:本大题共12个小题,每小题5分,共60分.1. 已知集合,,则()A. B. C. D.【答案】B【解析】集合,,则.故选B.2. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要【答案】A【解析】试题分析:根据不等式同向正数可乘性可得;但,不妨取,故“”是“”的必要不充分条件。
故A正确。
考点:充分必要条件。
3. 如图,矩形是水平放置的一个平面图形的直观图,其中,,则原图形的面积是()A. B. C. D.【答案】B【解析】由图可知矩形的面积为.原图形的面积是,则,解得.故选B.4. 表示两个不同的平面,表示既不在内也不在内的直线,存在以下三种情况:①;②;③.若以其中两个为条件,另一个为结论构成命题,则其中正确命题的个数为()A. 0B. 1C. 2D. 3【答案】C.......................5. 在中,,,,将绕直线旋转一周,所形成的几何体的体积是()A. B. C. D.【答案】D【解析】如图,绕直线旋转一周,,则所形成的几何体是以ACD为轴截面的圆锥中挖去一个以ABD为轴截面的校园追后剩余的部分.因为,,,所以.所以.故选D.6. 已知直线的倾斜角为,直线经过点,,且,直线与直线平行,则()A. -4B. 0C. -2D. 2【答案】C【解析】∵l的斜率为−1,因为,所以的斜率为1,∴.由∥得,,得b=−2,所以,a+b=−2.故选C.7. 设实数满足不等式组,则的取值范围是()A. B. C. D.【答案】B【解析】作出不等式的可行域,如图所示:可以看作阴影部分内的点(x,y)与定点P(-4,0)连线的斜率,由图可知,AP的斜率最大,,x轴上的点与P连线斜率最小为0,所以.故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意前面的系数为负时,截距越大,值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.8. 曲线与曲线有相同的()A. 长轴长B. 短轴长C. 离心率D. 焦距【答案】D【解析】曲线为椭圆,有中;曲线,即由,知,且焦点在x轴上,且椭圆的,即有两椭圆的焦距相同.故选D.9. 已知线段两端点的坐标分别为和,若直线与线段有交点,则实数的取值范围是()A. B. C. D.【答案】A【解析】线段两端点的坐标分别为和,若直线与线段有交点,即在直线的两侧,所以,解得:或.故选A.10. 当曲线与直线有公共点时,实数的取值范围是()A. B. C. D.【答案】C【解析】曲线可化简为:,即表示以(0,1)为圆心,为半径的上半圆.如图所示:当直线与半圆相切时,,由图可知,,当直线经过点时,.所以.故选C.点睛:本题主要考查直线与圆的位置关系以及求最值问题.解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.11. 是双曲线的右支上一点,分别是圆和上的点,则的最大值为()A. 12B. 13C. 14D. 15【答案】D【解析】双曲线中,∵a=6,b=8,c=10,∴F1(−10,0),F2(10,0),∵|PF1|−|PF2|=2a=12,∴|MP|⩽|PF1|+|MF1|,|PN|⩾|PF2|+|NF2|,∴−|PN|⩽−|PF2|+|NF2|,所以,|PM|−|PN|⩽|PF1|+|MF1|−|PF2|+|NF2|=12+1+2=15,故选D.12. 如图,在正方形中,分别是的中点,是的中点,现沿及把这个正方形折成一个几何体,使三点重合于点,这样,下列五个结论:①平面;②平面;③平面;④平面;⑤平面.正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】∵在折叠过程中,始终有,即SG⊥GE,SG⊥GF,∴SG⊥平面EFG.因此①正确,则②不正确,由等腰三角形的对称性质可得:SD⊥EF,GD⊥EF,SD∩GD=D,可得EF⊥平面GSD,因此④正确,易知与不垂直,所以平面不正确,因此③不正确,由于SG⊥平面EFG,只有SG⊥,所以与SD不垂直,故平面不正确,因此⑤不正确.综上,正确的为①④故选:B.点睛:证明线与线垂直时,一般可都可将问题转化为证明线与包含另一条直线的平面垂直,而要证明线与平面垂直,又可将问题转化为证明线与线垂直,这样证明线线垂直,使用线面垂直的性质定理,证明线面垂直可用判定定理.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 命题“”的否定是__________.【答案】【解析】全称命题的否定为特称,所以命题“”的否定是:“”.故答案为:.14. 某四棱锥的三视图如图所示,则该三棱锥最长棱的长度为__________.【答案】3【解析】由三视图还原几何体得到三棱锥P-ABC,可将此三棱锥放入棱长为2的正方体内,如图所示,易知:AB=1,BC=.所以该三棱锥最长棱的长度为3.故答案为:3.点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.15. 过球表面上一点引三条长度相等的弦,且两两夹角都为,若,则该球的体积为__________.【答案】【解析】由条件A−BCD是正四面体,△BCD是正三角形,A,B,C,D为球上四点,球心O在正四面体中心如图所示,,CD的中点为E,为过点B,C,D截面圆圆心,则截面圆半径,正四面体A−BCD的高.∴截面BCD与球心的距离,在中,,解得.∴该球的体积为.故答案为:.16. 已知抛物线的焦点为,若点是该抛物线上的点,,线段的中点在抛物线的准线上的射影为,则的最大值为__________.【答案】【解析】设在准线上的射影点分别为Q、P,连接AQ、BQ由抛物线定义,得AF|=|AQ|且|BF|=|BP|在梯形ABPQ中根据中位线定理,得由勾股定理得|AB|2=a2+b2,配方得|AB|2=(a+b)2−2ab,又∵,∴得到.所以,即|MN||AB|的最大值为.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知点及圆.(1)若直线过点且被圆截得的线段长为,求的方程;(2)求过点的圆的弦的中点的轨迹方程.【答案】(1) 或;(2).【解析】试题分析:(1)直线与圆相交时,利用圆的半径,弦长的一半,圆心到直线的距离构成直角三角形的三边勾股定理求解;(2)求弦的中点的轨迹方程,首先设出动点坐标D(x,y),利用弦的中点与圆心的连线垂直于仙所在的直线得到动点的轨迹方程试题解析:(1)解法一:如图所示,AB=4,D是AB的中点,CD⊥AB,AD=2,AC=4,在Rt△ACD中,可得CD=2.设所求直线的斜率为k,则直线的方程为y-5=kx,即kx-y+5=0.由点C到直线AB的距离公式:精品=2,得k=.k=时,直线l的方程为3x-4y+20=0.又直线l的斜率不存在时,也满足题意,此时方程为x=0.∴所求直线的方程为3x-4y+20=0或x=0.(2)设过P点的圆C的弦的中点为D(x,y),则CD⊥PD,即(x+2,y-6)(x,y-5)=0,化简得所求轨迹方程为x2+y2+2x-11y+30=0.考点:1.轨迹方程;2.直线与圆相交的相关问题18. 在中,分别为内角的对边,设.(1)若且,求角的大小;(2)若,且,求的大小.【答案】(1);(2).【解析】试题分析:(1)由条件得,由正弦定理得,结合即可求解;(2)由条件可得,即,结合条件,利用余弦定理求解即可.试题解析:(1)由,得,∴,又由正弦定理,得,∵,∴,将其代入上式,得,整理得:,∴.∵角是三角形的内角,∴.(2)∵,∴,即,又精品由余弦定理,.19. 已知数列的前项和.(1)求数列的通项公式;(2)记,,求的前项和.【答案】(1);(2).【解析】试题分析:(1)当时,由,当时,,化简求解即可;(2)易得,,利用裂项相消法求和即可.试题解析:(1)当时,由当时,所以(2)由(1)及,可知,所以,故.点晴:本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.20. 在四棱锥中,,且,和都是边长为2的等边三角形,设在底面的投影为.(1)求证:是的中点;(2)证明:;(3)求二面角的余弦值.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1),由底面,得,点为的外心,结合为是直角三角形即可证得;(2)由(1)知,点在底面的射影为点,点为中点,底面,得,再分析条件可证得,从而得面,从而得证;(3)以点为原点,以所在射线为轴,轴,轴建系,利用两个面的法向量求解二面角的余弦即可. 试题解析:(1)证明:∵和都是等边三角形,∴,又∵底面,∴,则点为的外心,又因为是直角三角形,∴点为中点.(2)证明:由(1)知,点在底面的射影为点,点为中点,底面,∴,∵在中,,,∴,又且,∴,从而即,由,得面,∴.(3)以点为原点,以所在射线为轴,轴,轴建系如图,∵,则,,,,,,设面的法向量为,则,得,,取,得故.设面的法向量为,则,,取,则,故,于是,由图观察知为钝二面角,所以该二面角的余弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.21. 已知椭圆的左右焦点分别为,点为短轴的一个端点,,若点在椭圆上,则点称为点的一个“椭点”.(1)求椭圆的标准方程;(2)若直线与椭圆相交于、两点,且两点的“椭点”分别为,以为直径的圆经过坐标原点,试求的面积.【答案】(1);(2).【解析】试题分析:(1)由已知得,又,即可得方程;(2)设,则,由以为直径的圆经过坐标原点,得,即,精品由,消除整理得:,结合韦达定理可得,,讲条件带入求解即可.试题解析:(Ⅰ)由已知得,又,所以椭圆的方程为:;(Ⅱ)设,则,由以为直径的圆经过坐标原点,得,即(1)由,消除整理得:,由,得,而(2)(3)将(2)(3)代入(1)得:,即,又,原点到直线的距离,,把代入上式得,即的面积是为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 以坐标原点为极点,轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的普通方程;(2)将曲线的图像向左平移1个单位,再将所得图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到曲线的图像,若曲线与轴的正半轴及轴的正半轴分别交于点,在曲线上任取一点,且点在第一象限,求四边形面积的最大值.【答案】(1);(2).【解析】试题分析:(1)利用及求曲线的普通方程即可;试题解析:(Ⅰ)由得,,所以(Ⅱ)由已知,曲线经过变换后所得方程的方程中为:.所以,设.则,所以.当时,四边形的面积取最大值.23. 已知函数,.(1)解不等式;(2)若对任意,都存在,使得成立,求实数的取值范围.【答案】(1);(2)或.【解析】试题分析:(1),得,进而得解;(2)由题意知,分别求值域即可.试题解析:(Ⅰ)由,得(Ⅱ)由题意知又所以或。
2019年高二数学上册期末考试试卷及答案

(2) 设 B= 90°,且 a= 2,求△ ABC的面积。
解 (1) 由 sin 2B=2sin Asin C及正弦定理,得 b2= 2ac,
∵ a= b,∴ a= 2c。由余弦定理,得
a2+ c2- b2 a2+14a2- a2 1
cos B= 2ac =
1 =4。
A. ( -∞, 2]
B. [2 ,+∞ )
C. [3 ,+∞ )
D. ( -∞, 3]
10.若不等式组
x ≥0 x+ 3y ≥ 4 ,所表示的平面区域被直线 3x+ y ≤ 4
y= kx + 4 分为面积相等的两部分,则 3
k 的值
是( A ) .
7
A.
3
3
B.
7
4
C.
3
3
D.
4
11.若关于 x 的不等式 2x2- 8x- 4- a≥0 在 1≤x≤4 内有解,则实数 a 的取值范围是 ( A )
y=- x- 2 , 由
y2= 8x,
消去 y 得 x2- 12x+ 4= 0。
设 A( x1, y1) ,B( x2, y2) ,则 x1+ x2= 12,
于是 | AB| =x1+ x2+ p=12+ 4= 16。 20. (12 分 ) 如图,在三棱锥 P- ABC中, PA⊥底面 ABC,△ ABC是直角三角形,且 QBC垂直于底面 ABC。
------ 精选范文、公文、论文、和其他应用文档,如需本文,请下载
-----
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点 击下载,另外祝您生活愉快,工作顺利,万事如意!
π A. A∈ 0, 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高二数学上期末试题带答案(1)一、选择题1.如图阴影部分为曲边梯形,其曲线对应函数为1x y e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )A .23e - B .13e - C .43e- D .53e- 2.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为( ) A .910B .710C .310D .1103.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .654.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)5.已知回归方程$21y x =+,而试验得到一组数据是(2,5.1),(3,6.9),(4,9.1),则残差平方和是( ) A .0.01B .0.02C .0.03D .0.046.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020217.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-28.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元9.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.510.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .41311.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .12.执行如图所示的程序框图,若输入2x =-,则输出的y =( )A .8-B .4-C .4D .8二、填空题13.某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B 校学生中抽取______人.14.一个算法的伪代码如下图所示,执行此算法,若输出的y 值为1,则输入的实数x 的值为________.15.一只口袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只蓝球.若从中1次随机摸出2只球,则2只球颜色相同的概率为____.16.从边长为4的正方形ABCD 内部任取一点P ,则P 到对角线AC 的距离不大于2的概率为________.17.已知集合{1,U =2,3,⋯,}n ,集合A 、B 是集合U 的子集,若A B ⊆,则称“集合A 紧跟集合B ”,那么任取集合U 的两个子集A 、B ,“集合A 紧跟集合B ”的概率为______.18.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.19.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.20.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,L ,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.三、解答题21.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?22.随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a的值;(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).23.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)求出y 关于x 的线性回归方程ˆˆˆybx a =+,并在坐标系中画出回归直线;(2)试预测加工个零件需要多少小时?(注:,,,)24.近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x (年)和所支出的维护费用y (万元)的相关数据如图所示,根据以往资料显示y 对x 呈线性相关关系.(1)求出y 关于x 的回归直线方程y bx a =+$$$;(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程y bx a =+$$$的斜率和截距的最小二乘估计分别为$1221,ni ii x ynx b ay bx xy nx=--==--∑∑$$. 25.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n )进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图,已知得分在[)50,60,[]90,100的频数分别为8,2.(1)求样本容量n 和频率分布直方图中的,x y 的值; (2)估计本次竞赛学生成绩的中位数;(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[]90,100内的概率.26.1766年;人类已经发现的太阳系中的行星有金星、地球、火星、木星和土星.德国的一位中学教师戴维一提丢斯在研究了各行星离太阳的距离(单位:AU ,AU 是天文学中计量天体之间距离的一种单位)的排列规律后,预测在火星和木星之间应该还有一颗未被发现的行星存在,并按离太阳的距离从小到大列出了如下表所示的数据: 行星编号(x ) 1(金星) 2(地球) 3(火星) 4( )5(木星) 6(土星)离太阳的距离(y )0.7 1.0 1.6 5.2 10.0受他的启发,意大利天文学家皮亚齐于1801年终于发现了位于火星和木星之间的谷神星. (1)为了描述行星离太阳的距离y 与行星编号之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论即可);①y ax b =+;②(1)xy a b c b =⋅+>;③log (1)b y a x c b =⋅+>.(2)根据你的选择,依表中前几组数据求出函数解析式,并用剩下的数据检验模型的吻合情况;(3)请用你求得的模型,计算谷神星离太阳的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】【分析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案. 【详解】由题可知长方形面积为3,而长方形空白部分面积为:()()11001|2x x e dx e x e -=-=-⎰,故所求概率为25133e e---=,故选D. 【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.2.A解析:A 【解析】 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.3.D解析:D 【解析】 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.4.D解析:D 【解析】 【分析】先将这个二进制转化成十进制,然后除8取余数,即可得出答案. 【详解】∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10). 再利用“除8取余法”可得:45(10)=55(8). 故答案选D .【点睛】本道题考查了不同进制数的转化,较容易,先将二进制数转化成十进制,然后转为八进制,即可.5.C解析:C 【解析】 【分析】 【详解】 因为残差,所以残差的平方和为(5.1-5)2+(6.9-7)2+(9.1-9)2=0.03.故选C.考点:残差的有关计算.6.C解析:C 【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯L 的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯L , 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭Q,111113355720172019S ∴=++++⨯⨯⨯⨯L11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 1110091220192019⎛⎫=-=⎪⎝⎭. 本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.7.B解析:B 【解析】 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.8.A解析:A 【解析】 【分析】由已知求得 x , y ,进一步求得$ a,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =$,∴$ 80.78100.2a y bx --⨯===$. ∴$ 0.780.2y x =+.取16x =,得$ 0.78160.212.68y ⨯+==万元,故选A .【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.9.D解析:D 【解析】 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由$$1.5y x a=+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误; 由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,Q 回归直线必过样本的中心点()2,4.5,故C 错误;又4.5 1.52 1.5ˆˆa a =⨯+⇒=,∴回归方程为$1.5 1.5y x =+, 当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.10.A解析:A 【解析】 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即7BC x =,设DEF V 的面积为1S ,ABC V 的面积为2S因为DEF V 与ABC V 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A11.B解析:B 【解析】 【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。