系统抽样习题
《系统抽样》习题

《系统抽样》习题1.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为() A.24 B.25 C.26 D.282.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是() A.7 B.5 C.4 D.33.下列问题中,最适合用系统抽样法抽样的是() A.从某厂生产的20个电子元件中随机抽取5个入样B.一个城市有210家超市,其中大型超市20家,中型超市40家,小型超市150家,为了掌握各超市的营业情况,要从中抽取一个容量为21的样本C.从参加竞赛的1 500名初中生中随机抽取100人分析试题作答情况D.从参加期末考试的2 400名高中生中随机抽取10人了解某些情况4.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是()A.63 B.70 C.50 D.805.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为() A.26,16,8 B.25,17,8C.25,16,9 D.24,17,96.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.7.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).8.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为() A.11 B.12 C.13 D.149.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7 B.9 C.10 D.1510.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.11.某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.12.某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?1.答案 B解析 5 008除以200的整体数商为25,∴选B.2.答案 B解析由系统抽样知第一组确定的号码是125-15×8=5.3.答案 C解析A总体容量较小,样本容量也较小,可采用抽签法;B总体中的个体有明显的层次,不适宜用系统抽样法;C总体容量较大,样本容量也较大,可用系统抽样法;D总体容量较大,样本容量较小,可用随机数表法.故选C.4.答案 A解析∵m=6,k=7,m+k=13,∴在第7小组中抽取的号码是63.5.答案 B解析由题意知间隔为60050=12,故抽到的号码为12k+3(k=0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.6.答案320解析因为1 003=50×20+3,所以应剔除的个体数为3,间隔为20.7.解该校共有1 500名学生,需抽取容量为1 500×10%=150的样本.抽样的实施步骤:可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l ,则每个班的l,10+l,20+l,30+l,40+l (如果l =6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.8.答案 B解析 由于84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. 9.答案 C解析 由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,所以做问卷B 的有10人.10.答案 7840~7999 0054,0214,0374,0534,0694解析 因为8000÷50=160,所以最后一段的编号为编号的最后160个编号.从7840到7999共160个编号,从7840到7894共55个数,所以从0000到第55个编号应为0054,然后逐个加上160得,0214,0374,0534,0694.11.解 第一步:把这些图书分成40个组,由于36240的商是9,余数是2,所以每个小组有9册书,还剩2册书,这时抽样距就是9;第二步:先用简单随机抽样的方法从这些书中抽取2册,不进行检验;第三步:将剩下的书进行编号,编号分别为0,1, (359)第四步:从第一组(编号为0,1,…,8)的书中用简单随机抽样的方法抽取1册书,比如说,其编号为l ;第五步:有顺序地抽取编号分别为下面数字的书:l ,l +9,l +18,l +27,…,l +39×9.这样总共就抽取了40个样本.12.解 (1)将1 001名普通工人用随机方式编号.(2)从总体中剔除1人(剔除方法可用随机数法),将剩下的1 000名工人重新编号(分别为0 001,0 002,…,1 000),并平均分成40段,其中每一段包含1 00040=25个个体. (3)在第一段0 001,0 002,…,0 025这25个编号中用简单随机抽样法抽出一个(如0 003)作为起始号码.(4)将编号为0 003,0 028,0 053,…,0 978的个体抽出.(5)将20名高级工程师用随机方式编号为1,2, (20)(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.(8)从容器中逐个抽取4个号签,并记录上面的编号.(9)从总体中将与所抽号签的编号相一致的个体取出.以上得到的个体便是代表队成员.。
系统抽样练习题

第2课时6.1.2系统抽样分层训练1.为了解高三学生身体状况,某学校将高三每个班学号的个位数为1的学生选作代表进行调查体检,这种抽样方法称为()(A)系统抽样(B)抽签法(C)简单随机抽样(D)随机数表法2.系统抽样适用的范围是( )(A)总体中个数较少(B)总体中个数较多(C)总体由差异明显的几部分组成(D)以上均可以3.要从已编号(1~50)的50辆新生产的赛车中随机抽取5辆进行检验,用系统抽样方法确定所选取的5辆赛车的编号可能是( )(A)5,10,15,20,25 (B)3,13,23,33,43,(C)5,8,11,14,17 (D)4,8,12,16,204.从2321个产品中选取一个容量为30的样本,那么总体中应随机剔除的个体数目是( )(A)1 (B)11 (C)21 (D)315.下列抽样是系统抽样的是____________A:从标有1~15号的15个球中,任选三个作为样本,按从小号到大号排序,随机选起点k,以后k+5,k+10(超过15则从1再数起)号入样。
B:工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔5分钟抽一件产品进行检验。
C:搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定调查人数为止。
D:报告厅对与会听众进行进行调查,通知每排(每排人数相等)座位号为14的观众留下来座谈。
6.某中学组织春游,为了确定春游地点,打算从该校学号为0034~2037的所有学生中,采用系统抽样选50名进行调查,则学号为2003的同学被选中的可能性为__________7.某工厂有103名工人,从中抽取10人参加体检,试采用简单随机抽样和系统抽样两种方法进行抽样.8.简述系统抽样与简单随机抽样之间的联系与区别。
思考•运用9.某年的有奖邮政明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式,确定号码后四位为2709的获得三等奖。
课时作业14:2.1.2 系统抽样

2.1.2 系统抽样一、选择题1.为了检查某城市汽车尾气排放执行情况,在该城市的主要干道上抽取车牌末尾数字为5的汽车检查,这种抽样方法为( )A .抽签法B .随机数表法C .系统抽样法D .其他抽样2.中央电视台“动画城节目”为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样的方法抽取,每段容量为( )A .10B .100C .1 000D .10 0003.系统抽样又称为等距抽样,从N 个个体中抽取n 个个体为样本,抽样间距为k =⎣⎡⎦⎤N n (取整数部分),从第一段1,2,…,k 个号码中随机抽取一个号码i 0,则i 0+k ,…,i 0+(n -1)k 号码均被抽取构成样本,所以每个个体被抽取的可能性是( )A .相等的B .不相等的C .与i 0有关D .与编号有关4.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,325.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15二、填空题6.下列抽样中不是系统抽样的是________.①从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i 0(1≤i 0≤5),以后选i 0+5,i 0+10号入选;②工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验;③进行某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的调查人数为止;④在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的观众留下来座谈.7.某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是________.8.一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m =6,则在第7组中抽取的号码是________.三、解答题9.为了了解某地区今年高一学生期末考试数学成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请写出用系统抽样抽取的过程.10.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施.11.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其均分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.参考答案1.【解析】根据系统抽样的概念可知,这种抽样方法是系统抽样.【答案】C2.【解析】将10 000个个体平均分成10段,每段取一个,故每段容量为1 000.【答案】C3.【解析】系统抽样是公平的,所以每个个体被抽到的可能性都相等,与i 0编号无关,故选A.【答案】A4.【解析】据题意从50枚中抽取5枚,故分段间隔k =505=10,故只有B 符合条件. 【答案】B5.【解析】从960人中用系统抽样方法抽取32人,则抽样间距为k =96032=30, 因为第一组号码为9,则第二组号码为9+1×30=39,…,第n 组号码为9+(n -1)×30=30n -21,由451≤30n -21≤750,即151115≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10(人).【答案】C6.【解析】选项③不是系统抽样,因事先不知道总体,抽样方法不能保证每个个体等可能入选,其余3个间隔都相同,符合系统抽样的特征.【答案】③7.【解析】由题意,分段间隔k =484=12,所以6应该在第一组,所以第二组为6+12=18. 【答案】188.【解析】由题意知第7组中的数为“60~69”10个数.由题意知m =6,k =7,故m +k =13,其个位数字为3,即第7组中抽取的号码的个位数为3,综上知第7组中抽取的号码为63.【答案】639.解 (1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,我们将总体平均分为150个部分,其中每一部分含100个个体.(3)在第一部分,即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个样本容量为150的样本.10.解 (1)将每个人随机编一个号由0 001至2 008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机编号0 001至2 000;(4)分段,取间隔k =2 00020=100,将总体平均分为20段,每段含100个学生; (5)从第一段即为0 001号到0 100号中随机抽取一个号l ;(6)按编号将l ,100+l ,200+l ,…,1 900+l 共20个号码选出,这20个号码所对应的学生组成样本.11.解 (1)由题意此系统抽样的间隔是100,根据x =24和题意得,24+33×1=57,第二组抽取的号码是157;由24+33×2=90,则在第三组抽取的号码是290,…故依次是24,157,290,323,456,589,622,755,888,921.(2)由x +33×0=87得x =87,由x +33×1=87得x =54,由x +33×3=187得x =88…, 依次求得x 值可能为21,22,23,54,55,56,87,88,89,90.。
抽样技术试题及答案

抽样技术试题及答案一、选择题(每题2分,共20分)1. 抽样技术中,系统抽样的抽样间隔是固定的。
()A. 正确B. 错误2. 简单随机抽样的抽样误差与样本容量大小无关。
()A. 正确B. 错误3. 分层抽样中,各层的样本容量与该层的总体容量成正比。
()A. 正确B. 错误4. 抽样调查中,样本量越大,抽样误差越小。
()A. 正确B. 错误5. 抽样框的完整性和代表性是影响抽样误差的重要因素。
()A. 正确B. 错误6. 在非概率抽样中,样本的代表性无法得到保证。
()A. 正确B. 错误7. 抽样调查的目的是通过对样本的调查来推断总体的特征。
()A. 正确B. 错误8. 抽样调查中,样本容量的确定不需要考虑总体的变异程度。
()A. 正确B. 错误9. 抽样调查中,使用分层抽样可以减少抽样误差。
()A. 正确B. 错误10. 抽样调查中,样本的代表性是评估抽样质量的关键。
()A. 正确B. 错误二、简答题(每题5分,共30分)1. 请简述简单随机抽样的优缺点。
2. 描述分层抽样的步骤。
3. 什么是系统抽样?请说明其适用条件。
4. 抽样调查中,如何确定合适的样本容量?5. 请解释什么是抽样误差,并举例说明。
6. 抽样框的不完整性对抽样调查结果有何影响?三、计算题(每题10分,共20分)1. 假设某总体有1000个单位,要求抽样误差不超过5%,置信水平为95%,试计算所需的最小样本容量。
2. 某企业进行员工满意度调查,采用分层抽样,共有员工1000人,其中管理人员100人,技术人员300人,普通员工600人。
若总体满意度为80%,试计算各层的样本容量。
四、案例分析题(每题15分,共15分)1. 某市场研究公司对一个城市的居民进行消费习惯调查,采用简单随机抽样方法,抽取了200个样本。
调查结果显示,有60%的居民倾向于在线购物。
请问,该公司如何利用这次调查结果来推断整个城市居民的在线购物倾向?五、论述题(每题15分,共15分)1. 论述抽样技术在社会调查中的应用及其重要性。
《系统抽样》习题1(人教)PPT教学课件

解析:A 总体有明显层次,不宜用系统抽样,B,D 宜用简 单随机抽样.故选 C.
答案:C 系统抽样的特点:①总体个体数目比较大,抽样个体数也较大;②个体无明显差异.【变式与拓展】
1.从 2004 名学生中选取 50 名组成参观团,若采用下面的
方法选取:先用简单随机抽样从 2004 人中剔除 4 人,剩下的
第二步,由于样本容量与总体容量的比是1∶13,所以将 总体平均分为 20 个部分,其中每一部分包含 13 个个体.
第三步,在第一段000,001,002,…,012 这13 个编号中用 简单随机抽样确定起始号码 l.
第四步,将编号为l,l+13,l+26,…,l+13×19 的个体 抽出,组成样本.
PPT教学课件
谢谢观看
T h an k Yo u For Watc h i n g
2020/12/12
7
2000 人再按系统抽样的方法进行.则每人入选的概率( C )
A.不全相等
B.均不相等
C.都相等,且为120502
D.都相等,且为410
解析:注意随机抽样,每个个体被抽到的概率都一样.此题
中,每人入选的概率为205004=120502.故选 C.
题型 2 系统抽样方案的设计 【例 2】 某校高二年级有 260 名学生,学校打算从中抽取 20 名进行心理测验.试采用系统抽样方法抽取所需的样本. 解:由于总体容量恰能被样本容量整除,所以分段间隔 k =22600=13,按系统抽样方法的四个步骤抽取样本. 第一步,将260名学生用随机方式进行编号(分别为 000,001,002,…,259).
课时作业2:2.1.2系统抽样

2.1.2 系统抽样1.在10 000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的()A.抽签法B.系统抽样法C.随机数表法D.其他抽样方法2.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2B.4C.5D.63.为了了解某校1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为.4.人们在打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时,开始按次序起牌,对任何一家来说,都是从总体(52张扑克牌)中抽取样本容量为13的一个样本,问这样的抽样方法是否为简单随机抽样?如果不是,说出它是什么抽样.5.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.6.某单位在岗职工共有624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?7.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,98.某单位有200名职工,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是___________.9.从2 006名同学中抽取一个容量为20的样本,试叙述用系统抽样法抽样的步骤.10.为了调查某路段一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告,你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?11.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数30户;抽样间隔:=40;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样?12.从某厂生产的802辆轿车中抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.2.1.2系统抽样答案1.【解析】由题意,中奖号码分别为0068,0168,0268,…,9968.显然这是将10 000个中奖号码平均分成100组,从第一组号码中抽取出0068号,其余号码是在此基础上加上100的整数倍得到的,可见,这是用的系统抽样法.【答案】B2.【解析】因为1 252=50×25+2,所以应随机剔除2个个体.【答案】A3.【解析】k==30.【答案】304.解:简单随机抽样的实质是逐个地从总体中随机抽取,而这里只是随机确定了起始牌,这时其他各张虽然是逐张起牌的,但其实各张在谁手里已被确定了,所以不是简单随机抽样.根据其“等距”起牌的特点,应将其归纳为系统抽样.5.解:(1)编号:按现有的号码;(2)确定分段间隔k=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本.如当l=3时的样本编号为3,8,13,…,288,293.6.解:采用系统抽样获取样本的操作过程如下:(1)将624名职工用随机方式编号;(2)从总体中剔除4人(剔除方法可用随机数表法),将剩下的620名职工重新编号(分别是000,001,002,…,619),并分成62段;(3)在第一段000,001,…,009这十个编号中,用简单随机抽样抽取一个号码(如002)作为起始号码;(4)将编号为002,012,022,…,612的个体抽出,即可组成样本.7.【解析】由题意知间隔为=12,故抽到的号码为12k+3(k=0,1,…,49),得第Ⅰ营区中1≤12k+3≤300,第Ⅱ营区中,301≤12k+3≤495,第Ⅲ营区中,496≤12k+3≤600,可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.【答案】B8.【解析】第5组的号码为21~25,抽取的22为第2个数.由系统抽样规则知,每组抽取的都是第2个数.∴第8组抽出的号码为22+3×5=37.【答案】379.解:(1)采用随机的方式给这2 006名同学编号为1,2,3,4, (2006)(2)利用简单随机抽样的方式剔除6个个体,将剩余的学生重新编号为1,2,3,4, (2000)(3)分段.由于20∶2 000=1∶100,故将总体分为20个部分,其中每一部分有100个个体;(4)在第一部分随机抽取1个号码,比如66号;(5)从第66号起,每隔100个抽取1个号码,这样得到一个容量为20的样本:66,166,266,366,466,566,666,766,866,966,1066,1166,1266,1366,1466,1566,1666,1766,1866, 1966.10.解:因为调查某路段一个月的车流量情况,交警采用系统抽样的方法,样本距为7,交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量,由于星期日是休息时间,很多人不上班,不能代表其他几天,这样的样本距恰好与原排列有联系,存在周期性,导致抽样得出的结果可能不准确,改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,如果是调查一年的交通流量,可把样本距改为8(方法不唯一).11.解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔应为=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为02.12.解:因为802不能整除80,为了保证“等距”分段,应先剔除2个个体.由于总体及样本中的个体数较多,且无明显差异,因此采用系统抽样的方法,步骤如下:(1)先从802辆轿车中剔除2辆轿车(剔除方法可用随机数表法);(2)将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k=10个个体;(3)从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;(4)从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.。
系统抽样检测试题(有答案)

系统抽样检测试题(有答案)系统抽样 [自我认知]: 1.一般地,在抽样时,将总体分成____的层,然后按一定的比例,从各层独立地___,将各层取出的个体合在一起作为样本,这种抽样的方法叫做_______. 2.为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为 ( ) A.40 B.30 C.20 D.12 3.从N个编号中要抽取个号码入样,若采用系统抽样方法抽取,则分段间隔应为 ( ) A. B. C. D. 4.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况,若用系统抽样法,则抽样间隔和随机剔除的个体数分别为 ( ) A . 3,2 B. 2,3 C. 2,30 D. 30,2 5.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是 ( ). A.简单随机抽样 B.系统抽样 C.分层抽样 D.其它抽样方法 6.一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是 ( ). A. 分层抽样B.抽签法 C.随机数表法 D.系统抽样法 [课后练习]: 7.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是 ( ). A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法 C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法8.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 A.45,75,15 B. 45,45,45C.30,90,15D. 45,60,30 ( )9.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别各抽取的人数是 A. 6,12,18 B. 7,11,19C. 6,13,17D. 7,12,17 ( )10.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是 ( ). A.简单随机抽样法 B.系统抽样法 C.分层抽样法 D.抽签法11.一单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采用分层抽样的方法抽取一个容量为10的样本,每个管理人员被抽到的频率为 ( ). A. 1/80 B. 1/24 C. 1/10 D. 1/8 12.一个年级共有20个班,每个班学生的学号都是1~50,为了交流学习的经验,要求每个班学号为22的学生留下,这里运用的是. �v �w 分层抽样法抽签法随机抽样法系统抽样法13.为了保证分层抽样时每个个体等可能的被抽取,必须要求. �v �w .不同层次以不同的抽样比抽样每层等可能的抽样每层等可能的抽取一样多个个体,即若有K层,每层抽样个,。
高中数学例题:系统抽样

高中数学例题:系统抽样例3.下列抽样中,最适宜用系统抽样法的是()A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶8∶8∶2,从中抽取200名学生做样本B.从某厂生产的2000个电子元件中随机抽取5个做样本C.从某厂生产的2000个电子元件中随机抽取200个做样本D.从某厂生产的20个电子元件中随机抽取5个做样本【答案】 C【解析】A中各区学生有区别,不好分成均衡的几部分,不适宜,B中抽取样本容量太小,不适宜.D中总体个数较少,不适宜.故选C【总结升华】系统抽样适合总体容量较大且个体间差异较小的情况.举一反三:【变式1】下列抽样中不是系统抽样的是().A.从号码为1~15的15个球中任选3个作为样本,先在1~5号球中用抽签法抽出i0号,再将号码为i0+5,i0+10的球也抽出B.工厂生产的产品,用传送带将产品送入包装车间的过程中,检查人员从传送带上每5 min抽取一件产品进行检验C.弄某项市场调查,规定在商店门口随机地抽一个人进行询问,直到调查到事先规定的调查人数为止D.某电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈【答案】C【解析】本题的判定依据是系统抽样方法的特征:系统抽样适用于个体数目较多但均衡的总体.判断一种抽样是不是系统抽样,首先看是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体按事先规定的条件等可能入样,再看抽样过程中是否将总体分成了几个均衡的部分,是否在每个部分中进行简单随机抽样.本题C显然不是系统抽样,因为事先不知道总体,抽样方法也不能保证每个个体等可能入样,总体也没有分成均衡的几部分,故C不是系统抽样.【总结升华】系统抽样的特点:①适用于总体容量较大的情况;②剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;③是等可能抽样,每个个体被抽到的可能性都是n/N.例4.为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.【思路点拨】因为总体容量较大,且个体差异不大,适宜选用系统抽样.【解析】抽样过程如下:(1)随机地将这l 003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1000能被样本容量50整除,然后将1000个个体重新编号为1,2,3, (1000)(3)将总体按编号顺序均分成50部分,每部分包括20个个体.(4)在编号为1,2,3,…,20的第一部分个体中,利用简单随机抽样抽取一个号码,比如是18.(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.【总结升华】(1)总体中的每个个体被剔除的概率相等都是3,1003.采用系统抽样时每个也就是每个个体不被剔除的概率相等都是10001003,所以在整个抽样过程中每个个体被抽取个体被抽取的概率都是501000的可能性仍然相等,都是10005050⨯=.100310001003(2)系统抽样是建立在简单随机抽样的基础之上的,在总体中剔除若干个个体时,采用的是简单随机抽样;当将总体均分后对第一部分进行抽样时,采用的也是简单随机抽样.举一反三:【变式1】从某厂生产的802辆轿车中抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.【解析】因为802不能整除80,为了保证“等距”分段,应先剔除2个个体.由于总体及样本中的个体数较多,且无明显差异,因此采用系统抽样的方法,步骤如下:第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数表法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含8001080k ==个个体; 第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.【总结升华】 用系统抽样法抽取样本,当N n 不为整数时,取N k n ⎡⎤=⎢⎥⎣⎦,即先从总体中用简单随机抽样的方法剔除N -nk 个个体,且剔除多余的个体不影响抽样的公平性.【变式2】某服装厂平均每小时大约生产服装362件,要求质检员每小时抽取40件服装检验其质量状况,请你设计一个调查方案.【解析】因为总体中的个体数较多,并且总体是由没有明显差异的个体组成,所以本题宜采用系统抽样法.第一步:把这些服装分成40组,由于36240的商是9,余数是2,所以每个组有9件服装还剩2件服装,这时分段间隔就是9.第二步:先用简单随机抽样的方法从这些服装中抽取2件服装不进行检验.第三步:将剩下的服装进行编号,编号分别为0,1,2,…,359. 第四步:从第一组(编号分别为0,1,…,8)的服装中按照简单随机抽样的方法抽取1件服装,比如,编号为k.第五步:依次抽取编号分别为下面数字的服装k,k+9,k+18,k+27,…,k+39×9,这样就抽取了一个容量为40的样本.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《系统抽样》习题
1.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为()
D.28
C25 .26 A.24 B.2.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是()
D. 3
C.4 5 A.7 B.
()
3.下列问题中,最适合用系统抽样法抽样的是
A.从某厂生产的20个电子元件中随机抽取5个入样
B.一个城市有210家超市,其中大型超市20家,中型超市40家,小型超市150家,为了掌握各超市的营业情况,要从中抽取一个容量为21的样本
C.从参加竞赛的1 500名初中生中随机抽取100人分析试题作答情况
D.从参加期末考试的2 400名高中生中随机抽取10人了解某些情况
4.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是()
D.80
C.50 A.63 B.70
5.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为
()
A.26,16,8 B.25,17,8
D. C .25,16,9 24,17,9
6.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.
7.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).
,…,1,2人按840人做问卷调查,将42现采用系统抽样方法抽取名职工,840.某单位有8.840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()
A.11 B.12 C.13 D.14
9.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2, (960)
分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷
B的人数为()
C.10 D .15
B.9 A.7
10.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.
11.某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.
12.某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?
1.答案B
解析 5 008除以200的整体数商为25,∴选B.
2.答案B
解析由系统抽样知第一组确定的号码是125-15×8=5.
3.答案C
解析A总体容量较小,样本容量也较小,可采用抽签法;B总体中的个体有明显的层次,不适宜用系统抽样法;C总体容量较大,样本容量也较大,可用系统抽样法;D总体容量较大,样本容量较小,可用随机数表法.故选C.
4.答案A
解析∵m=6,k=7,m+k=13,
∴在第7小组中抽取的号码是63.
5.答案B
600=12,故抽到的号码为12k+3(k=0,1,…,49)解析由题意知间隔为,列出不等50式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.
6.答案320
解析因为1 003=50×20+3,所以应剔除的个体数为3,间隔为20.
的样本.抽样的实施步骤:150=10%1 500×名学生,需抽取容量为1 500该校共有解7.
可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l,则每个班的l,10+l,20+l,30+l,40+l(如果l=6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.
8.答案B
840解析由于=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为42720-480240==12.20209.答案 C
960=30,抽取的号码依次为解析由系统抽样的特点知:抽取号码的间隔为329,39,69,…,939.落入区间[451,750]的有459,489,…,729,所以做问卷B的有10人.
10.答案7840~79990054,0214,0374,0534,0694
解析因为8000÷50=160,所以最后一段的编号为编号的最后160个编号.
从7840到7999共160个编号,从7840到7894共55个数,所以从0000到第55个编号应为0054,然后逐个加上160得,0214,0374,0534,0694.
36211.解第一步:把这些图书分成40个组,由于的商是9,余数是2,所以每个小组有940册书,还剩2册书,这时抽样距就是9;
第二步:先用简单随机抽样的方法从这些书中抽取2册,不进行检验;
第三步:将剩下的书进行编号,编号分别为0,1, (359)
第四步:从第一组(编号为0,1,…,8)的书中用简单随机抽样的方法抽取1册书,比如说,其编号为l;
第五步:有顺序地抽取编号分别为下面数字的书:l,l+9,l+18,l+27,…,l+39×9.这样总共就抽取了40个样本.
12.解(1)将1 001名普通工人用随机方式编号.
(2)从总体中剔除1人(剔除方法可用随机数法),将剩下的1 000名工人重新编号(分1 000别为0 001,0 002,…,1 000),并平均分成40段,其中每一段包含=25个个体.40(3)在第一段0 001,0 002,…,0 025这25个编号中用简单随机抽样法抽出一个(如0 003)作为起始号码.
(4)将编号为0 003,0 028,0 053,…,0 978的个体抽出.
(5)将20名高级工程师用随机方式编号为1,2, (20)
(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.
(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.
个号签,并记录上面的编号.4从容器中逐个抽取(8).
(9)从总体中将与所抽号签的编号相一致的个体取出.
以上得到的个体便是代表队成员.。