实验项目三 SPSS的方差分析

合集下载

如何在SPSS数据分析报告中进行方差分析?

如何在SPSS数据分析报告中进行方差分析?

如何在SPSS数据分析报告中进行方差分析?关键信息项:1、数据准备要求2、方差分析的类型选择3、假设检验设定4、效应量的计算与解释5、结果的呈现与解读6、多重比较方法的应用7、异常值处理方式8、数据正态性检验步骤9、方差齐性检验方法10、结果的报告格式11 数据准备要求111 数据的收集与录入:确保数据的准确性和完整性,避免错误或缺失值。

112 数据的编码与分类:对变量进行合理的分类和编码,以便于后续分析。

113 数据的清洗:检查并处理异常值和离群点,可采用Winsorization 或删除等方法。

12 方差分析的类型选择121 单因素方差分析:适用于研究一个自变量对因变量的影响。

122 多因素方差分析:用于探讨多个自变量及其交互作用对因变量的影响。

123 协方差分析:在控制协变量的情况下,分析自变量对因变量的作用。

13 假设检验设定131 零假设和备择假设的确定:明确研究的预期方向。

132 检验水平的选择:通常设定为 005 或 001。

14 效应量的计算与解释141 部分η²:反映自变量对因变量变异的解释程度。

142 ω²:用于校正样本量对效应量的影响。

15 结果的呈现与解读151 ANOVA 表的解读:包括自由度、均方、F 值和 P 值等。

152 图形展示:如箱线图、均值图等,直观呈现组间差异。

16 多重比较方法的应用161 LSD 法:适用于样本量相等且方差齐性的情况。

162 Bonferroni 校正:控制多重比较的总体误差率。

17 异常值处理方式171 识别异常值的方法:如使用箱线图或 Z 分数等。

172 对异常值的处理决策:根据具体情况决定保留、修正或删除。

18 数据正态性检验步骤181 绘制直方图和 QQ 图:初步判断数据的正态性。

182 采用 ShapiroWilk 检验或 KolmogorovSmirnov 检验:进行正式的正态性检验。

19 方差齐性检验方法191 Bartlett 检验:适用于正态分布的数据。

spss 方差分析(多因素方差分析)实验报告

spss 方差分析(多因素方差分析)实验报告

大学经济管理学院学生实验报告实验课程名称:统计软件及应用专业工商管理班级学号姓名成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称方差分析(多因素方差分析)指导教师一、实验目的掌握利用SPSS 进行单因素方差分析、多因素方差分析的基本方法,并能够解释软件运行结果。

二、实验内容及步骤(包括实验案例及基本操作步骤)实验案例:为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据。

销售量日期周一至周三周四至周五周末地区一5000 6000 4000 6000 8000 3000 4000 7000 5000地区二700080008000500050006000500060004000地区三300020004000600060005000800090006000(1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。

在SPSS输入数据。

(2)利用多因素方差分析法,分析不同地区和不同日期对该商品的销售是否产生了显著影响。

1. 选择菜单Analyze,General Linear Model,Univariate;2. 指定观测变量销售额到Dependant Variable框中;3. 指定固定效应的控制变量到Fixed Factors框中,4. OK,得到分析结果。

(3)地区和日期是否对该商品的销售产生了交互影响?若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。

三、实验结论(包括SPSS输出结果及分析解释)SPSS输出的多因素方差分析的饱和模型分析:表的第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是方差;第五列是F检验统计量的观测值;第六列是检验统计量的概率P-值。

F日期,,F地区,F日期*地区概率P-值分别为0.254,0.313,0.000。

如果显著性水平α为0.05,由于F日期、,F地区大于显著性水平α,所以不应拒绝原假设,不同地区和不同日期对该商品没有显著性影响。

方差分析--SPSS应用

方差分析--SPSS应用

实习三方差分析(analysis of variance--- ANOV A )一、目的要求1、掌握方差分析的应用条件2、掌握方差分析的基本思想3、掌握方差分析的用途4、掌握常用方差分析的方法(完全随机设计、随机区组设计方差分析)5、掌握多个样本均数间的两两比较方法(a. 两两比较:SNK法(q检验);b.对照组与各处理组比较:LSD法)。

二、完全随机设计的方差分析(One-Way ANOVA)One-Way ANOVA过程用于进行两组及多组样本均数的比较,即完全随机设计(成组设计)的方差分析,如果做了相应选择,还可进行随后的两两比较。

P432第8题:某职业病防治院对某石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,结果如下表所示。

问三组石棉矿工的用力肺活量有无差别?三组石棉矿工的用力肺活量(L)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.5 31.82.33.41.92.4 31.82.43.41.8 3.32.03.5建库:1、点击Variable View: 定义分类变量(组别)和应变量(用力肺活量)2、点击Data View,输入数据:3、分析过程界面说明:【Dependent List框】(选入应变量)选入需要分析的变量,可选入多个结果变量(应变量)。

【Factor框】(因素,即选入一个分类变量)选入需要比较的分组因素,只能选入一个。

【Contrasts钮】(线性组合比较,如检验均数之间差异大小的关系,均数间的线性趋势等)【Post Hoc钮】(各组均数的多重比较)弹出Post Hoc Multiple Comparisons(多重比较)对话框,用于选择进行各组间两两比较的方法,有:Equal Variances Assumed复选框组一组当各组方差齐时可用的两两比较方法,共有14中种这里不一一列出了,其中最常用的为LSD和S-N-K法。

根据实验结果,进行多元方差分析SPSS操作步骤

根据实验结果,进行多元方差分析SPSS操作步骤

根据实验结果,进行多元方差分析SPSS操作步骤多元方差分析(MANOVA)是一种统计方法,用于比较两个以上组之间在多个连续因变量上的差异。

SPSS是一款功能强大的统计分析软件,可以用于进行多元方差分析。

下面是进行多元方差分析的SPSS操作步骤:1. 打开SPSS软件,并导入实验数据。

2. 在菜单栏选择“分析”(Analyze),然后选择“一元方差分析”(General Linear Model)。

3. 在弹出的对话框中,将多个连续因变量添加到“因变量”(Dependent Variables)框中。

点击“添加”按钮,然后选择需要分析的连续因变量。

4. 将一个或多个离散自变量添加到“因子”(Factors)框中。

点击“添加”按钮,然后选择需要分析的离散自变量。

5. 点击“选项”(Options)按钮,可以进行一些附加的设置。

例如,可以选择是否计算效应大小、调整误差项或进行共同协方差矩阵的检验等。

6. 点击“确定”按钮,开始进行多元方差分析。

7. 分析结果会显示在SPSS的输出窗口中。

可以查看因变量之间的差异是否显著,以及不同组之间是否存在显著差异。

8. 为了更好地理解结果,可以进一步进行后续分析。

例如,可以进行事后比较(Post hoc tests)来确定具体哪些组之间存在显著差异。

请注意,进行多元方差分析前,需要确保数据满足一些假设条件,如正态性、方差齐性和无多重共线性等。

另外,为了减少假阳性结果,应谨慎解释显著性水平。

以上是根据实验结果进行多元方差分析SPSS操作的步骤。

希望对您有所帮助!如有需要,请随时与我联系。

用SPSS作方差分析

用SPSS作方差分析

03
探索疾病发生与发 展的影响因素
结合方差分析的结果和生物学数 据,研究疾病发生与发展的相关 因素。
05
SPSS方差分析的注意事 项
数据预处理
检查数据完整性
确保没有缺失值或异常值,否则会影响分析结 果。
变量转换
根据需要,对连续变量进行中心化或标准化处 理,对分类变量进行编码。
独立性检验
在进行方差分析前,应先检验各组之间是否独立,以避免共线性问题。
在SPSS中,选择“分析”菜单,然 后选择“比较均值”中的“单因素方 差分析” 中,将自变量(学生性别、年龄等) 放入“因子”框中。
设置选项
根据需要设置其他选项,如样本组、 置信区间等。
运行ANOVA命令
点击“运行”按钮,SPSS将执行 ANOVA命令并输出结果。
重要性
方差分析在科学研究中有重要的应用价值。它可以帮助研究者了解不同组别之间的差异是否具有实际 意义,从而为进一步的研究提供依据。此外,方差分析还可以用于检验实验处理、不同地区或不同时 间点等变量对结果变量的影响,为决策提供科学依据。
02
SPSS方差分析的步骤
打开SPSS软件
01
1. 打开SPSS软件,选择“文件” 菜单中的“新建”选项,然后选 择“数据”。
02
2. 在数据编辑器中,输入或导入 要进行方差分析的数据。
导入数据
1. 如果数据已经存储在Excel 或其他电子表格程序中,可以 通过SPSS的“文件”菜单中 的“打开”选项导入数据。
2. 选择正确的文件类型,并 浏览到存储数据的文件位置,
然后打开文件。
3. SPSS将自动将数据导入到 数据编辑器中。
结果解读与讨论
结果解读

用SPSS作方差分析

用SPSS作方差分析
平方和 SS 516 430 946
方差分析表 自由度 df r-1 nT-r nT-1
自由度 df 2 15 17
均方 MS MSTR MSE
F值 MSTTR/MSE
均方
F值
MS
258.00
9.00
28.67
总平方和 = 处理平方和 + 误差平方和
SST = SSA + SSE
r nj
j1 i1
组内估计不受原假设影响,H0为真或为假, 组内估计总是σ2的无偏估计。
___
x 1 1
___
2 x 2
___
x 3 3
___
x 4 4
2的组间估计量 F 2的组内估计量 服从分子自由度为 r 1 ,分母自由度为 nT r 的 F 分布。
(25.25)自由度
(5.5)自由度 (2.1)自由度
20个地块的小麦产量(公斤)
化肥 地块
1 2 3 4 5
鸿福
27.9 25.1 28.5 24.2 26.5
祥丰
26.5 28.7 25.1 29.1 27.2
云天
31.2 28.3 30.8 27.9 29.6
可富
30.8 29.6 32.4 31.7 32.8
样本均值 样本方差 总样本均值
x1 =26.44 s12 =3.298
nT r
nT r
18 3 15
F MSA MSE
F 统计量服从 F 分布,其分子自由度为r 1,分母自由度为 nT r。
F MSA 258 9.00 MSE 28.67
MSA
0
F
MSE
方差 来源 组间 组内 总差异
方差 来源 组间 组内 总差异

方差分析SPSS操作流程PPT课件

方差分析SPSS操作流程PPT课件

ANOVA
WEIGHT
Sum of Squares Betwee2n05G3r8o.u7p0s Within G6r5o2u.p1s59 Total 21190.86
dfMean Square F 36846.231357.467
15 43.477 18
Sig. .000
• 第一栏:方差来源
• 第二栏:离均差平方和
.;
22
• Homogeneity of variance复选项,要求进行方差齐次性检验 ,并输出检验结果。
• Brown-Forsythe:检验各组均数相等,当不能确定方差齐性 检验时,该统计量优于F统计量。
• Welch:检验各组均数相等,当不能确定方差齐性检验时,该 统计量优于F统计量。
• Mean plot复选项,即均数分布图,横轴为分类变量,纵轴为 反应变量的均数线图;
重比较对每个水平的均值逐对进行比较,以判断具体是哪些水
平间存在显著差异。
• 常用方法备选:
– LSD法:t检验的变形,在变异和自由度的计算上利用了整个样本信息

– Duncan 新复极差测验法
– Tukey 固定极差测验法
– Dunnett最小显著差数测验法 等
• 实现手段:
– 方差分析菜单中的“Post ho. c test…”按钮
• One-Way ANOVA过程要求:
因(分析)变量属于正态分布总体,若因(分析 )变量的分布明显的是非正态,应该用非参数分 析过程。
对被观测对象的实验不是随机分组的,而是进行 的重复测量形成几个彼此不独立的变量,应该用 Repeated Measure菜. 单项,进行重复测量方差8
• analyze→compare means→one-way ANVOA

SPSS实验3-单因素方差分析

SPSS实验3-单因素方差分析

SPSS作业3:方差分析不同学校专业类别对报名人数的分析(一)单因素方差分析基本操作:(1)选择菜单Analyz e-Compare means―One-Way ANOVA;(2)分别选择“报名人数”“专业类别”和“报名人数”“学校”做分析,结果如下:a.专业类别对报名人数的单因素方差分析结果b.不同学校对报名人数的单因素方差分析结果1分析:提出零假设―选择检验统计量―计算检验统计量的观测值及概率p值―给出显著性水平a,做出决策。

零假设:不同专业类别对报名人数没有显著影响;备择假设:不同专业类别对报名人数有显著影响。

图a是专业类别对报名人数的单因素方差分析结果。

可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑专业类别单个因素的影响,则报名人数总变差中,专业类别可解释的变差为5.866E7,抽样误差引起的变差为2.030E8,他们的方差分别为1.955E7和1450230.159,相除所得的F统计量为13.483,对应的p值近似为0。

如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同专业类别对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。

零假设:不同学校对报名人数没有显著影响:备择假设:不同学校对报名人数有显著影响。

图b是不同学校对报名人数的单因素方差分析结果。

可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑学校单个因素的影响,则报名人数总变差中,不同学校可解释的变差为9.265E7,抽样误差引起的变差为1.690E8,他们的方差分别为5450179.739和1341587.302,相除所得的F统计量为4.062,对应的p值近似为0。

如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同学校对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。

(二)单因素方差的进一步分析基本操作:在Optio n、Post Hoc、Contrasts框中,选择所需要的计算值,结果如下:不同专业类别对报名人数的基本描述统计量及95%置信区间2分析:在4中不同专业类别中,各有36个样本,其中,经管类的报名人数最多,其次是理工类,然后是艺术类,最少的是文学类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验项目三 SPSS的方差分析、相关分析与线性回归
实验一 SPSS方差分析
【实验目的】
1.方差分析是对线性回归的一种延续.
2.可以对两组及两组以上样本的均值差别进行显著性检验,有助于分析者从不同的角度发
现数据的内在规律性。

【实验内容】
1.单因素方差分析
2.多因素方差分析
3.协方差分析
【实验步骤】
1.单因素方差分心
1)添加变量,在SPSS软件中分别定义分析变量与数据,选择菜单【分析→非参数检验→就对话框→1-样本K-S(1)】。

在弹出的【单样本检验】对话框中,将要添加的变量天机到【检验变量列表】列表框中。

2)显示分析结果,在【单样本检验】对话框中,单击【确定】按钮,显示分析结果。

2.多因素方差分析
1)选择菜单【分析→一般线性模型→单变量】命令,出现多因素方差分析窗口。

2)在【因变量(D)】对话框中输入观测变量。

3)制定固定效应的控制变量到【固定因子(F)】列表框中;制定随机效应的控制变量到【随机因子(F)】列表框中。

4)最后,点击【确定】按钮,SPSS将自动建立多因素方差分析的饱和模型,并计算各检验统计量的观测值和对应的概率p值,并将相应的结果显示在输出窗口。

3.协方差分析
1)选择菜单【分析→一般线性模型→单变量】命令。

在【单变量(D)】对话框中输入观测变量。

2)制定固定效应的控制变量到【固定因子(F)】列表框中;制定随机效应的控制变量到【随机因子(F)】列表框中。

3)制定作为协变量的变量到【协变量(C)】框中。

最后点击【确定】按钮。

【实验结果与分析】
实验二 SPSS的相关分析
1.【实验目的】
2.相关分析的主要目的是研究变量之间的密切程度,以及根据样本的资料推断总体是否相
关。

3.相关分析可以通过图形(散点图)和数值(相关系数)两种方式揭示事物之间统计关系
的强弱程度。

【实验内容】
1.相关分析
2.偏相关分析
【实验步骤】
1.相关分析
1)选择菜单中【分析→相关→两变量】命令,即可弹出相关分析窗口。

2)选择变量。

将参加计算相关系数的变量选到【变量(V)】框。

3)在【相关系数】框中选择计算的相关系数。

4)在【显著性检验】框中选择输出相关系数检验的双侧概率p值,还是单侧概率p值。

5)选中【标记显著性相关(F)】,会在输出结果中标记出显著意义的相关系数。

如果相关系数的右上角有“*”,则代表显著性水平位0.05,如果相关系数右上角有“**”,则代表显著性水平位0.01.
6)点击【选项(O)】,就会出现选项窗口。

在这个窗口选择统计量的计算和缺失值的处理方式。

7)所有设置结束后,单击【确定】按钮,就可以进行相关分析的过程。

2.偏相关分析
1)选择菜单中【分析→相关→偏相关】,会出现偏相关分析窗口。

2)选择参与分析的变量到【变量(V)】框中。

3)选择一个或多个控制变量到【控制(C)】框中。

4)在【显著性检验】框中选择输出偏相关检验的双侧概率p值还是单侧概率p值。

所有设置结束后,单击【确定】按钮,就可以进行偏相关分析的过程。

【实验结果与分析】
实验三 SPSS的线性回归
【实验目的】
回归分析是一种应用极为重要的数据分析方法,广泛应用于分析事物之间的统计关系,侧重考察变量之间的数量变化规律,并通过回归方程的形式描述和反映这种关系,帮助人们准确把握变量受其他一个或多个变量程度影响的程度,进而为预测提供科学依据。

【实验内容】
1. 线性回归模型
2. 曲线回归
【实验步骤】
1.线性回归模型
1)选择菜单栏中【分析→回归→线性】命令,弹出线性回归窗口。

2)在左侧候选变量列表框中选择一个变量,将其添加到【因变量(D)】列表框中,作为线性回归的因变量。

3)在左侧候选变量选择变量,将其添加到【自变量(I)】列表框中,作为线性回归的自变量。

4)在【方法(M)】下拉列表框中可以选择自变量的进入方式。

5)如果需要对同一因变量建立不同的自变量的回归方程,每次在一组自变量选择完毕后,单击【自变量(I)】列表框上方的【下一张(N)】按钮,选定的这一组变量将被系统保存到这一个自变量块中。

6)选择一个变量作为条件变量到【选择变量(E)】框中,并进行【规则】按钮给定一个条件,只有变量值满足给定条件才能进行线性回归分析
7)至此便完成了线性回归分析的基本操作,SPSS将根据指令自动进行回归分析,并将结果输出到输出窗口。

2.曲线回归
1)执行【分析→回归→曲线估计】命令,弹出【曲线估计】窗口。

2)将被解释变量添加到【因变量(D)】列表框中。

3)解释变量可以是相关因素变量,也可以是时间变量。

如果解释变量是相关因素变量,则添加到【变量(V)】列表框中,如果选择【时间】选项表示解释变量为时
间。

4)在【模型】框中选择几种模型。

5)选择【根据模型绘图(O)】选项,表示在绘制图形时,将显示原始数据的散点图和拟合模型的曲线图,【显示ANOVA表格(Y)】可以在分析结果中输出模型检验的
方差分析表。

6)至此,SPSS完成曲线估计的基本操作。

【实验结果与分析】。

相关文档
最新文档