土石坝抗震安全复核

合集下载

浅析土石坝抗震安全加固技术

浅析土石坝抗震安全加固技术
民 营 科技2 0 1 3 年第9 期
科 技 论 坛
浅析土石坝抗 震安全加 固技术
高鹏天 ( 安徽 省利 辛县机电 中心管理站 , 安徽 利辛 2 3 6 7 0 4 ) 摘 要: 根据 多年来的 实践 工程经验 , 针对土石坝坝体 实际震 害及具体 条件 , 采取 经济 、 实用的抗震加 固技术和 工程措施 。土石 坝 抗震加 固主要分为坝体震 害裂缝处理、 渗漏处理、 滑坡处理和液化处理等 内容。以下将介绍几种 目前较 为普遍和行之 有效的抗震加 固
地震导致土石坝坝坡滑塌与坝坡长期受库水 浸泡土体抗剪强 度降低 、 地震时孑 L 隙水压力激增 、 坝体填筑不密实以及坝坡坡 比等 密切相关。根据坝体具体 『 青 况, 采取合理、 经济 的抗震加 固措施 , 其 原则是设法减小滑动力与增加抗滑力 , 提高坝体材料的抗剪动面坝体断面。 坝坡放缓后 , 坝脚必 地震 时, 对于可能发生液化破坏 的土层和坝基 , 查 明其分布范 须做好排水设施 。 对存在地震失稳危险的土石坝也可采用水下抛石 围和危害程度 , 根据工程 的类型和具体实 际情况 , 采取加 固技术进 水上碾压法来放缓上游坝坡, 以满足坝坡抗震稳定安全要求。处理 行处理。 目前 , 液化抗震加 固处理技术主要, 置换法 、 振冲加密法 、 时上游 坝坡培坡放缓一般 可采用 比原坝坡透水性大和抗剪强度高 强夯法、 抛石压重 以及其他方法。 的材料 , 如块石料 、 石渣料及砂砾( 卵) 石料等。 坝坡水下部分 由于受 2 . 1 置换法。置换法的加固思路是将可液化土层挖 除, 采用非液化 库水位的影响 , 无 干地碾压密实的施工条件时 , 可采用抛石压脚放 土层进行置换 。改变原有液化土的性质 , 使其不具备发生液化 的条 缓坝坡 。下游坝坡培土放缓时, 其下部培土也应采用透水性 良好 的 件。当坝体或坝基可能液化土层厚度不大时 , 可全部挖除回填砂砾 材料 , 以利于降低下游坝体浸润线 。 在库水位降落时 , 新增坝体断面 石或石渣料等抗液化性能较好 的材料 , 并碾压密实。 和原有坝体断面共 同承担原有坝壳 中库水位 降落时产生的渗透水 2 . 2 振 冲加密法 。 振冲法是振动水 冲法的简称 , 采用振 冲法加固液 压力及地震产生 的超孔隙水压力 , 起到压重和增大土体抗滑力的作 化砂土层时 , 利用振冲器使砂土先期振动液化 , 丧失抗剪强度而压 用, 从而有利于坝坡 的抗震稳定安全。 密, 以提高其密实度。 在振冲器不断振动和射水过程中, 使孔内附近 对于地震产生 的滑坡松散体 ,彻底的处理方法是清除开挖 回 填, 将滑坡部分土体全 部挖 除后 , 采用抗剪强度高和透水性好的土 石料碾压填筑密实 。如坝体内部有软弱土层 , 最好将其同时挖除 回 填。开挖 回填后 , 坝坡坡面及坡脚做好排水设施。 1 . 2 压重 固脚。地震时坝体滑坡体底部滑出坝趾以外 , 可在滑坡段

土石坝地震安全评价与抗震设计

土石坝地震安全评价与抗震设计

一、国内外土石坝震害表现
地震导致大坝坝顶瞬间发生了最大为68.4cm的震陷,
地震后(5月17日)5天,最大震陷发展为74.3cm
一、国内外土石坝震害表现
坝体内部测点测得的最大震陷81.0cm位于850m
高程(坝顶高程为884m),最大震陷100cm?
一、国内外土石坝震害表现
坝轴向变形为由两岸向河谷中央变形,最大值
一、国内外土石坝震害表现
美国Hebgen土坝(坝高35m)
1959年8月17日遭遇7.6 级地震。发震断层通过 水库北岸,距右坝肩 210m。地震造成巨大涌 浪,漫顶水头高达1m (2002年新疆喀什西克尔 水库因地震溃坝)
3

震造成全国2380座水 库出现险情,其中四 川1803座,四川出险 的水库中有溃坝险情 的69座,高危险情的 310座,次高危险情 的1424座,绝大部分 为土石坝
Infiernilo坝顶粘土心墙和上下游堆石坝壳接触部 位出现断续绵延全坝长335m的宽0.2-15 cm的纵向裂 缝,深达粘土心墙顶部
一、国内外土石坝震害表现
美国Austrian土坝(最大坝高61 m)经受
1989年Loma Prieta地震(M=7.1)
✓ 坝顶最大反应加速度分别达0.6g ✓ 最大震陷量达85.34cm,下游坝坡的最大水平位移为
一、国内外土石坝震害表现
两座坝的震害非常相似
✓ 沉降: La Villita坝和Infiernilo坝坝顶粘土心墙分别产
生了11cm和9cm的沉降
✓ 裂缝:粘土心墙和堆石坝壳接触部位坝顶出现明显裂缝
La Villita坝顶粘土心墙和上下游堆石坝壳接触部 位裂缝长达350m的连续裂缝,最大缝宽约10cm,最大 深度达50 cm

高土石坝地震安全评价及抗震设计思考

高土石坝地震安全评价及抗震设计思考
收稿 日期 : 00 0 — 9 2 1— 2 0
基 金项 目:国 家 自然科 学 基 金 资 助项 目( 0 10 4 ; 十 一 五 ” 家科 技 支 撑 计 划 资 助 项 目 (0 9 A 5 B 2 ; 家重 点 9852 ) “ 国 20 B K 6 0 ) 国 基 础研 究 发 展规 划 资 助项 目( 07 B 113 2 0 C 74 0 ) 作 者 简 介 :陈 生水 ( 92 ) 男 , 苏 高 淳 人 , 授 级 高 级 工 程 师 , 16 一 , 江 教 主要 从事 土 石 坝 工 程 的 科 学 研 究 和 技 术 咨 询 工 作 .
峰值超 过 0 5 主要震 害是 大坝 产生 了明显 的变 形 . . g, 安装在 防 浪墙顶 的变 形标点 瞬 间产生 了 6 3 9m 的沉 8 . m
降 , 于坝顶 河床 中部 大坝 最 大 断 面 , 位 由于余 震 和 大 坝震 后 应 力 、 变形 重 分 布 , 后 第 5天 , 降量 增 大 到 震 沉
中图分类 号 : V 4 . T 6 11
文 献标 志码 : A
文章编 号 :10 — 4 X(0 10 一 07 0 0 9 60 2 1 ) l 0 1 — 5
我 国已建 和拟建 的百米 级 以上高 土石 坝近百 座 , 大 多位 于高地 震烈 度 区 , 且 这些 高坝 大库一 旦 因地震 失 事 , 果将是 灾难 性 的 , 后 因此 对高 土石坝 的地 震安 全应 十分 重视 .0世纪 6 2 0年代 以前 , 内外 主要 采用 以地 国
施工时需特别予以关注. 最后 , 高土石坝 安全评价 和抗震设 计方法提 出了若干建议 , 对 并特别 指 出, 考虑到地 震
的 随 机 性 和 高 土 石 坝 安 全 的 绝 对 重 要 性 , 必 要 研 究 高 土 石 坝 的极 限抗 震 能 力 . 有

Geostudio关于土石坝计算工程问题

Geostudio关于土石坝计算工程问题

Geostudio关于土石坝计算工程问题一、目前大坝安全评价中经常用到Geo-studio软件计算大坝渗流稳定性、坝坡抗滑稳定。

1、渗流计算和坝坡稳定计算,计算参数如何选取?答:对于渗流计算,需要知道土层的渗透系数,现场取样,室内进行渗透试验可得到该参数;对于稳定性计算,需要得到土层抗剪强度参数(粘聚力,内摩擦角),现场取样,室内进行三轴试验可得到该参数。

2、渗流计算主要结果与分析答:通过渗流计算主要得到坝体内浸润线、坝体单宽渗流量和最大水力比降三个结果,通过分析这三个结果,对坝体渗流安全进行复核,验算大坝是否存在管涌和潜蚀可能性,同时得到坝内浸润线为坝坡稳定性计算提供水位边界条件参数。

3、坝坡抗滑稳定性计算主要工况答:稳定性计算分两大类三种工况,每一类计算工况下对应的坝坡抗滑稳定计算安全系数应符合相关规范要求,其中正常运行条件是指水库水位处于正常蓄水位和设计洪水位的稳定渗流期,非常运用条件I是指校核洪水位有可能形成的稳定渗流情况,非常运用条件II是指地震工况(即抗震安全复核)。

二、目前水库大坝安全评价依托的规范是《水库大坝安全评价导则》1、《水库大坝安全评价导则》中说明的水库大坝安全评价内容答:工程质量评价、运行管理评价、防洪能力复核、渗流安全评价、结构安全评价、抗震安全评价、金属结构安全评价以及大坝安全综合评价。

三、Seep计算问题1、计算结果的等势线在浸润线以上还存在?答:因软件认为浸润线以上存在非饱和区,故存在等势线,修改方法,将图复制到visio中,取消组合,删除浸润线以上等势线即可,如下图所示。

2、单宽渗流量与设置的渗流线有关,该怎么设置渗流线合理?答:软件认为浸润线以上是非饱和区,也存在渗流和等势线水位,与实际不符合的,因此,渗流线绘制时应略高于浸润线即可,得到的单宽渗流量符合实际。

3、计算土石坝,浸润线不合理?答:检查上下游边界条件和土层参数,坝体内不透水料设置非饱和参数,得到浸润线较合理。

基于GeoStudio的土石坝动力安全复核

基于GeoStudio的土石坝动力安全复核

图7
第 4. 40 s 的水平加速度等值线 ( 单位 : m/ s 2 )
2 . 3 动力非线性分析 动力计算在 GeoSt udio 软件 QUAKE/ W ( 地 震响应分析软件 ) 模块中进行 , 各分区 动力计算参数
[ 6]
Fig. 7 Co nt o urs o f horizont al ac ce le rat on at 4. 40 s
[ 3]
图 1 英菲尔尼罗坝的最大断面与简化断面 Fig. 1 M ax imum s ec t io n and simplifie d se ct io n o f El Infie rnillo ro ckf ill dam 表 1 不同时期发生的最大沉降量 Tab. 1 M aximum se t t le ment of dif fe rent st age s cm
时期 施工 初期蓄水 最大沉降量 165. 00 35. 00 时期 初期蓄水 ~ 地震前 1979 -03 -14 地震 最大沉降量 69. 00 13. 00
1979 年地震时大坝未出现严重震害 [ 4] , 运行 正常 , 表现出良好的抗震性能 : 坝顶最大沉降约 13 cm, 向下游最大位移 5~ 6 cm; 坝顶沉降最 大部位纵缝多至 5 条, 少则 1~ 3 条 ; 上游人行 道侧有一条连续纵缝 , 缝宽由坝中间逐渐收缩至 近坝肩的 1 mm, 缝深相当于人行道混凝土板厚度; 左坝肩有 11 条横缝, 缝宽 1~ 20 mm, 深 70 cm。 2 . 2 静力非线性分析 采用 GeoSt udio 软件的 SIGM A/ W ( 岩土应 力变形分析软件 ) 模块计算大坝静力。坝体计算 参数见表 2。网格剖分见图 2, 采用四节点规则四

大坝安全鉴定报告书

大坝安全鉴定报告书

大坝安全鉴定报告书水库名称:鉴定审定部门:鉴定时间:年月日填表说明一、工程概况:应填明水库建设时间、规模及功能,续建、加固情况,现状工程规模、防洪标准及特征水位,枢纽主要建筑物组成及其特征参数,运行中的主要问题及水库大坝对下游的影响等情况。

二、现场安全检查:填明现场安全检查的主要结果,指出严重的运行异常表现,反映工程存在的主要安全问题。

三、工程质量评价:填明施工质量是否达到设计要求,总体施工质量的评价,运行中暴露出的质量问题。

反映施工及历年探查试验的质量结果,反映补充探查和试验的主要结果。

四、运行管理评价:反映主要运行及管理情况,历史最高蓄水时的大坝运行情况,历年出现的主要工程问题及处理情况,水情及工程监测、交通通讯等管理条件。

五、防洪标准复核:应填明本次鉴定中采用的水文资料系列和洪水复核方法,主要调洪计算原则及坝顶超高复核结果,指出水库大坝现状实际抗御洪水能力,及与标准的比较。

六、结构安全评价:根据本次对大坝等主要建筑物的结构安全评价结果,填明大坝是否存在危及安全的变形,大坝抗滑是否满足规范要求,近坝库岸是否稳定,混凝土建筑物及其他泄水、输水建筑物的强度安全是否满足规范要求等。

七、渗流安全评价:根据本次鉴定中对大坝进行渗流稳定性分析评价结果,填明大坝运行中有无渗流异常,各种岩土材料中的渗透稳定是否满足安全运行要求,坝基扬压力是否满足设计要求等。

八、抗震安全复核:根据《全国地震动参数区划图》或专门研究确定的基本地震参数及设计烈度,土石坝的抗滑稳定、坝体及地基的液化可能性;重力坝的应力、强度及整体抗滑稳定性;拱坝的应力、强度及拱座的抗滑稳定性;以及其它输、泄水建筑物及压力水管等的抗震安全复核结果。

九、金属结构安全评价:是否做了检测,填明金属结构锈蚀程度,复核的强度、刚度及稳定性是否满足规范要求,闸门启闭能力是否满足要求,紧急情况下能否保证闸门开启。

十、工程存在的主要问题:根据现场安全检查及大坝安全评价结果,归纳水库大坝存在的主要安全问题。

高土石坝抗震安全评价与减灾方法

高土石坝抗震安全评价与减灾方法

2 调研背景资料
调研的背景资料主要包括主要国际机构和网站的相关资料,国内外主要规范、
108
学术期刊及国际会议论文等。 (1)主要国际机构和网站 国际大坝委员会(/) 中国大坝协会(/chincold/index.htm/) 美国垦务局(http:// /) 美国华盛顿州生态管理署大坝安全办公室 (/programs/wr/dams/dss.html) 美国陆军工程师团(/) 美国大坝协会(/) 美国土木工程协会(/) 美国联邦应急管理署 (/ ) 新南威尔士政府大坝安全委员会 (.au/DSC/Publications/reports.shtm) 美国联邦能源管理委员会(/) 美国加利福尼亚州水资源管理局大坝安全分局 (/damsafety/) 加州大学伯克利分校太平洋地震工程研究中心 (/elibrary/) (2)主要规范 U.S. Army Corps of Engineers .EARTHQUAKE DESIGN AND EVALUATION FOR CIVIL WORKS PROJECTS(Regulation No.1110-2-1806).Washington, DC 20314-1000 Federal Emergency Management Agency.Federal Guidelines for Dam
Safety—Earthquake Analyses and Design of Dams,2005 U.S. Army Corps of Engineers .Slope Stability. EM 1110-2-1902,31 Oct 2003 U.S. Army Corps of Engineers.CONSTRUCTION CONTROL FOR EARTH AND ROCK-FILL DAMS. EM 1110-2-1911,30 September 1995 U.S. Army Corps of Engineers.General Design and Construction Considerations

5 土副坝防洪及抗震安全复核

5 土副坝防洪及抗震安全复核

4 土副坝防洪及抗震安全复核4.1 复核计算的依据(1)《碾压式土石坝设计规范》(SL274—2001); (2)《水工建筑物抗震设计规范》(SL203-97);(3) 陕西省水利电力土木建筑勘测设计院,《陕西省二郎坝引嘉(陵江)如汉(江)水利工程初步设计说明书》,1990年7月;(4) 陕西省水利电力勘测设计研究院,《二郎坝水电工程水库枢纽竣工安全鉴定设计自检报告》,2007年9月。

4.2 坝顶高程复核计算4.2.1 基本资料根据《二郎坝水电工程水库枢纽竣工安全鉴定设计自检报告》,天生桥水库枢纽区多年平均最大风速为20m/s ,风区长度(有效吹程)为3km ;副坝建筑物级别为3级;水库正常蓄水位为1080m 。

根据《天生桥水库枢纽建筑物防洪及抗震安全复核计算任务书》,本次复核计算采用地震设计烈度为7度。

根据本次洪水调节复核计算结果,水库设计洪水位为1180.31m (重现期50年),校核洪水位为1185.52m (重现期1000年)。

4.2.2 计算方法按照《碾压式土石坝设计规范》(SL274—2001)5.3.3条要求,坝顶高程等于水库静水位与坝顶超高之和,坝顶超高应按下式计算:y = R + e + A (4.1)式中,y 为坝顶超高,m ;R 为最大波浪在坝坡上的爬高,m ;e 为最大风壅水面高度,m ;A 为安全加高, m 。

本工程地震设计烈度为7度。

根据《碾压式土石坝设计规范》(SL274—2001)5.3.2条规定,地震区的安全加高A 尚应增加地震沉降和地震壅浪高度(地震附加安全加高)。

波浪爬高按莆田试验站公式计算:λh mK K R W 21+=∆ (4.2)式中,∆K 为坝坡的糙率渗透性系数,按砌石护坡查得∆K =0.75;W K 为经验系数;根据坝坡前水深查得W K =1; h 为波高,h =31450208.0DW;λ为波长,λ=21304.0WD。

最大风壅水面高度计算按下式计算: βcos 22gHDKW e =(4.3)式中,K 为综合摩阻系数,取值6106.3-⨯; H 为水域平均水深,根据吹程取为80m ;β为风向与水域中线夹角,取β=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土石坝抗震安全复核
土石坝(包含其他水工建筑物的土质地基)抗震安全复核包括坝坡抗滑稳定复核计算及应力应变与抗液化分析。

抗滑稳定性复核。

按规范SL203采用拟静力法计算坝体、坝基及近坝库岸等的稳定性。

如有大量滑坡、塌岸可导致涌浪、漫顶溢流的,还应补作涌浪及溃坝专门分析。

土石坝工程(包含其他水工建筑物的土质地基)地震抗滑稳定性的判别标准按规范SL274的规定采用。

若按规范SL203中极限状态分析,则其抗滑结构系数γd采用1.25(总应力法)。

不同等级的工程可参照规范SL203确定相应K或γd。

应力应变与抗液化分析。

对抗震设防烈度为8度以上、坝高高于70m 的土石坝,以及地基有可液化土层时,应按规范SL203要求,采用拟静力法进行液化判别和地震附加沉降计算;同时,还应采用有限元法进行动力分析。

如有地震原型观测资料,应优先整理分析并做反演计算。

相关文档
最新文档