恒温箱温度控制系统的设计

合集下载

基于单片机的恒温箱控制系统设计

基于单片机的恒温箱控制系统设计

基于单片机的恒温箱控制系统设计一、引言在现代科技的众多应用领域中,恒温控制技术扮演着至关重要的角色。

无论是在医疗、化工、科研还是在食品加工等行业,对环境温度的精确控制都有着严格的要求。

恒温箱作为实现恒温控制的重要设备,其性能的优劣直接影响到相关工作的质量和效率。

基于单片机的恒温箱控制系统凭借其精度高、稳定性好、成本低等优点,得到了广泛的应用。

二、系统总体设计(一)设计目标本恒温箱控制系统的设计目标是能够在设定的温度范围内,精确地控制箱内温度,使其保持恒定。

温度控制精度为±05℃,温度调节范围为 0℃ 100℃。

(二)系统组成该系统主要由温度传感器、单片机、驱动电路、加热制冷装置和显示模块等部分组成。

温度传感器用于实时采集恒温箱内的温度数据,并将其转换为电信号传输给单片机。

单片机作为核心控制单元,对采集到的温度数据进行处理和分析,根据预设的控制算法生成控制信号,通过驱动电路控制加热制冷装置的工作状态,从而实现对箱内温度的调节。

显示模块用于实时显示箱内温度和系统的工作状态。

三、硬件设计(一)单片机选型选择合适的单片机是系统设计的关键。

考虑到系统的性能要求和成本因素,本设计选用了_____型号的单片机。

该单片机具有丰富的片上资源,如 ADC 转换模块、定时器/计数器、通用 I/O 口等,能够满足系统的控制需求。

(二)温度传感器选用_____型号的数字式温度传感器,其具有高精度、低功耗、响应速度快等优点。

传感器通过 I2C 总线与单片机进行通信,将采集到的温度数据传输给单片机。

(三)驱动电路驱动电路用于控制加热制冷装置的工作。

加热装置采用电阻丝加热,制冷装置采用半导体制冷片。

驱动电路采用_____芯片,通过单片机输出的控制信号来控制加热制冷装置的通断,从而实现温度的调节。

(四)显示模块显示模块选用_____型号的液晶显示屏,通过单片机的并行接口与单片机进行连接。

显示屏能够实时显示箱内温度、设定温度以及系统的工作状态等信息。

恒温箱温度控制系统的设计任务书

恒温箱温度控制系统的设计任务书

编号:毕业设计任务书题目:恒温箱温度控制系统的设计学院:机电工程学院专业:电气工程及其自动化学生姓名:孙卉学号:1200120304指导教师单位:机电工程学院姓名:韦寿祺职称:教授题目类型:☐理论研究☐实验研究☑工程设计☐工程技术研究☐软件开发2015年12月28日一、毕业设计(论文)的内容恒温箱广泛应用在医疗、工业生产和食品加工等领域,其对温度稳定性要求较高,如何实现对温度的精确控制是恒温箱温度控制系统的关键。

温度控制系统通常由被控对象、测量装置、调节器和执行机构等组成。

目前,测量装置大多采用温度传感器采集温度,但是在常规的环境中,温度受其它因素影响较大,而且难以校准,因此,温度也是较难准确测量的一个参数,常规方法测量温度误差大、测量滞后时间长。

当前,普遍使用单片机或者PLC实现恒温箱温度的智能控制,两种控制方式各有优势。

本课题要求设计一种智能恒温控制系统,选择合适的控制方式实现温度的智能控制,具体任务如下:1、收集有关恒温箱的文献资料,了解恒温箱的工作原理、工艺要求等,重点学习掌握恒温箱温度控制系统的构成、运行参数、控制特点等,选择合适的控制方式,制定恒温箱电热温度控制系统的控制方案。

2、建立恒温箱电热温度控制系统的数学模型,应用仿真软件进行仿真,选择调节器参数,分析系统稳态和动态控制性能指标。

3、完成恒温箱电热温度控制系统的硬件电路设计和相关控制软件程序的编写,绘制系统原理图,计算元器件参数,选择元器件型号。

4、制作演示模拟样机,进行软硬件联调。

二、毕业设计(论文)的要求与数据1、收集恒温箱温度控制系统的工作原理和控制方法的相关文献资料15篇以上,其中英文文献不少于2篇。

2、恒温箱电热温度控制系统的输入电源为单相220V,电加热额定功率5kW,温度调节范围室温~200℃,温度控制精度在±1℃以内。

3、恒温箱对加热电源电流的传递函数为18.4e ,采用PID调节器或九点1.2s控制器设计恒温箱电热温度控制系统,选择单片机或PLC作为控制器。

恒温箱实验报告

恒温箱实验报告

计算机控制系统设计报告设计名称:恒温箱温度计算机控制系统设计姓名:高川学号: 20121851班级:自动化1203学院:信息工程学院任课教师:聂诗良2015年11月21日基于单片机的恒温箱控制系统设计摘要:本设计是基于AT89C52单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:电源、温度传感器、显示屏、控制、晶闸管驱动和报警的设计;软件包括:键盘管理程序设计、显示程序设计、PID控制程序设计和温度报警程序设计。

编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行液晶显示,当加热到设定值后立刻报警。

本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89C52为主控芯片,液晶作为显示输出,实现了对温度的实时测量与恒定控制。

关键词:单片机、晶闸管、恒温、PID算法。

引言:本课题采用单片机控温度实现恒温控制,这个环节有温度传感器将恒温箱内的温度信号传输给单片机,单片机通过对输入的温度信号与设定值比较,再把比较后的信号通过PID 控制器得出控制信号,从而保持控制晶闸管的通断状态,达到平滑的控制灯泡两端电压实现对恒温箱温度的全程控制。

一、本课题设计要求如下图所示,恒温箱采用木箱或纸箱(外形尺寸不大于30cm×30cm×30cm),内置白炽灯泡(功率不大于100W)用于加热。

木箱或纸箱白炽灯泡≤100W30cm10cm自制恒温箱要求(1)温度采集传感器采用热电阻或热电偶,或一体化数字温度传感器DS18B20。

(2)控制灯泡亮度或发热量,采用可控硅平滑控制。

(3)采用单片机89C51作为控制器。

(4)采用LCD的液晶显示器作为显示器,同时显示给定温度和实际温度。

(5)采用自制按键的键盘作为温度给定值输入。

(6)恒温箱实际温度达到给定值时(误差要求±1℃)需声光提示,声音延时5秒后停止。

(7)恒温箱最高温度≤100℃。

恒温箱温度控制系统设计

恒温箱温度控制系统设计

恒温箱温度控制系统设计恒温箱是一种用于保持恒定温度的设备,广泛应用于实验室、医疗、食品加工等行业。

恒温箱温度控制系统设计是为了保持箱内温度在预定的设定值范围内稳定,确保实验或加工过程的准确性和可靠性。

本文将详细介绍恒温箱温度控制系统设计的关键步骤和技术要点。

一、温度传感器选择和安装:温度传感器是恒温箱温度控制系统的核心部件,常用的传感器有热电偶和热敏电阻。

选择传感器时需要考虑测量范围、精度、响应时间等因素,并在箱内合适的位置进行安装,以确保能够准确测量到箱内温度。

二、温度控制器选择和配置:温度控制器是实现恒温箱温度控制的关键组件,常见的控制器有PID控制器和模糊控制器。

控制器的选择要根据实际需求和系统性能来确定,同时需要根据传感器类型和参数进行配置,确保能够准确控制箱内温度。

三、加热器和散热器安装:恒温箱的温度控制是通过加热器和散热器来实现的,加热器增加箱内温度,散热器降低箱内温度。

加热器和散热器的选择要考虑到箱体的尺寸和散热量,合理配置,并确保安装牢固和散热效果良好。

四、温度控制算法设计:温度控制算法是恒温箱温度控制系统的关键部分,常用的算法有PID算法、模糊控制算法和遗传算法等。

在算法设计过程中需要根据实际需求和系统响应特性进行参数调整,以达到稳定控制和快速响应的效果。

五、温度控制系统的连续监测和调整:温度控制系统需要实时监测箱内温度,并在温度偏离设定值时进行及时调整。

可以通过触摸屏显示温度曲线和设定值,在温度波动较大时进行系统调整,保证温度稳定性。

六、安全性和可靠性设计:综上所述,恒温箱温度控制系统设计应包括温度传感器选择和安装、温度控制器选择和配置、加热器和散热器的安装、温度控制算法设计、温度控制系统的连续监测和调整、以及安全性和可靠性设计。

只有在这些关键步骤和技术要点上做好设计和配置,才能确保恒温箱温度控制系统的稳定性和可靠性,以满足实际需求。

单片机恒温箱温度控制系统的设计说明

单片机恒温箱温度控制系统的设计说明

课程设计课题:单片机培养箱温控系统设计本课程设计要求:温度控制系统基于单片机,实现对温度的实时监控,实现控制的智能化。

设计了培养箱温度控制系统,配备温度传感器,采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数字传输,采用PID控制技术,可保持温度在要求的恒定范围内,配备键盘输入设定温度;配备数码管L ED显示温度。

技术参数及设计任务:1、使用单片机AT89C2051控制温度,使培养箱保持最高温度110 ℃ 。

2、培养箱温度可预设,干燥过程恒温控制,控温误差小于± 2℃.3、预设时显示设定温度,恒温时显示实时温度。

采用PID控制算法,显示精确到0.1℃ 。

4、当温度超过预设温度±5℃时,会发出声音报警。

和冷却过程没有线性要求。

6、温度检测部分采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数传7 、人机对话部分由键盘、显示器、报警三部分组成,实现温度显示和报警。

本课程设计系统概述一、系统原理选用AT89C2051单片机作为中央处理器,通过温度传感器DS18B20采集培养箱的温度,并将采集的信号传送给单片机。

驱动培养箱的加热或冷却。

2、系统整体结构总体设计应综合考虑系统的总体目标,进行初步的硬件选型,然后确定系统的草案,同时考虑软硬件实现的可行性。

经过反复推敲,总体方案确定以爱特梅尔公司推出的51系列单片机为温度智能控制系统核心,选用低功耗、低成本的存储器、数显等元器件。

总体规划如下:图1 系统总体框图2、硬件单元设计一、单片机最小系统电路Atmel公司的AT2051作为89C单片机,完全可以满足本系统所需的采集、控制和数据处理的需要。

单片机的选择在整个系统设计中非常重要。

该单片机具有与MCS-51系列单片机兼容性高、功耗低、可在接近零频率下工作等诸多优点。

广泛应用于各种计算机系统、工业控制、消费类产品中。

AT 89C2051 是 AT89 系列微控制器中的精简产品。

基于单片机的恒温箱温度控制系统毕业论文带pid控制

基于单片机的恒温箱温度控制系统毕业论文带pid控制

第1章绪论1.1研究的目的和意义温度是工业生产中主要被控参数之一,温度控制自然是生产的重要控制过程。

工业生产中温度很难控制,对于要求严格的的场合,温度过高或过低将严重影响工业生产的产质量及生产效率,降低生产效益。

这就需要设计一个良好温度控制器,随时向用户显示温度,而且能够较好控制。

单片机具有和普通计算机类似的强大数据处理能力,结合PID,程序控制可大大提高控制效力,提高生产效益。

本文采用单片机STC89C52设计了温度实时测量及控制系统。

单片机STC89C52能够根据温度传感器DS18B20所采集的温度在LCD1602液晶屏上实时显示,通过PID控制从而把温度控制在设定的范围之内。

通过本次课程实践,我们更加的明确了单片机的广泛用途和使用方法,以及其工作的原理。

1.2国内外发展状况温度控制采用单片机设计的全数字仪表,是常规仪表的升级产品。

温度控制的发展引入单片机之后,有可能降低对某些硬件电路的要求,但这绝不是说可以忽略测试电路本身的重要性,尤其是直接获取被测信号的传感器部分,仍应给予充分的重视,有时提高整台仪器的性能的关键仍然在于测试电路,尤其是传感器的改进。

现在传感器也正在受着微电子技术的影响,不断发展变化。

恒温系统的传递函数事先难以精确获得,因而很难判断哪一种控制方法能够满足系统对控制品质的要求。

但从对控制方法的分析来看,PID控制方法最适合本例采用。

另一方面,由于可以采用单片机实现控制过程,无论采用上述哪一种控制方法都不会增加系统硬件成本,而只需对软件作相应改变即可实现不同的控制方案。

因此本系统可以采用PID的控制方式,以最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。

现在国内外一般采用经典的温度控制系统。

采用模拟温度传感器对加热杯的温度进行采样,通过放大电路变换为 0~5V 的电压信号,经过A/D 转换,保存在采样值单元;利用键盘输入设定温度,经温度标度转换转化成二进制数,保存在片内设定值单元;然后调显示子程序,多次显示设定温度和采样温度,再把采样值与设定值进行 PID 运算得出控制量,用其去调节可控硅触发端的通断,实现对电阻丝加热时间的控制, 以此来调节温度使其基本保持恒定。

恒温控制电路设计

恒温控制电路设计

恒温控制电路设计一.概述:本设计的主要内容是用单片机系统进行温度实时采集与控制。

温度信号由AD590K和温度/电压转换电路提供,对AD590K进行了精度优于正负0.1° C的非线性补偿,温度实时控制采用分段非线性和积分分离PI算法,其分段点是设定温度的函数。

控制输出来用脉冲移相触发可控硅来调节加热丝有效功率。

系统具备较高的测量精度和控制精度。

二.实施方案:本题目是设计制作一个恒温箱控制系统,为测量和温度调节方便,内加2L纯净水,加热器为100W电炉。

要求能在40度到100度范围内设定控制水温,静态控制精度为0.2° C,并具有较好的快速性与较小的超调.含有十进制数码管显示、温度曲线打印等功能。

关键词:非线性补偿:大多数被测参数与显示值之间呈现非线性关系,为了消除非线性误差,必须在仪表中加入非线性补偿电路。

常用的方法有:模拟式非线性补偿法、非线性数模转换补偿法、数字式非线性补偿法等。

分段非线性:由于热敏电阻的阻值与温度之间的关系存在着非线性,需通过计算机进行非线性改正,消除非线性的影响。

为克服非线性的影响,采用分段线性法补偿。

如果该温度计的测量范围为5c至45℃,将整个温度测量范围等分为10个小区间,每4度为一个区间,在每个区间内温度与频率的关系可视为线性。

过零检测光耦:过零检测光藕就是在交流电网过零检测光藕.在电网过零时干扰最小,不会影响模拟测量的结果,这种光耦是在直流电时导通的.它的前级结构是二极管。

热惯性:系统在升温过程中,加热器温度总是高于被控对象温度,在达到设定值后,即使减小或切断加热功率,加热器存储的热量在一定时间内仍然会使系统升温,降温有类似的反向过程,这称之为系统的热惯性。

超调:系统在达到设定值后一般并不能立即稳定在设定值,而是超过设定值后经一定的过渡过程才重新稳定。

传感器滞后是指由于传感器本身热传导特性或是由于传感器安装位置的原因,使传感器测量到的温度比系统实际的温度在时间上滞后,系统达到设定值后调节器无法立即作出反应,产生超调。

基于STM32单片机的恒温箱系统设计

基于STM32单片机的恒温箱系统设计
盐水 的加 温等 。
1 系统 设 计 方 案
本 系统包 括 S T M3 2 F 1 0 3核 心板 、 P T 1 0 0 0温 度传 感 器 、 放 大 电路 、 4 x 4矩 阵键 盘 、 声 光 报 警 电路 、 液 晶 显 示屏 、 驱 动 电路 、 继 电器 控制 电路 、 半导 体 制冷 片及 P T C加 热片 , 如图 1 所示 。
行 温 度控 制 , 当 箱体 内气 温低 于设 定值 时 , 加 热 片开 始 加 热 , 当 箱 内温度 高 于 设 定 值 时 制 冷 片 开 始 工 作 。 关键 词 : S T M3 2 F 1 0 3 V E T ; P T I O 0 0 ; 半导体制冷 片; 温 度 控 制
中图分类号 : T P 3 6 8 . 1
P T 1 0 0 0温 度传 感器 输 出电压 经放 大 电路 放 大后 送 到 S T M3 2 F 1 0 3核 心 板 的模 数转 换 接 V I , 转 化 成 数 字
量后 经 S T M3 2 F 1 0 3单 片机 处理 得到 相应 的温度 信 息 。在 某 一 时刻 箱 内如 果低 于 设 置 温度 则 通 过继 电器 控 制 电路使 P T C加 热 片开始 加热 , 经 H桥 驱 动 电路 正 向驱动 制冷 片使 半导 体制 冷 片开始 加热 箱体 。 当箱 内温
度 高于设 置温 度 时 , S T M3 2 F 1 0 3 单 片机 发 出控 制 指令 , 经驱 动 电路 反 向驱 动制 冷 片 使 半 导体 制 冷 片 开 始 制
冷 。在液 晶显 示屏 上显 示箱 内实 际温度 和设 置 温度 。通过 4 x 4矩 阵键 盘 输入 设 置温 度 , 也 可 以在 触摸 屏 上
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要在此次设计中,主要是设计一套能够精确控制温度的恒温箱温度控制系统。

该系统能够实时、自动、准确的测量恒温箱内的温度,然后通过加热和降温将温度控制在设定的误差范围内。

恒温箱在各个领域里都有很重要的意义,但其控制系统又较为复杂,基本上不可能用数学的方法建立准确的模型。

当前是用经典控制和智能控制两种控制算法相结合的方式对温度进行高效的控制。

我们采用STC12C5A60S2单片机作为核心控制器,温度测量采用数字温度传感器,使用PID控制,输出控制用量的调节用的是可控硅触发端的通断,从而实现对温度的控制。

温度在一定范围内可以由人工调节,并能在环境温度降低时实现自动调整。

这样将PID和单片机结合使用,可以将整个控制系统的精度提高,将误差减小。

PID算法是经典的控制算法,在实际的控制中有着很高的地位。

PID算法相对简单,控制精度高。

但是PID调节的参数无法适应系统很长时间,需要对参数不断的整定,以达到更好的控制效果。

该算法最重要的是怎样合理有效的整定其参数,针对这种情况我们就要对其进行仿真建模,通过MATLAB找到更好的解决方法,以免浪费不必要的时间,有效的提高了设计效率,也使控制性能可以达到预期的效果。

关键词:恒温箱;温度控制;MATLAB;PIDThis paper is mainly to design a set of temperature control system that can control the temperature of incubators precisely. This system is capable in automatically and accurately measuring the temperature inside the oven in real-time and control the temperature within the setting error range by heating and cooling. Incubators have a very important significance in various fields. Due to its complication in the control system, basically it is impossible to mathematically establish a mode accurately. The current used algorithm control method is the classical control method and intelligent control method. By combining these two algorithms, an effective control on the temperature is achieved.STC12C5A60S2 microcontroller is used as the core controller. The temperature measurement is done by using PID control on the digital temperature sensor. The amount of output is control by using the trigger of SCR, where the temperature control is achieved. The temperature can be adjusted manually within certain range and it can adjust automatically when the ambient temperature decreases. The combination of usage of PID and microcontroller can increase the accuracy of the control system and therefore reduce the errors.PID is a classical algorithm and control algorithms. It has a very high status in the actual control system. The PID algorithm is relatively simple and has high precision of control. But in order to achieve a better control effect, The PID parameters need a constant tuning and they are unable to adapt in the system for a longer time. Therefore is it important for finding a reasonable and effective tuning for the parameters in which we have to modeling and stimulation. In order to find a better solution without wasting much time, MATLAB is used and this has effectively improve the design efficiency and the control performance achieved the desired results.Key words: Incubators; Temperature control; MATLAB; PID control摘要 (I)Abstract (II)引言 (1)1 绪论 (2)1.1 课题背景,目的和意义 (2)1.2 国内外研究现状 (2)1.3 发展方向 (3)1.4 本章小结 (3)2 恒温箱温度控制系统的总体设计 (4)2.1 恒温箱温度控制系统设计的研究内容与基本要求 (4)2.1.1恒温箱温度控制系统设计的研究内容 (4)2.1.2恒温箱温度控制系统设计的基本要求 (4)2.2 恒温箱温度控制系统的基本工作原理 (4)2.3 控制方案的选择 (5)2.3.1比例控制(P) (5)2.3.2比例积分控制(PI) (6)2.3.3比例微分控制(PD) (6)2.3.4比例积分微分控制(PID) (7)2.4 PID的特点与参数的整定 (8)2.4.1PID调节器的特点 (8)2.4.2PID调节器参数的整定 (8)2.5 本章小结 (9)3 恒温箱温度控制系统的硬件电路的设计 (10)3.1 元器件的选择 (10)3.1.1温度传感器的选择 (10)3.1.2电线的选择 (10)3.1.3显示器的选择 (11)3.1.4 稳压器的选择 (11)3.1.5按键的选择 (12)3.1.6加热负载控制器件的选择 (12)3.1.7核心控制器的选择 (13)3.2 单片机电路的设计 (13)3.3 显示电路的设计 (14)3.4 按键电路的设计 (15)3.5 报警电路的设计 (16)3.6 稳压电路的设计 (16)3.7 过零检测电路 (17)3.8 加热器件驱动电路 (18)3.8.1光电耦合器介绍 (18)3.8.2 可控硅介绍 (18)3.8.3 可控硅驱动电路设计 (19)3.9 热电偶信号处理电路 (20)3.9.1热电偶的基本工作原理 (20)3.9.2MAX6675的介绍 (20)3.9.3热电偶信号处理电路的设计 (21)3.10 模拟样机硬件的制作 (22)3.11本章小结 (22)4 温度控制系统的软件设计 (23)4.1 检测模块设计 (23)4.1.1按键模块程序设计 (23)4.1.2温度检测程序设计 (24)4.2 控制模块程序设计 (24)4.3 显示模块程序设计 (25)4.4 PID程序设计 (26)4.5 系统整体设计 (26)4.6 模拟样机的软件设计 (27)4.7 本章小结 (27)5 恒温箱温度控制系统的建模与仿真 (28)5.1 恒温箱温度控制系统的数学建模 (28)5.2 控制系统的仿真 (28)5.2.1 MATLAB的简介 (28)5.2.2 Simulink的简介 (29)5.2.3PID控制及仿真 (29)5.3 本章小结 (31)6 总结 (32)6.1 结论 (32)6.2 心得体会 (32)谢辞 (33)参考文献 (34)附录一模拟样机程序 (35)附录二元器件清单 (38)附录三模拟样机的温度控制系统的PCB图 (39)引言恒温箱的应用非常广泛。

其工作就是保持温度的恒定,从琐碎的日常生活到精准的科学研究;从能源、化工到医用、军事;从工业生产到农牧业的需要。

可见,恒温箱无处不在。

在当今社会,由于科技快速进步,国家经济水平的高速发展,以及大众对恒温箱的需求的增长,所以就对恒温箱提出了更高的要求。

不仅要控制的精度越来越高,还要经济实惠,更希望恒温箱有一个温度控制的范围,可以让用户自己设置自己所需温度,以满足不同用户的不同需求。

一般的温度控制方法都是设定一个数值为温度的临界点,超过误差允许的范畴则要进行温度调控。

本方法容易操作,价格适中,但结果不理想,控温精度不高,需要较长的时间才可以到达稳定点。

因此,它只适用于对精度要求不高地方。

本次毕业设计中,该系统的作用就是实现对温度的控制与监测。

我们的核心控制器是单片机。

用单片机进行PID计算,可以最大程度的展示软件的灵活性、且容易操作,可以让系统变得更稳定一些。

单片机是每个控制系统中不能缺少的重要组成部分,已广泛地应用于各个领域。

能及时的处理数据,可以使系统在最佳状态下工作,并使控制精度整体提高。

又因为单片机有功能强大,反应灵敏,尺寸小,能耗低,性价比高等优点,因此其市场占有率在日益增加。

PID控制器原理相对容易一些,且适应性好,鲁棒性强。

因为其P、I、D各自独立,研究工作者可以根据自己的需求来进行组合,整定PID的参数又相对简单。

因此在众多领域里都有广泛的应用。

1 绪论1.1 课题背景,目的和意义随着社会不断发展,科技快速进步,以及恒温箱在诸多领域的应用,智能控制与经典控制相结合的控制方式已然成为温度控制系统的主流方向。

温度在诸多领域里都是极为重要的参数,但对其实现高精度的控制是有一定难度的,但温度又是一个和生活密不可分的实际问题。

相关文档
最新文档