多层框架结构设计.
多层框架结构设计

多层框架结构设计一、梁、柱的截面尺寸初选:结构平面布置如下图,各层梁柱板的混凝土强度为C30,f c=14.3N/mm2,f t=1.43 N/mm2。
取相邻两个柱距的尺寸宽作为计算单元。
(1)梁截面初选:边跨梁(AB、CD跨)框架梁截面高度可按h=(1/18~1/10)l0确定其中l0为梁的计算跨度,为了防止梁发生剪切脆性破坏,梁净跨与截面高度之比l/h≥4,梁截面宽度可取b=(1/3~1/2)h且b≥200mm梁截面高宽比h/b≤4.由上图可知:L边=6300mm,L中=2700mm,h边=(350~630),h中=(150~270),6300/h边≧4 2700/h中≧4H边≦1575mm h中≦675mm。
取h边=600mm h中=250mm 取b=250mm由于框架梁的各跨度相差较大,为了利于梁内上部纵筋的贯通和下部筋的锚固,梁各跨截面宽度应该相同取b=250mm.H中/b=250/250=1≦4 h边/b=600/250=2.4≦4(符合要求)(2)柱截面初选柱截面初选要同时满足最小截面,侧移限制和轴压比等诸多影响,对于较低设防裂度地区的多层民用框架结构,一般可通过满足轴压比限值进行截面估计。
框架柱截面边长不宜小于350mm,剪跨比宜大于2,截面高宽比不宜小于400mm。
柱截面宽度一般不小于(1/20~1/15),柱截面高度不宜小于350mm.柱截面高不宜小于400mm。
取b c=h c=400mm(3)梁、柱的计算高度梁的跨度:取轴线间距,边跨梁为6.3m.中间跨梁2.7m,底层柱高为4.8m。
二、框架计算简图及梁柱的线刚度1、确定框架的计算简图取①轴上的一榀框架计算,假定框架嵌固于基础顶面框架梁与柱刚接,由于各层柱的截面尺寸不变故梁跨等于柱截面形心之间的距离。
底层柱高从基础顶面算至二层,楼面基顶标高根据地质条件,室内外高差是0.45m,基础顶面标高为-0.900m。
具体如下图2、框架梁柱线刚度计算。
多层钢筋混凝土框架结构设计共3篇

多层钢筋混凝土框架结构设计共3篇多层钢筋混凝土框架结构设计11. 简介多层钢筋混凝土框架结构设计是一种贯穿于建筑工程、土木工程、结构工程等众多领域的重要设计方法。
它兼具结构性能良好以及实用性强的特点,是大型建筑工程中普遍使用的结构形式之一。
本文将围绕多层钢筋混凝土框架结构设计展开说明,主要从设计背景、结构设计原则、设计流程和设计重点四个方面来阐述。
2. 设计背景如今,建筑工程已经成为人们生产、工作和生活的重要组成部分。
特别是在大城市中,高层建筑数量逐年增加。
这些高层建筑,具有空间利用率高、容积率大、抗震性强等特点。
它们的建造离不开结构设计,多层钢筋混凝土框架结构的应用应运而生。
多层钢筋混凝土框架结构设计,一般指超过三层的钢筋混凝土框架结构设计。
这种结构设计的优良性能得到国内外许多研究者的广泛关注,其设计理论和应用已经十分成熟。
3. 结构设计原则在多层钢筋混凝土框架结构设计中,我们需要根据实际情况制定以下原则和要求:(1)保证结构的水平和垂直间的稳定性。
(2)做好抗震措施,保证结构在地震发生时不会被倒塌。
(3)合理使用建筑材料,力求在保证结构强度的同时减少对环境的污染。
(4)设备和管线布置符合要求,且易于维护和管理。
(5)考虑建筑空间利用率,尽量减少内部障碍物。
4. 设计流程多层钢筋混凝土框架结构的设计流程如下:(1)制定结构设计任务书。
(2)进行结构设计初步比选。
(3)进行结构设计方案的优化和确定。
(4)编写结构设计计算书和结构施工图。
(5)进行结构施工控制和质量监督。
5. 设计重点在多层钢筋混凝土框架结构设计中,需要特别关注以下几个方面:(1)结构荷载分析与计算:要对结构设计受到的荷载进行合理的分析和计算。
(2)结构稳定性设计:要重点考虑结构在水平和垂直方向上的稳定性,确保结构不出现倾斜和不稳定情况。
(3)承载能力分析与计算:要合理估算结构的承载能力,确保结构的稳定性和安全性。
(4)施工工艺和材料使用:要根据结构设计需要,选择合适的施工工艺和建筑材料,确保结构的质量和稳定性。
多层框架结构设计中存在的问题分析

多层框架结构设计中存在的问题分析多层框架结构设计是软件开发过程中常见的设计模式之一,它将软件系统分解成多个层级,每个层级负责不同的功能和责任,从而实现系统的模块化和可维护性。
在实际的开发过程中,多层框架结构设计也会面临一些问题和挑战,本文将对这些问题进行分析和讨论。
1. 层与层之间的耦合度过高在多层框架结构设计中,各个层级之间通常需要进行数据交互和信息传递,这就需要设计合适的接口和协议来保证各个层级之间的通信。
如果设计不良,就会导致各个层级之间的耦合度过高,一旦某个层级发生改动,就会影响到其他层级的正常运行,增加了系统的维护和扩展的复杂度。
2. 难以实现更细粒度的模块化多层框架结构设计将系统划分成若干个层级,每个层级都对应着一些具体的功能和责任,这有利于系统的模块化和可维护性。
在实际的开发过程中,有些功能可能并不适合放在任何一个现有的层级中,导致了难以实现更细粒度的模块化,这就限制了系统的扩展和演变。
3. 层级间的通信和数据交互性能问题在多层框架结构设计中,各个层级之间的通信和数据交互是不可避免的,尤其是在大型复杂系统中,这就需要考虑通信性能和数据传输的效率。
如果设计不良,就会导致数据传输的开销过大,影响系统的性能和响应速度。
4. 多层结构的过度设计问题在实际的开发过程中,有时候为了应对未来的需求变更和扩展,会倾向于过度设计多层框架结构,增加了系统的复杂度和开发成本。
过度设计的多层结构可能使得系统更加脆弱和难以维护,增加了开发和维护的难度。
5. 层级划分不合理导致功能重叠和冗余在多层框架结构设计中,对于各个层级的划分需要考虑清晰和合理,避免功能重叠和冗余。
如果层级划分不合理,就会导致一些功能重复实现和数据冗余,增加了系统的复杂度和维护成本。
1. 合理定义层级间的接口和协议,降低层级之间的耦合度,减少对其他层级的依赖性,提高系统的灵活性和可维护性。
2. 在设计多层框架结构时,需要考虑到系统未来的扩展和演化,避免过度设计,追求适度的模块化和灵活性,以应对未来的需求变更。
多层框架房屋建筑结构设计要点

多层框架房屋建筑结构设计要点摘要:随着建筑行业的快速发展,目前建筑项目正面对着更高的要求。
框架结构是在建筑行业中最为常用的结构形式之一。
其具备灵活性能高、抗震性能强且综合性能优异等优点,可以满足人们多种需求。
随着建筑行业规模的不断提高,多层框架建筑结构随之出现,增加了设计复杂性的同时引发了许多设计问题。
本文针对多层框架房屋建筑结构设计现有问题进行探究,并提出了解决方案。
关键词:多层框架;房屋建筑;结构设计1.多层框架建筑结构设计的原则1.1层层都需设防提升多层框架结构设计的安全性能需要每层都设防,这样才可以充分抵抗强大的外力冲击,例如,在建筑结构中应当多运用多肢墙替代单片墙,框架剪力墙代替纯框架,这样也可以完美体现出层层设防的优点。
倘若完全依靠单个结构抵御强大外力,将会给整个建筑物带来危害。
1.2刚柔并施虽然提升多层框架结构设计的柔度可以为建筑物提供良好的变形能力,对外力进行有效削弱,但如若外力持续增加就会因变形程度过大导致建筑物倒塌。
同时,多层框架结构设计也不能太刚,较差的变形能力会导致局部部位在承受较大外力时受到损伤,从而造成整体建筑损毁。
1.3突出重点结构设计设计过程中应该建筑进行实际分析,综合考虑实际设计中可能发生的各种状况以及在外力作用影响下的受力结构重点。
并针对重点框架设计部分进行合理调整。
多层框架建筑结构主要包括为承重结构以及主框结构,主框结构主要包括基础部分、钢筋混凝土制作的柱、梁以及节点部位,外加填充墙、屋盖以及楼板等组成结构,在柱子、横梁以及楼板之间互相连接组成了承重结构,从而形成明确力度传递的路线。
每一层框架的高度可以是相同的、也可以是不同的,部分建筑物框架结构可能会因为空间分布或其他原因,在某一层的跨抽梁或抽柱之间出现十分明显的缺柱、缺梁现象。
框架结构在围护构件以及承重构件之间有十分明确的区域划分,框架结构的受力截面相对比较小,刚度与承载力十分低,受力点贴近竖向的悬臂剪切梁侧,随着建筑物层数的增加,其水平位移逐渐减小,减低建筑工程质量。
多层框架的结构设计

多层框架的结构设计多层框架的结构设计是一种软件设计方法,可以将程序按照不同的层次进行划分,同时又能适应不同的开发需求。
这种设计方法可以减少系统的耦合度,并且可以方便地进行模块化设计、可重用性等工作。
在本文中,将介绍多层框架的结构设计,以及如何在软件开发中使用这种方法。
一、多层框架的结构设计多层框架的结构设计是基于分层的软件设计方法。
它把系统分成几个层次,并在每个层次内分配特定的职责。
每个层次还有自己的接口,用于与其他层次进行通信。
这种分层的设计方法使得程序的不同部分可以分别进行设计、开发和维护,同时也可以控制层次之间的相互影响。
多层框架的结构设计通常分为三个层次,分别是:1.界面层界面层是与用户进行交互的最外层。
它提供了一个图形化界面,包括菜单、工具栏、按钮、文本框和图像等控件,方便用户进行操作。
界面层的主要任务是将用户的请求传递给业务层,并将业务层的结果显示给用户。
同时,界面层还需要对用户的输入进行验证和处理,以确保系统的正确性和安全性。
2.业务层业务层是整个系统的核心部分。
它负责处理业务逻辑,包括数据的存储、检索、计算和处理等。
在多层框架的结构设计中,业务层通常是最重要的层次。
它可以独立于其他层次进行开发,同时也可以与数据层进行完全的解耦。
业务层还可以为多个客户端提供服务,如Web、命令行或API等。
在编写业务层代码时,应该尽可能的将其分解成不同的模块,以便于复用和维护。
3.数据层数据层是处理数据的最底层。
它负责将数据存储到数据库中,并提供数据的检索、更新和删除等操作。
数据层可以使用统一的数据访问层,也可以使用不同的数据访问技术,如、LINQ或ORM等。
数据层的设计应该尽可能的简单和高效,以确保系统的性能和可靠性。
二、多层框架的优点多层框架的结构设计有很多优点:1.可维护性:多层框架的结构设计使得每个层次的代码可以独立于其他层次进行开发。
这种分层的设计方法可以减少代码的耦合度,并提高代码的可维护性。
多层框架结构设计中存在的问题分析

多层框架结构设计中存在的问题分析1. 引言1.1 背景介绍在多层框架结构设计中,随着信息技术的飞速发展和应用需求的不断提高,越来越多的软件系统采用了多层框架结构设计。
这种设计模式将整个软件系统划分为多个层次,每个层次负责不同的功能和任务,大大提高了系统的可维护性、可扩展性和灵活性。
随着系统规模的不断增长和功能需求的日益复杂,多层框架结构设计中也出现了一些问题。
层级过多导致结构复杂。
随着层级的增加,系统的结构变得越来越复杂,开发人员很难理清各个层次之间的关系,导致开发效率低下和维护困难。
难以维护和扩展。
由于多层框架结构设计中各个模块之间的依赖性较强,一旦出现需求变更或系统升级,就需要对多个层次进行修改和调整,增加了维护成本和时间成本。
性能瓶颈问题也是一个挑战。
多层框架结构设计中,数据的传递和处理需要经过多个层次,可能会导致系统性能下降,影响用户体验。
了解多层框架结构设计中存在的问题是非常重要的,只有深入分析这些问题,提出有效的解决方案,才能更好地应对日益复杂的软件系统设计需求。
1.2 研究意义在多层框架结构设计中存在的问题分析中,研究意义主要体现在以下几个方面:对于现代软件系统而言,多层框架结构设计已经成为一种常见的设计模式。
深入研究多层框架结构中存在的问题,可以帮助我们更好地理解软件系统架构设计的本质和规律,提高软件系统的稳定性和可靠性。
多层框架结构设计中的问题不仅影响着系统的性能和用户体验,也影响着软件开发团队的工作效率和成本控制。
通过分析这些问题,可以帮助团队更好地规划和管理项目的开发过程,减少后期的维护成本和风险。
随着互联网和移动互联网的快速发展,软件系统的复杂度和规模都在不断增加。
在这种背景下,研究多层框架结构设计中存在的问题,可以帮助我们更好地适应快速变化的市场需求,提高软件系统的适应性和灵活性。
对多层框架结构设计中存在的问题进行深入研究具有重要的理论和实践意义,可以为软件系统的设计和开发提供有益的参考和指导,促进软件领域的技术创新和进步。
多层框架房屋建筑结构设计要点

多层框架房屋建筑结构设计要点摘要:近年来,多层框架结构凭借自身大空间、省材料、自重轻、抗震好等诸多方面的优势,被广泛应用于房屋建设中。
为保证多层框架房屋建筑施工质量,做好设计工作具有重要的现实意义。
基于此,本文首先分析了多层框架房屋建筑结构优缺点;其次探讨了多层框架房屋建筑结构设计要点。
关键词:多层框架结构;房屋建筑;设计要点;研究多层框架房屋建筑,对于结构设计有着较高的要求,如多层框架结构设计不合理,则会严重影响房屋建筑安全性、稳定性。
因此要高度重视多层框架房屋建筑结构设计工作,进而实现对多层框架房屋建筑施工质量的有效控制。
一、多层框架房屋建筑结构优缺点分析(一)优点多层框架房屋建筑结构,能够灵活的配合建筑平面布置,完成对大空间建筑结构的安排,框架结构的梁、柱等构件均具备较高的标准性,非常适用于装配式建筑施工中,达到较高的施工效率。
同时,如采用现浇混凝土多层框架,其结构具备较高的刚度及整体性,保证设计科学的情况下,能够显著提升房屋建筑的抗震性能,并且现浇混凝土时能够将梁、柱浇灵活浇筑呈所需要的截面形状,满足多层框架房屋建筑施工需求[1]。
(二)缺点多层框架房屋建筑,其框架节点应力较为集中,框架结构侧向刚度不理想,受到强烈地震等自然灾害的影响,多层框架结构极易出现较大幅度的水平位移现象,产生非结构性破坏。
同时,多层框架房屋建筑施工时,需要频繁的进行吊装作业,并且工序繁多,接头工作量非常大,需要投入较多的劳动力。
此外,框架结构刚度、承载性能一般,因此不适用于高层建筑。
二、多层框架房屋建筑结构设计要点探讨(一)多层框架结构方案构思设计多层框架房屋建筑结构设计前,做好各项准备工作非常关键,设计人员应综合考虑分析材料差异、要求等方面的因素设计出科学、可行、经济的多层框架房屋建筑结构方案。
设计人员要认真做好构思工作。
首先,多层框架结构平面布局时,应结合力学观念对柱网进行开间等跨、进深等距布置,有效减少边跨柱距,利用连续梁受力特点,减少框架结构当中的弯矩,让各跨梁截面保持一致,使得多层框架结构具备更高的刚度。
现浇混凝土多层框架结构设计示例

现浇混凝土多层框架结构设计示例现浇混凝土多层框架结构是一种常见的建筑结构形式,用于高层建筑、办公楼、商业综合体等建筑项目。
该结构形式具有承载能力强、结构稳定性好、施工周期短等特点,因此在实际工程中得到广泛应用。
下面将给出一个现浇混凝土多层框架结构设计示例,以帮助读者更好地理解该结构形式的设计与施工。
设计示例:多层框架结构的办公楼设计一、工程概况该工程是一个7层办公楼,总高度为30m,楼面高度为4m,地上部分为6层,地下部分为1层。
办公楼的结构形式为现浇混凝土多层框架结构。
二、结构设计1. 基础设计:根据工程地质勘探报告,采用扩基基础形式,基底尺寸为10m×10m×3m,基础采用30cm的厚度均质悬浇混凝土。
地下室的地板与周围基础之间设置防水层以避免地下水渗漏。
2. 框架结构设计:采用钢筋混凝土框架结构形式,各楼层之间设置楼板和梁柱。
楼板采用预制空心楼板,厚度为20cm,楼板与梁采用混凝土预制楼板连接。
梁柱采用现场浇筑的钢筋混凝土构件,梁的截面尺寸为40cm×60cm,柱的截面尺寸为70cm×70cm。
梁柱之间的连接采用钢筋混凝土预制节点。
3.抗震设计:根据设计要求,结构的抗震性能需要满足烈度为8度的地区设计要求。
因此,在结构设计中采用了以下抗震措施:设有适当的剪力墙,并在框架结构中设置水平地震短肢、抗剪墙、支撑等。
4.安全性设计:考虑到该办公楼的使用性质,为了保证建筑的安全性能,对结构进行了细致的安全性设计。
主要措施包括合理设置疏散通道和应急疏散设施,例如疏散楼梯、消防通道和灭火器等。
三、施工技术要点1.现场施工:为了保证混凝土的质量,现场将采用搅拌站配送的混凝土进行施工。
施工期间,要配合混凝土供应商、现场监理及施工单位,保证施工期间混凝土的质量控制。
2.标高控制:施工过程中需要对楼层的标高进行严格控制,以确保楼板的整体平整度。
根据实际情况,设置标高点,施工过程中不断进行测量与调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
框架结构的主梁截面高度
hb
(1 10
~
118)lb
ln 4 hb
且不宜大于1/4净跨;
h4 b
且不小于400mm
截面宽度不宜小于1/4hb,
且不宜小于200mm。
2 梁的抗弯刚度
梁应考虑楼板的作用,当采用现浇楼盖时楼板可作为 框架的翼缘,按T形截面计算其惯性矩。 1)翼缘有效宽度为梁每侧6倍板厚,然后按T型或倒L型计 算惯性矩。 2)工程中为简化计算,可按下式计算梁的惯性矩:
3
柱12的变形=
θ3
ic
h
侧移引起+结点转角引起
i1
2
θ2
ic
i3
1
θ1
ic
i2 i4
h
h
V
12ic h2
12ic h
12ic h2
(1
h
)
c
12ic h2
D
1 2 3
c
1
h
1
i1
i2
i3
2 i4
c
1
h
M1 0
4(i1
i2
ห้องสมุดไป่ตู้
ic
对于层数较多的框架,由于柱轴力大,柱截面也随着增 大,梁柱相对线刚度比较接近,甚至有时柱的线刚度反而比 梁大,这样,上述假设将产生较大误差。另外,反弯点法计 算反弯点高度时,假设柱上下结点转角相等,这样误差也较 大,特别在最上和最下数层。
日本武藤清在分析多层框架的受力特点和变形特点的 基础上,对框架在水平荷载作用下的计算,提出了修正柱 的侧移刚度和调整反弯点高度的方法,修正后的柱侧移刚 度用D表示,故称为D值法。
一、框架在竖向荷载作用下的近似计算方法──分层法
1 基本假定: 1)框架在竖向荷载作用下,结点侧移忽略不计; 2)每层梁上的荷载对其他各层梁内力的影响忽略不计。
2 计算要点:
1)将框架分层,各层梁跨度和柱高与原结构相同,柱端假定为固结
2)计算梁、柱线刚度
3)计算各层梁上竖向荷载值和梁固端弯矩
4)计算和确定梁、柱分配系数和传递系数 开口框架的支座设为固定端与实际不符。为消除由此带来的误差, 除底层外,其它各层柱的线刚度均乘以 0.9,并取柱的弯矩传递系 数为1/3。
注明:对于弹性计算内力较大的构件,截面配筋困难时,可 以考虑塑性重分布,大震不倒的要求主要靠构造措施保 证
二、荷载分配考虑位移协调条件
高层楼板平面内刚度很大,几乎不变形,同层各构件水平 位移相同,框架结构的各片框架的水平力可以按照抗侧刚 度分配,剪力墙结构中各片剪力墙的水平力大致按照等效 刚度分配
3当梁跨度相差小于10%时, 可近似按等跨计算
4框架梁为有加腋的变截面梁时, 如Iend/Imid<4或hend/hmid < 1.6时, 可不考虑加腋的 影响。 Iend 和hend为加腋最高截面 的惯性矩和梁高 Imid 和hmid为跨中等截面的 惯性矩和梁高
§4.3框架结构内力和侧移计算
力法、位移法、力矩分配法
优点: 1、计算步骤与反弯点法相同,计算简便实用。 2、计算精度比反弯点法高。 缺点: 1、忽略柱的轴向变形,随结构高度增大,误差增大。 2、非规则框架中使用效果不好。
(二)水平荷载作用下的改进反弯点法——D值法
(梁柱线刚度比较小)
梁柱线刚度之比值小于3
柱的反弯点高度随梁柱线 刚度比、该柱所在楼层位 置、上下层梁线刚度比、 上下层层高不同而不同
计算软件: PK TAT SATWE SAP2000 ANSYS ETABS
在自身平面内的刚度很大
平面外刚度很小,可以忽略
平面外的 刚度很小, 可忽略
可以抵抗在本身平面内 的侧向力
计算图形的简化
简化计算方法或手算:高层建筑可以划分为若干平面结构
(1)总水平荷载在各片平面抗侧 力结构间的分配按刚度和变形分 配
§4框架结构设计
结构设计
构造要求 变形验算 截面设计 内力计算 荷载分析 计算模型 结构布置
内力与位移计算的一般原则
计算的基本假定:
一、高层建筑结构按照弹性方法计算,一般不考虑塑性变形 影响
非抗震设计:在竖向荷载和风荷载作用下,结构构件处 于弹性工作阶段
抗震设计:针对多遇地震作用,结构处于不裂的弹性阶 段
柱的反弯点高度位于距柱底1/2处
VP
Vp
d1 d2 ....
di
Vi
di di
VP
uiVP
ui为剪力分配系数; di为第j层第i根柱的侧移刚度,
di 为第j层各柱侧移刚度的总和;
Vp为第j层的层剪力,即第j层以上所有本层荷载总和; Vi为第j层第i根柱的剪力。
倒三角形荷载
<b>上下梁刚度变化时的反弯点 高度比修正值
y1
当 i1 i2 i3 i4 时,
令 1 (i1 i2 ) /(i3 i4 ) ,
由 1、K——表y1,取正值,
反弯点向上移
当 i1 i2 i3 i4 时,
令 1 (i3 ,i4 ) /(i1 i2 )
(2)计算每片平面抗侧力结构分 到的水平作用下的内力和位移
二、计算简图 计算简图是由计算模型及其作用在其中的荷载共同构成的。框架结构
的计算模型是由梁柱的截面几何轴线确定的,框架柱在其顶面按固结考虑。
1当上下柱截面发生改变时,取截面小的形心线进行分析
2当框架梁的坡度 i 1/ 8 时,可近似按水平梁计算
矩形柱 抗震≥300mm
园形直径≥350mm
矩形截面长短边之比不宜超过3。 柱净高与截面长边之比宜大于4。高规要求剪跨比 M 2
Vh0
M
V H0 2
H0
2
Vh0 Vh0 2h0
近似取 H0 4 h
在初步设计时,柱截面尺寸可按轴压比确定。
∵轴压比为 N
数字表示每根杆件的线刚度 i=EI/L
4.36 0.41 4.77
-13.13 8.77 -1.24 0.83
-4.77
1.59
13.13
→
4.38
-7.32 -3.16
←
7.32 -6.32
-1.0
← →
-2.48 0.42 -0.40
-1.23 -0.20
-3.32 0.72 -0.54
→
由 1 、K——表y1,取负值,
反弯点向下移
当i1 i2 i3 i4 , 1 (i1 i2 ) /(i3 i4 )
反弯点下移, y1 0
当i1 i2 i3 i4 , 1 (i1 i2 ) /(i3 i4 )
反弯点上移, y1 0
第层,不考虑
轴压比限值
§4.2计算单元及计算简图
一、计算单元 框架结构为空间结构,应取整体结构为计算单元,按空间框架进行内力
及位移的计算,但对平面布置比较规则,柱距及跨度相差不多的框架结构, 计算中可将空间框架简化为平面框架,在各榀框架中,选出一榀或几榀有 代表性的平面框架作为计算单元,每榀框架按其负荷面积 承担荷载。
楼板类型 现浇楼板 装配整体式楼板 装配式楼板
边框架梁 I=1.5I0 I=1.2I0 I=I0
中间框架梁 I=2.0I0 I=1.5I0 I=I0
I0── 梁矩形部分的惯性矩。
3 框架柱截面尺寸估算
框架柱宜采用正方形或接近正方形的矩形,两个主轴方向的刚度相
差不宜过多。
框架柱的截面边长
非抗震≥250mm
D 12ic
h2
——侧移刚度影响系数
水平荷载作用下的改进反弯点法——D值法
假定: 1、上下层高相等 2、各跨相等 3、各层梁柱的线刚度不改变
因此:各层层间位移相等;各层梁、柱转角 相等。
柱侧移刚度D的确定 上部各层柱 基本假定
1)柱12以及与柱12相邻各端的转角均为
2)柱12以及与柱12上下相邻两柱的线刚度均为 ic
V
r ib
)
i
习题:用反弯点法计算图所示的三层等跨框架(层高 为3.6m,跨度为5m)的剪力和弯矩,并绘出弯矩图,图 中括号中的数据为假定弹性模量为单位1时的梁柱线刚 度。
120KN
(4)
(4)
(1)
(1)
(1)
100KN
(4)
(4)
(1)
(1.5)
(1)
80KN
(5)
(5)
(1)
(1.5)
(1)
楼板平面外刚度不考虑,要满足楼板刚度无限大的计算假 定,楼面构造要保证楼板刚度无限大——现浇楼盖
一片框架或剪力墙在自身平面内刚度很大,可以抵抗在本 身平面内的侧向力;
而在平面外的刚度很小,可忽略,即垂直该平面的方向不 能抵抗侧向力
——整个结构可分不同方向的平面抗侧力结构,共同抵抗 结构承受的水平荷载
fcAc
0.65 (一级) 0.75 (二级) 0.85 (三级) 1.0(四级或非抗震)
∴
Ac
N
fc
N (1.1 ~ 1.2)N v (一~三级) 轴力设计值 N (1.05 ~ 1.1)N v (四级或非抗震)
Nv ──框架在竖向荷载作用下的轴力估算值。 N v 柱支撑的楼板面积×楼层数×(12~14)×1.25
5)分层后,各开口框架的内力可由弯矩分配法计算。 最终弯矩取法为: 框架梁的最终弯矩即为各开口框架算得的弯矩; 框架柱的弯矩,由上下两相邻开口框架同一柱的弯矩叠加而得。 6)最后算得的各梁柱弯矩在节点处一般不平衡,但误差不大。 如有需要,可将节点不平衡弯矩再分配一次。