基于划分的聚类算法
4 第四章 聚类分析 -数据挖掘算法与应用(Python实现)-孙家泽-清华大学出版社

西安邮电大学
18
K-means算法概述
K-means算法对初始聚类中心较敏感,相似度 计算方式会影响聚类的划分。 常见的相似度计算方法有:
欧式距离 曼哈顿距离 闵可夫斯基距离
19
多选题 1分 对象i和对象j距离 d(i,j)满足性质( )
基于密度的聚类
➢常见的基于密度的方法:
➢ DBSCAN(具有噪声的基于密度的聚类方法) ➢ OPTICS(通过点排序识别聚类结构)
➢基于网格的方法把对象空间量化为有限个单元,形 成一个网络结构。所有的聚类操作都在这个网络结 构(即量化空间)上进行。这种方法主要优点是处 理速度很快,其处理时间通常独立于数据对象的个 数,而依赖于量化空间中每一维的单元数。
模式
聚类分析的目标
聚类分析的目标就是形成多个数据簇,并且数据 簇需要满足下面两个条件:
同一个簇内的数据尽量相似(high intra-class similarity);
不同簇的数据尽量不相似(low inter-class similarity)。
聚类分析常用算法介绍
常见的聚类分析算法有:
层次聚类算法
无论使用凝聚方法还是分裂方法,一个核心的问题是度量两 个簇间的距离,其中每个簇一般是一个对象集.
西安邮电大学
11
➢ 基于距离的聚类方法的缺点:只能发现球状的簇,难以发现任意形状的 簇。
➢ 基于密度的聚类:只要临近区域的密度(对象或数据点的数目)超过某 个临界值,就继续聚类。
优点:可以过滤掉“噪声”和“离群点”,发现任意形状的簇
第四章聚类分析
西安邮电大学
1
聚类分析
1. 聚类分析 2.基于划分的聚类方法 3.基于层次的聚类方法 4.基于密度的聚类方法 5.基于概率的聚类方法 6.聚类图数据
常见的划分式聚类算法

常见的划分式聚类算法
常见的划分式聚类算法有k-means算法、CLARA算法和k-medoids 算法。
首先,k-means算法是一种常用的划分式聚类算法。
该算法的基本思想是随机选取k个中心点,将数据集中的点按照离它们最近的中心点进行分类,再计算每个簇的新中心,重复以上步骤直到簇的中心不再变化或者达到预设的迭代次数。
该算法的优点在于它的速度快且容易实现,而缺点是它对k值的选择要求比较高,且对于数据集中有噪声和离群点的情况表现不佳。
其次,CLARA算法是一种改进了k-means算法的方法。
该算法是在多次随机抽样的基础上运行k-means算法,以避免出现单次随机抽样得到的聚类结果的不确定性。
该算法的优点在于它对于噪声点的容忍性更高,缺点是它的时间复杂度比较高。
最后,k-medoids算法是一种基于中心点的划分式聚类算法。
该算法与k-means算法最大的不同在于,它的中心点不再是各个簇中心点的平均值,而是簇中最能代表该簇的数据点。
该算法的优点在于它对噪声和离群点表现良好,缺点是它的计算复杂度高于k-means算法。
综上所述,常见的划分式聚类算法有k-means算法、CLARA算法和k-medoids算法。
每种算法都有其优点和限制,选择哪一种算法应该根据具体问题的特点和需要考虑。
常用的聚类算法

常用的聚类算法
1聚类算法概述
聚类算法是一种无监督学习算法,它可以根据样本的内在特征将它们分组到不同的簇中,而不需要人工的参与。
它的实质是把同类的对象划分到同一个簇,把不同类的对象分到不同的簇,以达到将类似的物体进行自动分组的目的。
聚类的结果要求能将类似的对象划分到同一簇,而将不同的对象划分到不同簇,相邻簇中可以有极少数据点的相异。
2常用聚类算法
1.K-Means
K-means是最流行的聚类算法,它简单、速度快,可以根据数据特征把数据点分成K个不同簇,是一种基于划分的聚类算法。
2.层次聚类算法
层次聚类算法是一种树形聚类算法,将数据按照层级结构编码成树结构,采用分支和合并的方法,将给出的数据逐步聚合。
3.谱聚类算法
谱聚类算法对密集网络数据具有很好的分类能力,将相似性LR矩阵作为分析基础,使用其提取节点之间的相似程度,将节点分为多个簇。
4.EM聚类算法
EM聚类算法是一种高效的聚类算法,主要利用期望最大算法,利用概率模型对数据进行聚类,通过计算数据的对应度和估计模型参数,将数据划分到若干个类中。
总的来说,聚类算法最终的目的都是将一些数据表示的对象,根据某种特征的相似性,划分到不同的组中,以构建一种新的结构,使具有相似特征的样本分为一组,从而帮助更好地理解数据并协助作出正确的决策。
聚类算法和分类算法总结

聚类算法和分类算法总结聚类算法总结原⽂:聚类算法的种类:基于划分聚类算法(partition clustering)k-means:是⼀种典型的划分聚类算法,它⽤⼀个聚类的中⼼来代表⼀个簇,即在迭代过程中选择的聚点不⼀定是聚类中的⼀个点,该算法只能处理数值型数据k-modes:K-Means算法的扩展,采⽤简单匹配⽅法来度量分类型数据的相似度k-prototypes:结合了K-Means和K-Modes两种算法,能够处理混合型数据k-medoids:在迭代过程中选择簇中的某点作为聚点,PAM是典型的k-medoids算法CLARA:CLARA算法在PAM的基础上采⽤了抽样技术,能够处理⼤规模数据CLARANS:CLARANS算法融合了PAM和CLARA两者的优点,是第⼀个⽤于空间数据库的聚类算法FocusedCLARAN:采⽤了空间索引技术提⾼了CLARANS算法的效率PCM:模糊集合理论引⼊聚类分析中并提出了PCM模糊聚类算法基于层次聚类算法:CURE:采⽤抽样技术先对数据集D随机抽取样本,再采⽤分区技术对样本进⾏分区,然后对每个分区局部聚类,最后对局部聚类进⾏全局聚类ROCK:也采⽤了随机抽样技术,该算法在计算两个对象的相似度时,同时考虑了周围对象的影响CHEMALOEN(变⾊龙算法):⾸先由数据集构造成⼀个K-最近邻图Gk ,再通过⼀个图的划分算法将图Gk 划分成⼤量的⼦图,每个⼦图代表⼀个初始⼦簇,最后⽤⼀个凝聚的层次聚类算法反复合并⼦簇,找到真正的结果簇SBAC:SBAC算法则在计算对象间相似度时,考虑了属性特征对于体现对象本质的重要程度,对于更能体现对象本质的属性赋予较⾼的权值BIRCH:BIRCH算法利⽤树结构对数据集进⾏处理,叶结点存储⼀个聚类,⽤中⼼和半径表⽰,顺序处理每⼀个对象,并把它划分到距离最近的结点,该算法也可以作为其他聚类算法的预处理过程BUBBLE:BUBBLE算法则把BIRCH算法的中⼼和半径概念推⼴到普通的距离空间BUBBLE-FM:BUBBLE-FM算法通过减少距离的计算次数,提⾼了BUBBLE算法的效率基于密度聚类算法:DBSCAN:DBSCAN算法是⼀种典型的基于密度的聚类算法,该算法采⽤空间索引技术来搜索对象的邻域,引⼊了“核⼼对象”和“密度可达”等概念,从核⼼对象出发,把所有密度可达的对象组成⼀个簇GDBSCAN:算法通过泛化DBSCAN算法中邻域的概念,以适应空间对象的特点DBLASD:OPTICS:OPTICS算法结合了聚类的⾃动性和交互性,先⽣成聚类的次序,可以对不同的聚类设置不同的参数,来得到⽤户满意的结果FDC:FDC算法通过构造k-d tree把整个数据空间划分成若⼲个矩形空间,当空间维数较少时可以⼤⼤提⾼DBSCAN的效率基于⽹格的聚类算法:STING:利⽤⽹格单元保存数据统计信息,从⽽实现多分辨率的聚类WaveCluster:在聚类分析中引⼊了⼩波变换的原理,主要应⽤于信号处理领域。
三维空间划分聚类算法

三维空间划分聚类算法三维空间划分聚类算法(3D Partitioning Clustering Algorithm)是一种针对三维坐标系中的数据集进行聚类分析的算法。
在三维空间中,数据点之间的关系是由它们的三个坐标轴值共同决定的。
该算法基于数据点之间的距离和密度等特征,将三维空间划分为若干区域,并将数据点按照其所在的区域进行聚类。
接下来,本文将详细介绍三维空间划分聚类算法的工作原理和具体实现。
一、算法原理三维空间划分聚类算法的基本原理是将三维空间中的数据点划分为不同的区域,在每个区域内进行聚类分析。
该算法的具体流程如下:1.输入数据输入包含若干个数据点的三维坐标系数据集。
2.初始化区域分割将三维坐标系划分为多个小区域,每个小区域包含若干个数据点。
可以根据数据点的数量和分布情况确定小区域的大小和数目。
3.计算区域密度在每个小区域内,计算数据点的密度,即统计该区域内所有数据点的距离小于一个阈值的数据点数量。
阈值的取值可以根据实际情况进行调整。
4.选择种子点选取种子点,即小区域中距离其他数据点较近的数据点,作为该小区域的代表点。
5.计算代表点之间的距离计算不同小区域中代表点之间的距离,并将距离值存储在一个距离矩阵中。
6.划分聚类簇按照代表点之间的距离,将小区域分为若干个聚类簇。
具体来说,可以采用K-means等聚类算法对代表点进行聚类分析,将距离较近的代表点划分为一个聚类簇。
7.优化聚类簇对划分得到的聚类簇进行优化。
优化过程中,可以根据聚类簇内部的数据点分布情况,调整聚类簇的中心位置,使得聚类簇更能反映数据点之间的相似性。
8.输出聚类结果输出划分得到的所有聚类簇,以及每个聚类簇的中心位置和数据点数目等信息。
二、算法实现三维空间划分聚类算法的具体实现可以分为以下几个步骤:```pythonimport numpy as npdef init_region(data, num_regions):"""将数据区域划分为若干个小区域:param data: 数据集,每行为一个数据点的三维坐标:param num_regions: 小区域的数目:return: 包含每个小区域中数据点的索引列表"""# 计算数据点在三个坐标轴上的范围x_range, y_range, z_range = np.max(data, axis=0) - np.min(data, axis=0)# 计算每个小区域在三个坐标轴上的长度x_len, y_len, z_len = x_range / num_regions, y_range / num_regions, z_range / num_regions# 初始化小区域,每个小区域包含若干个数据点的索引regions = [[] for _ in range(num_regions ** 3)]for i, point in enumerate(data):x, y, z = pointrow = int((x - np.min(data, axis=0)[0]) // x_len)col = int((y - np.min(data, axis=0)[1]) // y_len)dep = int((z - np.min(data, axis=0)[2]) // z_len)index = row * num_regions * num_regions + col * num_regions + dep regions[index].append(i)return regions```选取具有较高密度的数据点作为该小区域的代表点。
基于划分的聚类算法

基于划分的聚类算法1.初始化:随机选择K个质心作为初始聚类中心。
2.分配:对于每个样本,计算其与K个聚类中心的距离,将其分配给距离最近的聚类。
3.更新:计算每个聚类中所有样本的平均值,更新聚类中心。
4.重复步骤2和3,直到聚类中心不再变化或达到预定的迭代次数。
K-means算法的优点是简单、高效,并且在大规模数据集上也能得到较好的结果。
然而,K-means算法也有一些缺点。
首先,算法对初始聚类中心的选择非常敏感,不同的初始聚类中心可能导致不同的聚类结果。
其次,K-means算法假设每个聚类的形状是球形的,对于非球形聚类效果不佳。
此外,K-means算法需要预先指定聚类的个数K,而对于未知聚类个数的情况下,很难确定合适的K值。
为了解决K-means算法的缺点,一些改进的基于划分的聚类算法被提出。
例如,K-medoids算法使用实际样本作为聚类中心,而不是计算样本的平均值。
这种方法更适用于非球形聚类。
另一个改进是谱聚类算法,它通过图论的方法将数据集转化为一个图,然后使用图划分的方法进行聚类。
除了K-means算法之外,还有一些其他的基于划分的聚类算法。
例如,二分K-means算法将数据集划分为两个聚类,然后逐步将每个聚类划分为更小的聚类,直到满足停止条件。
此外,基于密度的聚类算法(如DBSCAN)也是一种基于划分的聚类方法,它将数据集划分为不规则形状的聚类。
总之,基于划分的聚类算法是一种将数据集划分为不相交的子集的算法。
K-means算法是其中最常见的一种,但也存在一些缺点。
为了解决这些缺点,一些改进的基于划分的聚类算法被提出。
这些算法在不同的数据集和应用中都有广泛的应用。
kmeans算法的原理

kmeans算法的原理
K-means算法是一种典型的基于划分的聚类算法,其原理是将数据集划分为K个簇,使得每个数据点都属于最近的簇,并且簇的中心是所有数据点的平均值。
K-means算法的原理可以分为以下几个步骤:
1. 初始化:选择要将数据集分成K个簇,并随机选择K个数据点作为初始簇中心。
2. 分配:将每个数据点分配到距离其最近的簇中心,每个数据点只能属于一个簇。
3. 更新:根据分配的数据点更新簇中心点,这是通过计算属于每个簇的数据点的平均值来实现的。
4. 重复:重复步骤2和3,直到簇中心点不再发生变化,或者达到预定的迭代次数。
K-means算法利用相似性度量方法来衡量数据集中所有数据之间的关系,将关系比较密切的数据划分到一个集合中。
该算法具有运算速度快,执行过程简单的优点,在很多大数据处理领域得到了广泛的应用。
以上是K-means算法的基本原理,可以咨询数学专业人士或查阅算法类书籍了解更多信息。
常规聚类算法

常规聚类算法常规聚类算法是一种重要的数据分析方法,可以帮助我们对大规模数据进行有效的分类和归纳。
通过对数据进行聚类,我们可以发现数据中的隐藏模式、规律和关系,从而为后续的数据挖掘、预测和决策提供有力支持。
常规聚类算法主要分为基于划分的聚类算法、基于层次的聚类算法和基于密度的聚类算法。
每种算法都有其独特的特点和适用场景,下面就分别进行介绍。
基于划分的聚类算法主要包括K-means算法和K-medoids算法。
K-means算法是一种常用且广泛应用的聚类算法,它将数据分成K个簇,每个簇的中心点代表了该簇的平均值。
该算法通过迭代的方式,将数据点不断归类到离其最近的簇中,直到达到稳定状态。
K-medoids算法是一种改进的K-means算法,它将簇的中心点定义为簇中所有数据点中与其他点的平均距离最小的点,从而可以更准确地划分簇。
基于层次的聚类算法主要包括凝聚层次聚类算法和分裂层次聚类算法。
凝聚层次聚类算法从每个数据点作为一个簇开始,然后通过计算两个最相似簇之间的距离来合并簇,直到形成一个大的簇。
分裂层次聚类算法则相反,从一个大的簇开始,然后通过计算簇中数据点之间的距离来分裂簇,直到形成多个小的簇。
这种算法的优点是可以在不同的层次上进行聚类,从而可以灵活地控制聚类的粒度。
基于密度的聚类算法主要包括DBSCAN算法和OPTICS算法。
DBSCAN算法是一种基于密度的聚类算法,它通过确定数据点的密度来划分簇,具有自动确定簇数和可处理噪声的优点。
OPTICS算法是DBSCAN算法的扩展,它通过将数据点的密度和可达距离进行排序,形成一个密度可达图,并根据该图来划分簇。
这种算法可以更好地处理数据中的离群点和噪声。
在使用常规聚类算法时,我们需要注意数据的选择和预处理。
合适的数据选择和预处理可以提高聚类算法的效果和准确性。
同时,我们还需要关注聚类结果的解释和评估。
解释聚类结果可以帮助我们理解数据中的模式和关系,评估聚类结果可以帮助我们判断算法的优劣和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 缺点
– 只有当平均值有意义的情况下才能使用(即只能处理数值 的属性),对于类别字段不适用;
– 必须事先给定要生成的簇的个数; – 对“噪声”和异常数据敏感;
– 不能发现非凸面形状的数据。
不同初始点,结果不同。
K-means算法,我们在输入的数据集中随机的选择 k个点作为初始的聚类中心,但是随机选择初始点 可能会造成聚类的结果和数据的实际分布相差很 大。k-means++算法选择初始聚类中心的基本思想 是:初始的聚类中心之间的相互距离要尽可能的 远。K-means算法与k-means++算法选取初始点对 比:
• 层次方法、基于密度的方法、基于网格的方法
K-means:K-均值算法
K-means算法是很典型的基于距离的聚类算法, 采用距离作为相似性的评价指标,即认为两个对 象的距离越近,其相似度就越大。
该算法认为类是由距离靠近的对象组成的, 因此把得到紧凑且独立的类作为最终目标。
各个簇中误差平方和
n:样本数。 k:样本分为k类。 rnk:第n个样本点是否属于第k类,属于则rnk=1, 不属于则rnk=0。 μK:第k个中心点。
– PAM 算法在大数据集上效率较低,没有良好的可 伸缩性;
• CLARA :大型应用聚类 • CLARANS :基于随机搜索的聚类大型应用
PAM (Partitioning Around Medoids)
• 用真实的数据对象来代表簇 – 随机选择k个对象作为初始的中心点;
– Repeat – 对每一个由非中心对象h 和中心对象 i, 计算i被h替代的总
代价 Tcih – 对每一个有h和I组成的对象对
• If TCih < 0, i 被 h替换 • 然后将每一个非中心点对象根据与中心点的距离分配
给离它最的中心点
– Until不发生变化。
K- medoids算法流程如下: 1、任意选取K个对象作为初始中心点 (O1,O2,…Oi…Ok)。 2、将余下的对象分到各个类中去(根据与中心点 最相近的原则); 3、对于每个类(Oi)中,顺序选取一个Or,计算 用Or代替Oi后的消耗—E(Or)。选择E最小的那 个Or来代替Oi。这样K个中心点就改变了。
K-means:K-均值算法
• 给定k,算法的处理流程如下:
1.随机的把所有对象分配到k个非空的簇中; 2.计算每个簇的平均值,并用该平均值代表相
应的簇; 3.将每个对象根据其与各个簇中心的距离,重
新分配到与它最近的簇中; 4.回到第二步,直到不再有新的分配发生。
K-均值算法
10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10
K-均值算法性能
• 优点
– 相对高效的: 算法复杂度O(tkn), 其中n 是数据对象的个数, k
基于划分的聚类算法
黄宗文 16721539
聚类分析
• 簇(Cluster):一个数据对象的集合 • 聚类分析(定义)
– 把一个给定的数据对象集合分成不同的簇; – 在同一个簇(或类)中,对象之间具有相似性; – 不同簇(或类)的对象之间是相异的。
• 聚类是一种无监督分类法: 没有预先指定的类别
聚类方法
• 划分方法:给定一个n个对象的集合,划分方法 构建数据的k个分区,其中每个分区表示一个簇 ,并且k<=n。基于划分方法采取互斥的簇划分, 即每个对象必须恰好属于一个组。大部分划分方 法是基于距离的。它采用一种迭代的重定位技术 ,通过把对象从一个组移动到另一个组来改变划 分。常用的划分聚类方法有k-means、k-medoids 、k-modes和k-prototypes算法。
– 更新modes,使用一个簇的每个属性出现频率最大的那 个属性值作为代表簇的属性值(如 {[a,1][a,2][b,1][a,1][c,3]}代表模式为[a,1])
– 重新调整记录所属的簇,知道不再产生变化。
K-prototypes算法
• K-Prototype算法是结合K-Means与K-modes算法,针 对混合属性的。解决两个核心问题如下: – 度量具有混合属性的方法是,数值属性采用Kmeans方法得到P1,分类属性采用K-modes方法P2 ,那么D=P1+a*P2,a是权重。如果觉得分类属性重 要,则增加a,否则减少a,a=0时即只有数值属性; – 更新一个簇的中心的方法,是结合K-Means与Kmodes的更新。
K-means
k-means++
K-modes:K-众数算法
• 标称属性即分类的,变量结果只在有限目标集中取值 – 相关性d的计算公式是比较两记录之间所有属性,如 果属性不同则给d加1,如相同则不加,所以d越大,记 录间的不相关程度越强。假设X,Y是数据集中的两个 对象,它们用m维属性描述,则这两个对象之间的相 异度为:
其中:p是空间中的样本点, oj是类簇 cj 的中心点。
4、重复2、3步直到K个medoids固定下来
K-medoids:K-中心点算法
• 找出簇中位置最中心的对象,即中心点来代表簇
• PAM (Partitioning Around Medoids, 1987) – 设定一个中心点的初始集合,然后反复的用非中心 点对象来替代中心点对象,以改进聚类的质量;
K-medoids:K-中心点算法
• 不采用聚类中对象的平均值作为参照点,而是选用聚 类中位置最中心的对象,即中心点(medoid)作为参 照点
• 首先随机选择k个对象作为中心,把每个对象分配给 离它最近的中心
• 然后随机地选择一个非中心对象替换中心对象,计算 分配后的距离改进量。聚类的过程就是不断迭代,进 行中心对象和非中心对象的反复替换过程,直到目标 函数不再有改进为止。