金属成形方法大全
金属成型工艺有哪些【详解】

一图看懂17种常见金属成型工艺,一起来看看吧。
1、刨削加工—是用刨刀对工件作水平相对直线往复运动的切削加工方法,主要用于零件的外形加工。
刨削加工的精度为IT9~IT7,表面粗糙度Ra为6.3~1.6um。
2、磨削加工—磨削是指用磨料,磨具切除工件上多余材料的加工方法。
磨削加工是应用较为广泛的切削加工方法之一。
3、选择性激光熔融—在一个铺满金属粉末的槽内,计算机控制着一束大功率的二氧化碳激光选择性地扫过金属粉末表面。
在激光所到之处,表层的金属粉末完全熔融结合在一起,而没有照到的地方依然保持着粉末状态。
整个过程都需要在一个充满惰性气体的密封舱内进行。
4、选择性激光烧结—是SLS法采用红外激光器作能源,使用的造型材料多为粉末材料。
加工时,首先将粉末预热到稍低于其熔点的温度,然后在刮平棍子的作用下将粉末铺平;激光束在计算机控制下根据分层截面信息进行有选择地烧结,一层完成后再进行下一层烧结,全部烧结完后去掉多余的粉末,则就可以得到一烧结好的零件。
目前成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷粉进行烧结的工艺还在研究之中。
5、金属沉积—与“挤奶油”式的熔融沉积有些相似,但喷出的是金属粉末。
喷嘴在喷出金属粉末材料的同时,还会一并提供高功率激光以及惰性气体保护。
这样不会受到金属粉末箱尺寸的局限,能直接制造出更大体积的零部件,而且也很适合对局部破损的精密零件进行修复。
6、辊轧成型—辊轧成型方法是使用一组连续机架来把不锈钢轧成复杂形状。
辊子的顺序是这样设计的,即:每个机架的辊型可连续使金属变形,直到获得所需的最终形状。
如果部件的形状复杂,最多可用三十六个机架,但形状简单的部件,三、四个机架就可以了。
7、模锻—是指在专用模锻设备上利用模具使毛坯成型而获得锻件的锻造方法。
此方法生产的锻件尺寸精确,加工余量较小,结构也比较复杂生产率高。
8、模切—即下料工艺,将前制程成型后的薄膜定位在冲切模公模上,合模去除多余的材料,保留产品3D外形,与模具型腔相匹配。
金属成型工艺

金属成型工艺金属成型工艺是一种将金属材料加工成所需形状的工艺。
金属成型工艺是金属加工的重要组成部分,它的应用领域很广,有以下几种:1.锻造工艺:锻造是一种加工方法,通过冲击或压力将金属材料改变形状,使其满足客户要求的规格,以制造出理想的产品。
2.表面处理工艺:表面处理是对金属材料表面进行特殊处理,以改善材料的外观和耐久性,比如镀锌、镀铝、镀铬等处理,能够有效地防止金属材料锈蚀,延长金属材料的使用寿命。
3.热处理工艺:金属热处理工艺是将金属材料经过加热、淬火、回火等多道工序,以改变金属材料的组织,改善材料的力学性能和耐磨性能等。
4.切削加工工艺:切削加工是将金属材料切削成所需形状的一种工艺,通常采用刀具将材料切削成所需要的尺寸,也可以采用激光切削等先进工艺进行加工。
5.冲压成型工艺:冲压成型工艺就是将金属材料通过冲压和裁剪,利用模具和工具将金属材料加工成所需要的尺寸和形状,是一种节省材料的成型工艺。
金属成型工艺在金属加工行业中扮演着至关重要的角色,它提高了金属材料的性能,使金属材料更适合使用。
此外,金属成型工艺还可以提高工厂的生产效率,减少生产成本,为企业带来更多的收益,也为社会带来良好的经济效益。
金属成型工艺发挥着越来越重要的作用,为实现现代化发展做出了重要贡献,但它也面临着许多挑战,比如针对不同金属材料的加工,需要不同的工艺条件,这就需要不断改进加工方法和技术,以满足不同金属材料的加工需求;此外,还需要加强金属成型工艺的环境保护,以满足现代社会对资源节约和环境保护的要求。
未来,随着科学技术和材料科学的发展,金属成型工艺会出现新的发展方向和前景,更加精致的成型工艺和先进的加工方法将被广泛应用于金属加工行业,有效扩大金属加工行业的应用领域,更好地满足社会的需求。
总之,金属成型工艺是金属加工行业不可或缺的工艺,它带来了巨大的经济效益,促进了社会的发展,为我们的生活带来了更加舒适的环境。
未来,金属成型工艺将继续提高性能,发挥着更大的作用,使我们的生活更加便利。
金属成型工艺的类别

金属成型工艺的类别
1. 塑性成型工艺,塑性成型工艺是指通过对金属材料施加压力,使其发生塑性变形,从而获得所需形状的工艺过程。
常见的塑性成
型工艺包括锻造、压铸、拉伸、挤压等。
2. 切削成型工艺,切削成型工艺是指通过切削金属材料的方法,将其加工成所需形状的工艺过程。
常见的切削成型工艺包括车削、
铣削、钻削、镗削等。
3. 焊接工艺,焊接工艺是指通过加热或施加压力,使金属材料
相互结合的工艺过程。
常见的焊接工艺包括电弧焊、气体保护焊、
激光焊等。
4. 粉末冶金工艺,粉末冶金工艺是指利用金属粉末或金属粉末
与非金属粉末混合后,通过压制和烧结等工艺形成零件的工艺过程。
5. 热处理工艺,热处理工艺是指通过加热、保温和冷却等方式,改变金属材料的组织结构和性能的工艺过程。
常见的热处理工艺包
括退火、正火、淬火、回火等。
以上是金属成型工艺的主要类别,不同的工艺类别在实际应用中往往会结合使用,以满足不同金属制品的加工需求。
希望以上回答能够全面地解答你的问题。
独领风骚的金属加工工艺以及金属成型工艺大盘点

独领风骚的金属加工工艺以及金属成型工艺大盘点金属加工工艺一、金属注射成型(MIM)1.简介金属注射成型(Metal Injection Molding,MIM)是一种适于生产小型、三维复杂形状以及具有特殊性能要求制品的近净成形工艺。
该技术是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。
2.工艺流程将各种微细金属粉末(一般小于20μm)按一定的比例与预设粘结剂,制成具有流变特性的喂料,通过注射机注入模具型腔成型出零件毛坯,毛坯件经过脱除粘结剂和高温烧结后,即可得到各种金属零部件。
MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。
(MIM工艺流程示意图)3.适用材料及典型结合剂(MIM适用材料)(MIM典型结合剂)4.金属注射成形(MIM)应用范围MIM具有常规粉末冶金、机加工和精密铸造方法无法比拟的优势,最突出优点为:● 适合各种粉末材料的成形,产品应用十分广泛;● 能直接成形几何形状复杂的小型零件(0.03g~200g);● 零件尺寸精度高(±0.1%~±0.5%),表面光洁度好(粗糙度1~5μm);● 产品相对密度高(95~100%),组织均匀,性能优异;● 原材料利用率高,生产自动化程度高,适合连续大批量生产。
因此在轻武器、手表、电子仪器、牙齿矫正支架、汽车发动机零件、电子密封、切削工具及运动器材中得到大量应用。
二、纳米注塑成型技术(NMT)1.简介金属与塑料以纳米技术结合的工艺称为纳米注塑成型技术(NMT)。
先对金属表面进行纳米化处理,再将塑料注射在在金属表面,可将镁、不锈钢、钛等金属与硬质树脂结合,实现一体化成型。
2.NMT工艺流程3.适用材料(铝材和铝材的结合)金属基材:铝及其合金:1000-7000系列(5052、6061、6063、7072、7075)铜及其合金:CAC16、C110、C5191、C1020、KFC5、KLF194 镁及其合金:AZ-31B、AZ-91D钛及其合金:KSTI、KS40不锈钢:SUS-304、SUS-316、316L及其他铁系列合金(MIM304L)(结合样件形式)塑料基材:PPS:宝理PPS5120(白)/PPS 1135(黑)/ PPS F458A(黑)东漕BGX120(黑)/BGX140(黑)/BGX545(黑)PBTPA(Nylon尼龙):黑色(包括PA6、PA66)PPA:多种颜色4.应用范围NMT产品可拓展到很广阔的领域,包括各类3C电子产品外壳及汽车零部件等。
金属材料八大成形工艺

金属材料八大成形工艺
(6)金属型铸造(gravity die casting) 金属型铸造:指液态金属在重力作用下充填金属铸型并在型中 冷却凝固而获得铸件的一种成型方法。 应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁 合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。
金属材料八大成形工艺
金属材料八大成形工艺
(3)挤压 挤压:坯料在三向不均匀压应力作用下,从模具的孔口或 缝隙挤出使之横截面积减小长度增加,成为所需制品的加 工方法叫挤压,坯料的这种加工叫挤压成型Байду номын сангаас 应用:主要用于制造长杆、深孔、薄壁、异型断面零件。
金属材料八大成形工艺
(4)拉拔 拉拔:用外力作用于被拉金属的前端,将金属坯料从小于 坯料断面的模孔中拉出,以获得相应的形状和尺寸的制品 的一种塑性加工方法。 应用:拉拔是金属管材、棒材、型材及线材的主要加工方 法。
金属材料八大成形工艺
(10)连续铸造(continual casting) 连续铸造:是一种先进的铸造方法,其原理是将熔融的金属, 不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的 铸件连续不断地从结晶器的另一端拉出,它可获得任意长或特 定的长度的铸件。 应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合 金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
金属材料八大成形工艺
(4)低压铸造(low pressure casting) 低压铸造:是指使液体金属在较低压力(0.02~0.06MPa)作用下 充填铸型,并在压力下结晶以形成铸件的方法.。 应用:以传统产品为主(气缸头、轮毂、气缸架等)。
金属材料八大成形工艺
(5)离心铸造(centrifugal casting) 离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填 充铸型而凝固成形的一种铸造方法。 应用:离心铸造最早用于生产铸管,国内外在冶金、矿山、交 通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工 艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、 内燃机缸套和轴套等铸件的生产最为普遍。
金属塑性成形

第四章金属塑性成形在工业生产中,金属塑性成形方法是指:金属材料通过压力加工,使其产生塑性变形,从而获得所需要工件的尺寸、形状以及性能的一种工艺方法。
常用的金属塑性成形方法如下:自由锻造:手工自由锻、机器自由锻锻造成形模型锻造:锤上模锻、压力机上模锻金属塑性成形冲压成形、挤压成形、拉拔成形、轧锻成形金属材料经过塑性成形后,其内部组织更加致密、均匀,承受载荷能力及耐冲击能力有所提高。
因此凡承受重载荷及冲击载荷的重要零件,如机床主轴、传动轴、齿轮、曲轴、连杆、起重机吊钩等多以锻件为毛坯。
用于塑性成形的金属必须具有良好的塑性,以便加工时易于产生永久性变形而不断裂。
钢、铜、铝等金属材料具有良好的塑性,可进行锻压加工;铸铁的塑性很差,在外力作用下易裂碎,不用于锻压。
在金属塑性成形方法中,锻造、冲压两种成形方法合称锻压,主要用于生产各种机器零件的毛坯或成品。
挤压、拉拔、轧锻三种成形方法是以生产金属材料为主,如型材、管材、线材、板料等,也用于制造某些零件,如轧锻齿轮、挤压活塞销等。
第一节锻造锻造是金属热加工成形的一种主要加工方法,通常采用中碳钢和低合金钢作锻件材料,锻造加工一般在金属加热后进行,使金属坯料具有良好的可变形性,以保证锻造加工顺利进行。
基本生产工艺过程如下:下料→坯料加热→锻造成形→冷却→热处理→清理→检验。
一、锻坯的加热和锻件的冷却1.加热的目的锻坯加热是为了提高其塑性和降低变形抗力,以便锻造时省力,同时在产生较大的塑性变形时不致破裂。
一般地说,金属随着加热温度的升高,塑性增加,变形抗力降低,可锻性得以提高。
但是加热温度过高又容易产生一些缺陷,因此,锻坯的加热温度应控制在一定的温度范围之内。
2.锻造温度范围各种金属材料在锻造时允许的最高加热温度,称为该材料的始锻温度。
加热温度过高会产生组织晶粒粗大和晶间低熔点物质熔化,导致过热和过烧现象。
碳钢的始锻温度一般应低于其熔点100~200︒C,合金钢的始锻温度较碳钢低。
材料成形技术_金属材料成形基本原理
材料成形技术_金属材料成形基本原理金属材料成形是指通过外力对金属材料进行塑性变形,改变其形状和尺寸的过程。
这是一种广泛应用于制造业的加工技术,包括锻造、压力加工、剪切、折弯、旋压、挤压等多种方法。
下面将介绍金属材料成形的基本原理。
金属材料成形的基本原理可以归结为三个参数:应力、变形和温度。
这三个参数相互作用,影响金属的成形过程和结果。
首先是应力。
应力是指施加在金属材料上的力。
成形过程中,应力会使金属材料内部的晶粒沿着位移方向产生塑性滑移,从而发生变形。
应力的大小和方向会影响金属材料的变形方式和形态。
接下来是变形。
变形是指金属材料在外力作用下发生的形状和尺寸变化。
变形包括弹性变形和塑性变形两种形式。
弹性变形是指金属材料受到外力作用后,恢复到起初形状的一种变形方式。
而塑性变形是指金属材料受到外力作用后,改变形状和尺寸,不会恢复到起初形状的一种变形方式。
金属材料的塑性变形是成形加工中的主要目标。
最后是温度。
温度是指金属材料在成形过程中的温度变化。
温度的变化会影响金属材料的变形行为。
一般来说,金属在高温下更容易发生塑性变形。
高温有助于降低金属的屈服强度和粘滞阻力,使其更易于变形。
但是温度过高会引起金属的晶粒长大,从而降低了材料的性能。
金属材料成形技术的具体方法包括锻造、压力加工、剪切、折弯、旋压、挤压等。
这些方法中,锻造是最常用的一种成形方法。
锻造是通过对金属材料施加冲击或压力,使其产生塑性变形,从而得到所需的形状和尺寸。
锻造包括自由锻、模锻和挤压锻等多种方式。
总之,金属材料成形是一种重要的制造技术,通过对金属材料施加力和温度的控制,可以对材料进行塑性变形,从而得到所需的形状和尺寸。
了解金属材料成形的基本原理对于选择适当的成形方法和实现高质量的产品具有重要意义。
金属结构成形
金属结构成形基本概念成形:将坯料加工成各种形状的工艺称为成形。
金属成形主要属于塑性变形范畴,要求面形的材料具有较高的延展性能和韧性、较低的屈服比(%)和时效敏感性(指材料的应力释放性、抗裂性)。
一般要碳钢(Q235)的延伸率σ≥16%,屈强比(),低合金钢(16mm)σ≥14%,否则成形性能差,需采用一定的工艺措施(例如预热、热处理后再次成形等)。
成形方法:手工成形、机械成形手工成形手工成形是用手锤或手动机械使钢板和型钢成形的方法,根据成形材料的温度高低分为冷成形和热成形。
一、板料手工弯曲成形板料弯曲分折角弯曲和圆弧弯曲,当弯曲半径较大时为圆弧弯曲;当弯曲半径很小或等于零时为折角弯曲。
1、折角弯曲:弯曲前先划出弯曲线再进行折弯。
2、圆弧弯曲:圆弧弯曲是将板料弯成圆柱面、圆锥形或圆管形,弯曲前也要先划出弯曲时的锤击基准,通常时先弯两端,再弯中间部分。
二、型钢手工弯曲成形型钢由于重心与力的作用线不在同一平面上,型材除受弯曲力矩外,还受到扭矩的作用,所以弯曲后型钢截面会产生畸变;型材的变形程度决定于应力的大小,弯曲半径越小,相应的应力就越大,型材的畸变程度也就越大,为了控制应力和变形,刚规定了最小弯曲半径,不同型钢的断面不同,其最小弯曲半径R也各不相同(见P162页表7-1),在弯曲时应设法减小其截面的变形,故型钢手工成形有冷弯和热弯之分,当弯曲半径较大时可采用冷弯,弯曲半径较小时,则采用热弯。
对于特殊的角钢的弯曲,它分为内弯和外弯,有开切口弯曲和不开切口弯曲两种。
1、角钢不开切口弯曲此类弯曲一般在弯曲模上进行,但由于弯曲变形和弯曲力较大,多采用热弯。
在弯曲前先划出弯曲区域,两端适当放一定余量,然后将弯曲部分加热,加热温度适材料而定,碳钢(Q235-A)的加热温度不得超过1050°,否则材料会因温度过高而烧坏。
2、角钢开切口弯曲角钢开切口后,由于只有立面的翼边弯曲,所以弯曲力较小,在一般的弯模上就可以完成,翼边较厚的,可适当加热后再弯曲。
材料成型基础之常用金属塑性成形方法
模锻
对于孔径d﹥25mm 的模锻件,孔应锻出 ,但须留冲孔连皮;
冲孔连皮厚度与 孔径有关,当孔径为 Ø30 ~80mm时,连 皮厚度为4 ~8mm。
模锻
③模锻斜度
目的是便于从模膛中取出锻件。
常用模锻斜度系列为: 3°\5°\7°\10°\12°\15°
模锻斜度与模膛深度有关,当 模膛深度与宽度的比值(h/b)越 大时,取较大的斜度值。内壁 斜度应比外壁斜度大2°~5°
锻造设备:
中小型锻件所采用的主要是空气锤,空气锤的 吨位选择见下表或查锻造手册。
锤的吨位/kg 150 250 400
560
锻件质量/kg
6
10
26
40
自由锻造
⑸自由锻件结构技术特征 ①自由锻件上应避免锥体、曲线或曲线交接以及 椭圆形、②自由锻件上应避免加强筋、凸台等结构。
自由锻造
锻件名称
典型锻件的锻造比
计算 锻造比 部位
锻件 名称
碳素钢轴类 最大
零件
截面
合金钢轴类 最大
零件
截面
热轧辊
辊身
2.0~2.5 2.5~3.0 2.5~3.0
冷轧辊
辊身 3.5~5.0
锤头
水轮机主 轴 水轮机立 柱 模块
计算 部位
锻造比
最大截面 ≥2.5
轴身
≥2.5
最大截面 ≥3.0 最大截面 ≥3.0
然后计算出坯料横截面积、直径或边长等尺寸。
自由锻造
当锻造件的第一工序为拔长时,则: F1≥Y锻 F锻
式中:F1—坯料的截面积; Y锻—锻造比,对于圆钢Y锻=1.3—1.5左右; F锻—锻件的最大截面积。
注意:圆钢直径大小是标准的,如计算的坯料直径与圆钢标 准直径不符,则应将坯料直径就近取成圆钢直径,然后再重 新计算坯料高度H或长度L。
金属成形方法大全
金属成形方法大全金属成形是一种制造工艺,通过对金属材料进行加工和变形以获得所需形状和尺寸。
金属成形方法有很多种,下面将详细介绍几种常见的金属成形方法。
1.锻造:锻造是将金属材料加热至一定温度后,利用锤击或压力使之在模具内进行塑性变形的金属成形方法。
锻造可分为手锻和机械锻造两种。
手锻是在锻锤或锻压机上进行的锻造过程,适用于小批量、复杂形状和大型件。
机械锻造则使用锻压设备,适用于大批量生产。
2.挤压:挤压是将金属材料通过模具的流道进入挤压腔,受到持续压力下挤压而获得所需形状和尺寸的金属成形方法。
挤压可分为冷挤压和热挤压两种。
冷挤压适用于高强度、高耐蚀性和高热导率的金属材料,热挤压适用于高塑性材料。
3.拉伸:拉伸是将金属材料置于拉伸设备中,在一定温度和应力下使之获得所需形状和尺寸的金属成形方法。
拉伸适用于金属板材或线材的成形,可以制作出各种形状的金属零部件。
4.深冲:深冲是将金属材料置于冲压设备中,在一定应力和压力下通过冲压模具进行多次变形,获得所需形状和尺寸的金属成形方法。
深冲适用于连续成形和大批量生产,可以制作出薄壁零件。
5.折弯:折弯是将金属材料通过折弯设备使其产生变形和弯曲的金属成形方法。
折弯适用于金属板材的成形,可以制作出各种折弯形状的零部件。
6.铸造:铸造是将熔化的金属通过铸造设备倒入模具中,经冷却凝固得到所需形状和尺寸的金属成形方法。
铸造适用于生产大型、复杂形状和不易加工的金属件。
7.焊接:焊接是将金属材料进行加热至熔点,并通过填充材料或熔化金属材料相互连接的金属成形方法。
焊接可以将多个金属部件连接成一个整体,广泛应用于制造和建筑行业。
8.金属粉末冶金:金属粉末冶金是利用金属粉末经过成型、烧结和后处理等工艺制造金属件的金属成形方法。
金属粉末冶金可以制造出复杂形状和高精度的金属零部件。
总结起来,金属成形方法包括锻造、挤压、拉伸、深冲、折弯、铸造、焊接和金属粉末冶金等。
每种方法都有其独特的特点和适用范围,根据具体的需求选择相应的成形方法可以提高生产效率和产品质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属成形方法大全铸造液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。
工艺流程:液体金属→充型→凝固收缩→铸件工艺特点:1、可生产形状任意复杂的制件,特别是腔形状复杂的制件。
2、适应性强,合金种类不受限制,铸件大小几乎不受限制。
3、材料来源广,废品可重熔,设备投资低。
4、废品率高、表面质量较低、劳动条件差。
铸造分类:(1)砂型铸造(sand casting)在砂型中生产铸件的铸造方法。
钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。
..工艺流程:技术特点:1、适合于制成形状复杂,特别是具有复杂腔的毛坯;2、适应性广,成本低;3、对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。
应用:汽车的发动机气缸体、气缸盖、曲轴等铸件(2)熔模铸造(investmentcasting)通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。
常称为“失蜡铸造”。
..工艺流程:优点:1、尺寸精度和几何精度高;2、表面粗糙度高;3、能够铸造外型复杂的铸件,且铸造的合金不受限制。
缺点:工序繁杂,费用较高应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。
(3)压力铸造(die casting)利用高压将金属液高速压入一精密金属模具型腔,金属液在压力作用下冷却凝固而形成铸件。
工艺流程:..优点:1、压铸时金属液体承受压力高,流速快2、产品质量好,尺寸稳定,互换性好;3、生产效率高,压铸模使用次数多;4、适合大批大量生产,经济效益好。
缺点:1、铸件容易产生细小的气孔和缩松。
2、压铸件塑性低,不宜在冲击载荷及有震动的情况下工作;3、高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大。
应用:压铸件最先应用在汽车工业和仪表工业,后来逐步扩大到各个行业,如农业机械、机床工业、电子工业、国防工业、计算机、医疗器械、钟表、照相机和日用五金等多个行业。
(4)低压铸造(low pressure casting)指使液体金属在较低压力(0.02~0.06MPa)作用下充填铸型,并在压力下结晶以形成铸件的方法。
工艺流程:..技术特点:1、浇注时的压力和速度可以调节,故可适用于各种不同铸型(如金属型、砂型等),铸造各种合金及各种大小的铸件;2、采用底注式充型,金属液充型平稳,无飞溅现象,可避免卷入气体及对型壁和型芯的冲刷,提高了铸件的合格率;3、铸件在压力下结晶,铸件组织致密、轮廓清晰、表面光洁,力学性能较高,对于大薄壁件的铸造尤为有利;4、省去补缩冒口,金属利用率提高到90~98%;5、劳动强度低,劳动条件好,设备简易,易实现机械化和自动化。
应用:以传统产品为主(气缸头、轮毂、气缸架等)。
(5)离心铸造(centrifugal casting)将金属液浇入旋转的铸型中,在离心力作用下填充铸型而凝固成形的一种铸造方法。
工艺流程:优点:..1、几乎不存在浇注系统和冒口系统的金属消耗,提高工艺出品率;2、生产中空铸件时可不用型芯,故在生产长管形铸件时可大幅度地改善金属充型能力;3、铸件致密度高,气孔、夹渣等缺陷少,力学性能高;4、便于制造筒、套类复合金属铸件。
缺点:1、用于生产异形铸件时有一定的局限性;2、铸件孔直径不准确,孔表面比较粗糙,质量较差,加工余量大;3、铸件易产生比重偏析。
应用:离心铸造最早用于生产铸管,国外在冶金、矿山、交通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工艺,来生产钢、铁及非铁碳合金铸件。
其中尤以离心铸铁管、燃机缸套和轴套等铸件的生产最为普遍。
(6)金属型铸造(gravity die casting)液态金属在重力作用下充填金属铸型并在型中冷却凝固而获得铸件的一种成型方法。
工艺流程:优点:1、金属型的热导率和热容量大,冷却速度快,铸件组织致密,力学性能比砂型铸件高15%左右。
2、能获得较高尺寸精度和较低表面粗糙度值的铸件,并且质量稳定性好。
3、因不用和很少用砂芯,改善环境、减少粉尘和有害气体、降低劳动强度。
缺点:1、金属型本身无透气性,必须采用一定的措施导出型腔中的空气和砂芯所产生的气体;..2、金属型无退让性,铸件凝固时容易产生裂纹;3、金属型制造周期较长,成本较高。
因此只有在大量成批生产时,才能显示出好的经济效果。
应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。
(7)真空压铸(vacuumdie casting)通过在压铸过程中抽除压铸模具型腔的气体而消除或显著减少压铸件的气孔和溶解气体,从而提高压铸件力学性能和表面质量的先进压铸工艺。
工艺流程:优点:1、消除或减少压铸件部的气孔,提高压铸件的机械性能和表面质量,改善镀覆性能;2、减少型腔的反压力,可使用较低的比压及铸造性能较差的合金,有可能用小机器压铸较大的铸件;3、改善了充填条件,可压铸较薄的铸件;缺点:1、模具密封结构复杂,制造及安装较困难,因而成本较高;2、真空压铸法如控制不当,效果就不是很显著。
(8)挤压铸造(squeezing die casting)..使液态或半固态金属在高压下凝固、流动成形,直接获得制件或毛坯的方法。
它具有液态金属利用率高、工序简化和质量稳定等优点,是一种节能型的、具有潜在应用前景的金属成形技术。
工艺流程:直接挤压铸造:喷涂料、浇合金、合模、加压、保压、泄压,分模、毛坯脱模、复位;间接挤压铸造:喷涂料、合模、给料、充型、加压、保压、泄压,分模、毛坯脱模、复位。
技术特点:1、可消除部的气孔、缩孔和缩松等缺陷;2、表面粗糙度低,尺寸精度高;3、可防止铸造裂纹的产生;4、便于实现机械化、自动化。
应用:可用于生产各种类型的合金,如铝合金、锌合金、铜合金、球墨铸铁等(9)消失模铸造(Lost foam casting )将与铸件尺寸形状相似的石蜡或泡沫模型粘结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。
工艺流程:预发泡→发泡成型→浸涂料→烘干→造型→浇注→落砂→清理..技术特点:1、铸件精度高,无砂芯,减少了加工时间;2、无分型面,设计灵活,自由度高;3、清洁生产,无污染;4、降低投资和生产成本。
应用:适合成产结构复杂的各种大小较精密铸件,合金种类不限,生产批量不限。
如灰铸铁发动机箱体、高锰钢弯管等。
(10)连续铸造(continual casting)一种先进的铸造方法,其原理是将熔融的金属,不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的铸件,连续不断地从结晶器的另一端拉出,它可获得任意长或特定的长度的铸件。
工艺流程:技术特点:1、由于金属被迅速冷却,结晶致密,组织均匀,机械性能较好;2、节约金属,提高收得率;..3、简化了工序,免除造型及其它工序,因而减轻了劳动强度;所需生产面积也大为减少;4、连续铸造生产易于实现机械化和自动化,提高生产效率。
应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
(来源夹具侠)塑性成形利用材料的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。
它的种类有很多,主要包括锻造、轧制、挤压、拉拔、冲压等。
(1)锻造利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。
根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。
自由锻造:一般是在锤锻或者水压机上,利用简单的工具将金属锭或者块料锤成所需要形状和尺寸的加工方法。
模锻:是在模锻锤或者热模锻压力机上利用模具来成形的。
碾环:指通过专用设备碾环机生产不同直径的环形零件,也用来生产汽车轮毂、火车车轮等轮形零件。
特种锻造:包括辊锻、楔横轧、径向锻造、液态模锻等锻造方式,这些方式都比较适用于生产某些特殊形状的零件。
工艺流程:锻坯加热→辊锻备坯→模锻成形→切边→冲孔→矫正→中间检验→锻件热处理→清理→矫正→检查..技术特点:1、锻件质量比铸件高能承受大的冲击力作用,塑性、韧性和其他方面的力学性能也都比铸件高甚至比轧件高。
2、节约原材料,还能缩短加工工时。
3、生产效率高例。
4、自由锻造适合于单件小批量生产,灵活性比较大。
应用:大型轧钢机的轧辊、人字齿轮,汽轮发电机组的转子、叶轮、护环,巨大的水压机工作缸和立柱,机车轴,汽车和拖拉机的曲轴、连杆等。
(2)轧制将金属坯料通过一对旋转轧辊的间隙(各种形状),因受轧辊的压缩成型轧制使材料截面减小,长度增加的压力加工方法。
轧制分类:按轧件运动分有:纵轧、横轧、斜轧。
纵轧就是金属在两个旋转方向相反的轧辊之间通过,并在其间产生塑性变形的过程;横轧轧件变形后运动方向与轧辊轴线方向一致;斜轧轧件作螺旋运动,轧件与轧辊轴线非特角。
工艺流程:..应用:主要用在金属材料型材,板,管材等,还有一些非金属材料比如塑料制品及玻璃制品。
(3)挤压坯料在三向不均匀压应力作用下,从模具的孔口或缝隙挤出使之横截面积减小长度增加,成为所需制品的加工方法叫挤压,坯料的这种加工叫挤压成型。
工艺流程:挤压前准备→铸棒加热→挤压→拉伸扭拧校直→锯切(定尺)→取样检查→人工时效→包装入库优点:1、生产围广,产品规格、品种多;2、生产灵活性大,适合小批量生产;3、产品尺寸精度高,表面质量好;..4、设备投资少,厂房面积小,易实现自动化生产。
缺点:1、几何废料损失大;2、金属流动不均匀;3、挤压速度低,辅助时间长;4、工具损耗大,成本高。
生产适用围:主要用于制造长杆、深孔、薄壁、异型断面零件。
(4)拉拔用外力作用于被拉金属的前端,将金属坯料从小于坯料断面的模孔中拉出,以获得相应的形状和尺寸的制品的一种塑性加工方法。
优点:1. 尺寸精确,表面光洁;2. 工具、设备简单;3. 连续高速生产断面小的长制品。
缺点:1. 道次变形量与两次退火间的总变形量有限;2. 长度受限制。
生产适用围:拉拔是金属管材、棒材、型材及线材的主要加工方法。
(5)冲压靠压力机和模具对板材、带材、管材和型材等施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件(冲压件)的成形加工方法。
..技术特点:1、可得到轻量、高刚性之制品。
2、生产性良好,适合大量生产、成本低。
3、可得到品质均一的制品。
4、材料利用率高、剪切性及回收性良好。
适用围:全世界的钢材中,有60~70%是板材,其部分经过冲压制成成品。
汽车的车身、底盘、油箱、散热器片,锅炉的汽包,容器的壳体,电机、电器的铁芯硅钢片等都是冲压加工的。