表面与胶体化学—胶体的基本性质(三)1

合集下载

表面化学和胶体化学

表面化学和胶体化学
表面化学和胶体化学
汇报人: 202X-01-02
contents
目录
• 表面化学基础 • 胶体化学基础 • 表面化学与胶体化学的应用 • 表面化学和胶体化学的未来发展
01
表面化学基础
表面化学的定义和重要性
定义
表面化学是研究物质表面现象的 科学,主要研究气体、液体和固 体表面上的分子或原子之间的相 互作用。
表面活性剂
01
02
03
定义
表面活性剂是一种能够显 著降低液体表面张力的物 质,通常由亲水基团和疏 水基团组成。
分类
表面活性剂可以分为离子 型和非离子型两类,离子 型又可以分为阳离子型和 阴离子型。
应用
表面活性剂在清洁、化妆 品、农药、纺织等领域都 有广泛应用。
02
胶体化学基础
胶体的定义和分类
胶体的定义
03
石油工业
表面活性剂在石油工业中用于提高采油效率和原油的流动性,同时还可
以用于油水分离和油品净化。
在环境保护中的应用
污水处理
表面活性剂和胶体物质可用于污 水处理,通过吸附、絮凝等方法 去除水中的污染物,提高水质。
空气净化
利用表面活性剂和胶体物质可以吸 附和去除空气中的颗粒物、有害气 体等污染物,起到空气净化的作用 。
新技术
随着科技的不断进步,表面化学和胶体化学将与新技术相结合,如纳米技术、 生物技术等,推动相关领域的技术创新和产业升级。
表面化学和胶体化学与其他学科的交叉研究
生物学
表面化学和胶体化学与生物学交叉研究,探讨生物膜、细 胞、蛋白质等生物分子间的相互作用机制,为生物医学领 域提供新的研究思路和方法。
环境科学
土壤修复
表面化学和胶体化学在土壤修复中 也有应用,如利用表面活性剂和胶 体物质去除土壤中的重金属和有机 污染物。

胶体

胶体
电动电势决定着胶 粒在电场中的运动 速度。
紧密层
0热力学电势差:
固体表面与溶液本体间的电势差
x
双 电 层 的 Stern 模 型
当溶胶相对静止时,整个溶胶体系是电中性的,但 当分散相粒子和液体介质相对运动时,就会产生电位差, 这种电位差叫电动电势。 胶粒是带电的,由于静电引力使反粒子在表面周围,
又由于分子热运动,使反粒子在表面附近呈扩散分布。
离表面近的一层——紧密层(内层),厚度(约几
1869年,发现了Tyndall效应,可区别溶胶及溶液;
1903年,德国科学家Zsigmondy发明了超显微镜, 肯定溶胶的一个根本问题—体系的多相性,从而明确了 胶体化学是界面化学。
1907年,德国化学家Ostwald创办《胶体化学和工
业杂志》—胶体化学正式成为一门独立的学科。 1941年,前苏联的德查金(Derjaguin B V)和朗道 (Landau L D)以及1948年荷兰的维韦(Werwey E J W)和 奥佛比克(Overbeek J T G)胶体稳定性的DLWO理论。从 70年代起,对高分子稳定胶体的研究逐渐成为热点,其中
φ0
+ + + + + + + + + + + +
δ
φ0

+ + + + + + + + + + + + +
-
A B x -
平板双电层模型
扩散双电层模型
质 点 表面+ + + + + + + + + +

胶体与表面化学-胶体的光学性质

胶体与表面化学-胶体的光学性质
胶体与表面化学
2.3 溶胶的光学性质
胶体系统的光学性质, 胶体系统的光学性质,是其高度的分散性和多相的不均匀性 特点的反映。 特点的反映。
2.3.1 光散射现象
光束通过粗分散系统,粒子直径 入射光波长 主要发生反射 入射光波长, 反射, 光束通过粗分散系统,粒子直径>入射光波长,主要发生反射,系统呈现 粗分散系统 混浊。 混浊。 光束通过胶体溶液,胶粒直径 可见光波长 主要发生散射 可见光波长, 散射, 光束通过胶体溶液,胶粒直径<可见光波长,主要发生散射,可以看见 胶体溶液 乳白色的光柱。 乳白色的光柱。 光束通过小分子溶液,溶液均匀,散射光相互干涉而完全抵消,看不见 光束通过小分子溶液,溶液均匀,散射光相互干涉而完全抵消, 小分子溶液 散射光。 散射光。
动态光散射仪
散射光强度的影响因素
散射光的强度 与入射光波长 的四次方成反 比。
不同波长光的散射强度
天空为什么是蓝色的? 天空为什么是蓝色的?
解释蓝天的色彩
自然界的瑞利散射
石头里的瑞利散射现象
作业:朝霞不出门,晚霞行千里。 作业 朝霞不出门,晚霞行千里。 朝霞不出门
丁达尔现象的自然之美
丁达尔现象的自然之美
汽车灯光的丁达尔现象
教堂里的丁达尔现象
交通指示灯颜色选择中的科学
Байду номын сангаас
2.3.3 瑞利公式
2.3.3 瑞利公式
• 1871年,Rayleigh研究了大量的光散射现象,对于粒子半 研究了大量的光散射现象, 年 研究了大量的光散射现象 的溶胶, 计算公式, 径<47nm的溶胶,导出了散射光的强度 I 计算公式,称为 的溶胶 Rayleigh公式 公式
2 24π cv n2 − n0 I= × 2 4 n + 2n2 × I0 λ 0 3 2 2

胶体的性质

胶体的性质
首先,用其它方法测出待研究物质未溶剂化时的分子量 M, 由此计算等效圆球的阻力系数 f0:
f0
?
6??
3
3MV
4? N A
式中,V ——粒子比体积,即粒子密度的倒数1/? 。
因为体系中含有大量的粒子,人们常以1mol 粒子为基准, 并求出粒子或大分子的摩尔质量。
一、胶体的运动性质
其二,按
ቤተ መጻሕፍቲ ባይዱ
D ? kT f
一、胶体的运动性质
(1)粒子速度很慢,保持层流状态;
沉降公式 适合条件
(2)粒子是刚性球,没有溶剂化作用; (3)粒子之间无相互作用;
(4)与粒子相比,液体看作是连续介质。
上述沉降公式只适用于不超过100 ? m的颗粒分散体系,接近0.1 ? m 的小颗粒,还必须考虑扩散的影响。
沉降速度与介质的粘度成反比,因此可以通过提高介质的粘度来提 高分散体系的稳定性。
目录
一、胶体的运动性质 二、胶体的光学性质 三、胶体的电学性质
三、胶体的电学性质
1. 电动现象
早在1809年,俄国科学家就发现水介质的粘土颗粒在 外电场的作用下会向正极移动; 1961年,科学家也发现若 用压力将液体挤过毛细管或粉末压成的多孔塞,则在毛细 管或多孔塞的两端产生电势差。这种在外电场作用下使固 液两相发生相对运动以及外力使固 -液两相发生相对运动时 产生电场的现象统称为电动现象。
(2)溶胶浓度很稀,即粒子间距离很大,无相互作用,单位体 积的散射光强度是各粒子的简单加和;
(3)粒子为各向同性,非导体,不吸收光。
二、胶体的光学性质
由此导出的 Rayleigh 散射定律为:
I?
?
9? 2cV2 2?4R2
?(nn2222??2nn1122 )2

表面与胶体化学—胶体的基本性质(三)

表面与胶体化学—胶体的基本性质(三)
电解质离子在固液界面的吸附 1.离子晶体的选择性吸附
离子晶体总是选择性地吸附与其晶格 相同或相似的离子,并形成难溶盐。
例如:当Na2SO4与过量的BaCl2在溶 液中形成BaSO4沉淀时,由于BaCl2过量, 生成的BaSO4沉淀物总是优先吸附溶液 中的Ba2+使表面带正电荷,Cl-以扩散状 分布于粒子附近。
实用文档
12
胶体粒子
可滑动面 扩散层
{ [AgI]m n I- . (n-x) K+ }x-
胶核
2.静电物理吸附
紧密层
x K+
带电固体表面对溶液中带 电符号相反离子有库仑引力 作用而使其浓集于表面周围 的扩散层中,并最终使表面 电荷中和。异电离子价数越 高,其吸附能力越强,这是 由静电引力决定的。
实用文档
9
不同电解质对溶胶的聚沉值/mmol·L-1
As2S3 (负溶胶)
LiCl
58
NaCl
51
KCl
49.5
ห้องสมุดไป่ตู้
KNO3 CaCl2
50 0.65
MgCl2 MgSO4
0.72 0.81
AgI (负溶胶)
LiNO3 NaNO3 KNO3 RbNO3 Ca(NO3)2
165 140 136 126 2.40
-
I
-
I
-
I
-
II
-
I
-
I
+
K
-
-
+
+ I
-
-I
-
I
I
K+
+
K
K+ K I- I - I -

胶体与表面化学第一讲

胶体与表面化学第一讲

{[AgI]m· nAg+ · (n-x) NO3-} x+ · x NO3胶核 胶粒 胶团 胶粒带电,但整个胶体分散系是呈电中性的。 胶粒带电,但整个胶体分散系是呈电中性的。在 进行电泳实验时,由于电场的作用, 进行电泳实验时,由于电场的作用,胶团在吸附 层和扩散层的界面之间发生分离, 层和扩散层的界面之间发生分离,带正电的胶粒 向阴极移动,带负电的离子向阳极移动。因此, 向阴极移动,带负电的离子向阳极移动。因此, 胶团在电场作用下的行为跟电解质相似。 胶团在电场作用下的行为跟电解质相似。 吸附层 扩散层
胶粒带同种电荷,相互间产生排斥作用, 胶粒带同种电荷,相互间产生排斥作用, 不易结合成更大的沉淀微粒, 不易结合成更大的沉淀微粒,这是胶体具有稳 定性的主要因素 主要因素。 定性的主要因素。
例 在陶瓷工业上常遇到因陶土里混有 Fe2O3而影响产品质量的问题。解决方法 而影响产品质量的问题。 之一是把这些陶土和水放在一起搅拌, 之一是把这些陶土和水放在一起搅拌,使 粒子大小在1nm~100nm之间,然后插入 之间, 粒子大小在 之间 两根电极,接通直流电源, 两根电极,接通直流电源,这时阳极聚 带负电荷的胶粒(粒子陶土) 积 带负电荷的胶粒(粒子陶土), 带正电荷的胶粒( 阴极聚积 带正电荷的胶粒(Fe2O3) ,理由 是
3、 电泳现象 电学性质 、 电泳现象(电学性质 电学性质) 在外加电场作用下, 在外加电场作用下 胶体粒子在分散剂里 阴极或阳极) 的现象, 向电极 (阴极或阳极 作定向移动的现象 阴极或阳极 作定向移动的现象 叫做电泳
Fe(OH)3胶体向阴极 移动——带正电荷 带正电荷 移动 阴极
阳极
+
原因:粒子胶体微粒带同种电荷,当胶粒带正 原因:粒子胶体微粒带同种电荷, 电荷时向阴极运动, 电荷时向阴极运动,当胶粒带负电荷时 向阳极运动。 向阳极运动。 胶体的胶粒有的带电, 电泳现象 现象; 胶体的胶粒有的带电,有电泳现象;有的不带 没有电泳现象。 电,没有电泳现象。

1胶体与表面化学知识点整理-推荐下载

1胶体与表面化学知识点整理-推荐下载

(2)Rayleigh 散射定律
I

I0
24 3cV 2 4
(Leabharlann n22 n12 n12 2n22
)2
c 为单位体积中质点数,v 为单个粒子的体积(其线
性大小应远小于入射光波长), 为入射光波长,
n1、n2 分别为分散介质和分散相的折射率
①散射光强度与入射光波长的四次方成反比。入射光波长愈短,散射愈显著。 所以可见光中,蓝、紫色光散射作用强。②分散相与分散介质的折射率相差愈 显著,则散射作用亦愈显著。若 n1=n2 则无散射现象③散射光强度与单位体积 中的粒子数成正比。④散射光强度与粒子体积的平方成正比。在低分子溶液中, 散射光极弱,因此利用丁道尔现象可以鉴别溶胶和真溶液。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置23试时23卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看2度并55工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

表面及胶体化学知识点归纳

表面及胶体化学知识点归纳

胶体: 指具有高度分散的分散体系(亦是研究对象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间.胶体的研究内容:表面现象、分散体系、高分子溶液。

表面能δ:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J·m-2。

表面张力δ:单位长度液体表面的收缩力,单位N·m-1(或mN·m-1)l aplace方程:球面,则R1=R2=R,ΔP=2σR 柱面,则R1=R,R2=∞,ΔP=σ/R 球形气泡,且R1=R2=RΔP=4σ/R表面过剩:界面相与体相的浓度差。

接触角:固液气三相交点处作气液界面的切线,此切线与固液交界线之间的夹角θ。

Gibbs吸附公式:(双组分体系)固体表面张力:新产生的两个固体表面的表面应力之和的一半。

固体表面能:指产生一平方厘米新表面所消耗的等温可逆功。

Laugmuir理论:假设被吸附分子间无作用力,因而分子脱附不受周围分子的影响。

只有碰撞在空间表面的分子才有可能被吸附(单分子层吸附)。

固体表面是均匀的,各处吸附能相同。

BET理论的基本假设:①固体表面是均匀的,同层分子(横向)间没有相互作用,分子在吸附和脱附时不受周围同层分子的影响。

②物理吸附中,固体表面与吸附质之间有范德华力,被吸附分子间也有范德华力,即吸附是多分子层的。

影响溶液中吸附的因素:吸附剂:溶质、溶剂三者极性的影响;温度:溶液吸附也是放热过程,一般T上升,吸附下降;溶解度:吸附与溶解相反,溶解度越小,越易被吸附;同系物的吸附规律一般随C-H链的增长吸附有规律的增加和减少。

Trube规则;吸附剂的孔隙大小;吸附剂的表面化学性质,同一类吸附剂由于制备条件不同,表面活性相差很大,吸附性能也会有很大差异;混合溶剂的影响,色谱法中使用混合溶剂,洗提效果比单纯溶剂好,若自极性相同的混合溶剂中吸附第三组份,等温线界于两单等温线之间;若自极性不相同的混合溶剂中吸附第三组份,吸附量比任何单一溶剂中少,混合溶剂极性一致或不一致情况不同;多种溶质的混合溶液;9、盐的影响,盐的存在通过影响溶质的活度系数、溶解度、溶质的电离平衡而影响吸附。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同电解质对溶胶的聚沉值 不同电解质对溶胶的聚沉值/mmol·L-1 聚沉值
As2S3 (负溶胶 负溶胶) 负溶胶 58 LiCl 51 NaCl KCl 49.5 50 KNO3 CaCl2 0.65 MgCl2 0.72 0.81 MgSO4 AlCl3 0.093 1/2Al2(SO4)3 0.096 0.009 Th(NO3)4 AgI (负溶胶 负溶胶) 负溶胶 165 LiNO3 NaNO3 140 KNO3 136 RbNO3 126 Ca(NO3)2 2.40 Mg(NO3)2 2.60 Pb(NO3)2 2.43 Al(NO3)3 0.067 La(NO3)3 0.069 Ce(NO3)3 0.069 Fe(OH)3 (正溶胶 正溶胶) Al2O3 (正溶胶 正溶胶) 正溶胶 正溶胶 NaCl 9.25 NaCl 43.5 KCl 9.0 KCl 46 KBr 12.5 KNO3 60 KI 16 KCNS 67 K2SO4 0.205 K2SO4 0.30 K2Cr2O7 0.159 K2Cr2O7 0.63 MgSO4 0.22 K2C2O4 0.69 K3[Fe(CN)6] 0.08 K4[Fe(CN)6] 0.05
粒子间的静电排斥作用
排斥能可由下式计算: 排斥能可由下式计算:
H h
Ze ϕ δ exp( 2 kT ) − 1 64 π an 0 kT Ui = exp( − κ h ) 2 κ exp( Ze ϕ δ ) 数 κ: 扩散双电层厚度的倒数 a : 粒子半径 h : 粒子之间的距离
三.DLVO理论 理论 DLVO理论认为:疏液胶体粒子间既有因粒 理论认为: 理论认为 子带电形成的扩散双电层交联时产生的静电排 斥作用,又有粒子间van der Waals力相互吸引 斥作用,又有粒子间 力相互吸引 作用,此两作用均与粒子间距离有关。 作用,此两作用均与粒子间距离有关。当粒子 间排斥能大于吸引能时,胶体体系稳定; 间排斥能大于吸引能时,胶体体系稳定;当吸 引能大于排斥能时,粒子发生聚集, 引能大于排斥能时,粒子发生聚集,体系稳定 性破坏。 性破坏。粒子表面溶剂化层的形成有利于提高 稳定性。加入反离子, 稳定性。加入反离子,压缩双电层利于粒子聚 粒子间总作用能U( )为排斥能U 集。粒子间总作用能 ( h)为排斥能 i(h) ) 与吸引能U 与吸引能 m(h)之和。 )之和。
Zeϕδ exp( ) − 1 64πan0 kT Aa 2kT U = Ui + Um = exp(−κh) − Zeϕδ 12h κ2 exp( ) + 1 2kT
2
由于扩散层厚度的减小, 由于扩散层厚度的减小, 电位相应降低, ζ电位相应降低,胶粒间的 相互排斥力也减少。 相互排斥力也减少。 由于扩散层减薄, 由于扩散层减薄,颗粒 相撞时的距离减少, 相撞时的距离减少,相互间 的吸引力变大。 的吸引力变大。 颗粒间排斥力与吸引力 的合力由斥力为主变为以引 力为主,颗粒就能相互凝聚。 力为主,颗粒就能相互凝聚。 两个胶粒能否相互凝聚, 两个胶粒能否相互凝聚, 取决于二者的总势能。 取决于二者的总势能。
2
粒子间的van der Waals吸引作用
对于半径为a,相距 的球形粒子相互吸引能 的球形粒子相互吸引能U 对于半径为 ,相距h的球形粒子相互吸引能 m 为:
Um
Aa =− 12 h
A为Hamaker常数。
球形粒子间总的作用应为U 球形粒子间总的作用应为 i和Um之和
Ze ϕδ exp( ) − 1 64πan0 kT Aa 2 kT U = Ui +Um = exp( −κh ) − 2 Ze ϕ δ 12 h κ exp( ) + 1 2 kT
2.Schulze-Handy规则 规则 临界聚沉浓度CCC除与体系中胶体粒子浓 临界聚沉浓度 除与体系中胶体粒子浓 度,反离子大小,电解质加入方式和加入时间 反离子大小, 等因素有关外,主要由反离子的价数决定。 等因素有关外,主要由反离子的价数决定。 反离子价数越高, 越小, 反离子价数越高,CCC越小,CCC与反离 越小 与反离 子价数6次方成反比 此即Schulze-Hardy规则。 次方成反比, 规则。 子价数 次方成反比,此即 规则 对于带负电胶体粒子, 关系: 对于带负电胶体粒子,CCC关系: 关系
电解质离子在固液界面的吸附 1.离子晶体的选择性吸附 离子晶体总是选择性地吸附与其晶格 相同或相似的离子,并形成难溶盐。 例如:当Na2SO4与过量的BaCl2在溶 液中形成BaSO4沉淀时,由于BaCl2过量, 生成的BaSO4沉淀物总是优先吸附溶液 中的Ba2+使表面带正电荷,Cl-以扩散状 分布于粒子附近。
Zeϕδ exp( ) − 1 64πan0 kT Aa 2kT U = Ui + Um = exp(−κh) − Zeϕδ 12h κ2 exp( ) + 1 2kT
2
外加电解质能极大地 影响总作用能曲线, 影响总作用能曲线,降 低势垒,甚至在CCC使 低势垒,甚至在 使 势垒消失。 势垒消失。因此可根据 特定的总作用曲线确定 临界聚沉浓度。 临界聚沉浓度。 C=CCC时,U=0, 时 , dU/dh=0, 应用上式求 解得 3 5 ε (kT ) CCC = K 2 6 6 为常数。 ,K为常数。 为常数 Ae z
胶体粒子
可滑动面
K+
+
{ [AgI]m n I- . (n-x) K+ }x胶核
+
x K+
K+
K K K - - I-I - - II II I
K+
K+ K + K -- I I- II I
+
K
K
+
K
+
K
- - - - IIII - II I II
+
+
胶团
胶核
+
(AgI)m
K+ K + K
K+
胶粒
滑动面以内的部分称为胶粒, 滑动面以内的部分称为胶粒,胶粒与扩散层之间有一个 胶粒 电位差,称为胶体的电动电位 电动电位( 电位) 电位差,称为胶体的电动电位(ζ电位)。而胶核表面的 电位离子与溶液之间的电位差称为总电位(φ0电位)。 电位离子与溶液之间的电位差称为总电位( 电位) 总电位
双电层压缩
憎水性胶体
当两个胶粒相互接近以至 双电层发生重叠时, 双电层发生重叠时,就产生静 电斥力。 电斥力。 向溶液中投加电解质,溶 向溶液中投加电解质, 液中离子浓度增加, 液中离子浓度增加,扩散层的 厚度将减小。 厚度将减小。 加入的反离子与扩散层原有 反离子之间的静电斥力将部分 反离子挤压到吸附层(紧密层) 反离子挤压到吸附层(紧密层) 从而使扩散层厚度减小。 中,从而使扩散层厚度减小。
若在稀的KI溶液中,滴加少量的 稀溶液, 过量 过量。 若在稀的 溶液中,滴加少量的AgNO3稀溶液,KI过量。 溶液中 AgI微粒表面将吸附 -离子,胶粒表面则带负电荷,K+为反 微粒表面将吸附I 微粒表面将吸附 离子,胶粒表面则带负电荷, 离子,这时胶团结构则应表示为: 离子,这时胶团结构则应表示为:
带正电Al 胶体对反离子的吸附量及相应CCC大小 带正电 2O3胶体对反离子的吸附量及相应 大小
反离子 (NO3)3C6H2OC2O42[Fe(CN)6]3[Fe(CN)6]4离子价数 1 2 3 4 CCC/(mmol·L-1) ( 8.7 0.69 0.08 0.05 吸附量 /mmol·(gAl2O3)-1 0.28 2.26 5.04 7.00
临界聚沉浓度与Schulze-Handy规则 二.临界聚沉浓度与 临界聚沉浓度与 规则 1.临界聚沉浓度 临界聚沉浓度 在一定时间内引起疏液胶体有明显变 如变浑浊, 化(如变浑浊 颜色改变 生成沉淀物等 所 如变浑浊 颜色改变, 生成沉淀物等)所 需加入的惰性电解质的最小浓度称为该胶 体的临界聚沉浓度或聚沉值。 体的临界聚沉浓度或聚沉值。 单位常用mmol·L-1。 单位常用
胶体粒子
可滑动面
扩散层
{ [AgI]m n I- . (n-x) K+ }x胶核
x K+
2.静电物理吸附 静电物理吸附 紧密层 带电固体表面对溶液中带 电符号相反离子有库仑引力 作用而使其浓集于表面周围 的扩散层中,并最终使表面 电荷中和。异电离子价数越 高,其吸附能力越强,这是 由静电引力决定的。 静电作用引起的吸附重要 实例是使胶体体系的聚沉作 用。加入电解质迫使反离子 更多 进入吸附(紧密)层,扩散层变薄,稳定性下降。
如As2S3胶体制备:
As 2 O3 + 3H 2 O 饱和溶液→ 2H 3AsO3
2H 3 AsO3 通入 → As 2S3 + 6H 2 O H 2S
因HS-为稳定剂(H2S过量)因此胶粒带负电。
胶体粒子
{[As2S3]m·nHS-·(n-x)H+}x-·xH+
胶核 胶团 紧密层 扩散层
+ K K K +K I
K
+
- - I-I - I I
K
K+
滑动面
+
+
+
K
+
胶体体系加入某些电解质,改变温度, 胶体体系加入某些电解质,改变温度, 加入一定浓度的大分子化合物等可使分散 相粒子聚集成可分离的沉淀物。 相粒子聚集成可分离的沉淀物。这一过程 称为聚沉或絮凝, 称为聚沉或絮凝,形成沉淀物称为聚沉物 或絮凝物。 或絮凝物。 有人将因加入无机电解质引起的聚集 称为聚沉, 称为聚沉,将加入大分子引起的聚集称为 絮凝。 絮凝。
憎液溶胶的胶团结构
FeCl3 + 3H 2 O 沸水,搅拌 → Fe(OH) 3 + 3HCl
相关文档
最新文档